(Pro)étale cohomology Shane Kelly, UTokyo Spring Semester 2024

Comments welcome!: shanekelly64[at]gmail[dot]com.

Lecture 3: Topology I

April 25th 2024

Classically, there are various sheaf theoretic ways to calculate singular cohomology. For example, if X is a triangularisable space then

$$H^*_{sing}(X,\mathbb{Q}) \cong H^*(X,\mathbb{Q})$$

we always¹ have $\check{H}^*(X, \mathbb{Q}) \otimes \mathbb{R} \cong \check{H}^*(X, \mathbb{R})$ and if X is a manifold,

 $\check{H}^*(X,\mathbb{R}) \cong H^*_{dR}(X)$

[Bott, Tu, "Differential forms in algebraic topology", Thm.II.10.6, Thm.III.15.8].

In this lecture we define étale sheaves on a scheme X using the étale topology on the category of étale X-schemes.

1 Topologies

We begin with the general theory of Grothendieck sites. This is a generalisation of the notion of a topological space, which allows us to use more general morphisms in place of open immersions.

Example 1.1. Let X be a topological space. Consider the assignment which sends an open subset $U \subset X$ to the set

$$F(U) \coloneqq \{f : U \to \mathbb{R}\}$$

of continuous functions. Given an inclusion of open subsets $V \subseteq U$ we have an induced "restriction" morphism $F(U) \to F(V); (U \xrightarrow{f} \mathbb{R}) \mapsto (V \to U \xrightarrow{f} \mathbb{R})$. Furthermore, given any set of inclusions $\{U_i \subseteq U\}_{i \in I}$, if $\cup_{i \in I} U_i = U$, then any function $(U \xrightarrow{f} \mathbb{R}) \in F(U)$ on U can be recovered from its restrictions $f_i := (U_i \xrightarrow{f|_{U_i}} \mathbb{R}) \in F(U_i)$ together with the "glueing information"

$$f_i|_{U_i\cap U_j} = f_j|_{U_i\cap U_j}.$$

In other words, F is a sheaf (we will define sheaves formally below). We want to be able to discuss such things when open subsets $U \subseteq X$ are replaced by more general morphisms $Y \to X$. The first step is to define abstractly what "covering" means, in a more general setting.

¹This is because $\mathbb{Q} \to \mathbb{R}$ is flat.

Definition 1.2. A (Grothendieck) topology on a category C is the data of: for every object $U \in C$, a collection of families of morphisms $\{U_i \rightarrow U\}_{i \in I}$. The families in these collections are called coverings of U. This data is required to satisfy the following axioms:

- 1. $\{U \xrightarrow{\text{id}} U\}$ is a covering, for every object U.
- 2. If $\{U_i \to U\}_{i \in I}$ is a covering of U, and $V \to U$ is a morphism, then each fibre product $U_i \times_U V$ exists, and $\{U_i \times_U V \to V\}_{i \in I}$ is a covering of V.
- 3. If $\{U_i \to U\}_{i \in I}$ is a covering of U, and for each $i \in I$ we have a covering $\{U_{ij} \to U_i\}_{j \in J_i}$ of U_i , then $\{U_{ij} \to U\}_{i \in I, j \in J_i}$ is a covering of U.

A category equipped with a Grothendieck topology is called a site.

Remark 1.3.

- 1. The hypothesis that the $U_i \times_U V$ exist in condition 2 is actually unnecessary to get a good theory of sheaves (cf. *coverage* in [Johnstone, Sketches of an Elephant, §C2.1]. However, it is standard to ask this.
- 2. In fact, what we have defined is a *pre*topology, not a topology. But this is a standard misuse of terminology.

Exercise 1.4. Show that any two covering families of the same object admit a common refinement. That is, show that if \mathcal{C} is a site, and $\{U_i \to Y\}_{i \in I}$ and $\{V_j \to Y\}_{j \in J}$ are covering families, then there exists a covering family $\{W_k \to Y\}_{k \in K}$, maps of sets $u: K \to I$ and $v: K \to J$, and factorisations $W_k \to U_{i(k)} \to Y$ and $W_k \to V_{j(k)} \to Y$.

Exercise 1.5. Suppose that X is a topological space in the conventional sense.² Define Op(X) to be the category whose objects are open sets of X, and morphisms are inclusions. For $U \in Op(X)$, define the coverings of U to be the families $\{U_i \rightarrow U\}_{i \in I}$ such that $\bigcup_{i \in I} U_i = U$. Show that this defines a Grothendieck topology on Op(X). (Note that in this category $V \times_U W = V \cap W$.)

Exercise 1.6. Let X be a topological space, and define LH(X) to be the category whose objects are local homeomorphisms³ $Y \to X$ and morphisms are commutative triangles $\bigvee_{X} Y' \to Y$. Show that this category has fibre products.

For $Y \in LH(X)$, define the coverings of Y to be the families $\{f_i : Y_i \to Y\}_{i \in I}$ such that $\bigcup_{i \in I} f_i(Y_i) = Y$. Show that this defines a Grothendieck topology on LH(X).

²I.e., a set equipped with a collection of subsets of X declared to be *open*, preserved by finite intersection, arbitrary union, and containing X and \emptyset .

³A morphism $f: Y \to X$ is a local homeomorphism if it is continuous and for every point $y \in Y$, there is an open neighbourhood $V \ni y$ such that $F(V) \subseteq X$ is open and $f: V \to F(V)$ is a homeomorphism.

Exercise 1.7. Recall that a morphism $f: Y \to X$ of schemes is étale if it is locally of finite presentation, and for every $y \in Y$, the ring morphism $\mathcal{O}_{X,f(x)} \to \mathcal{O}_{Y,y}$ is étale. Let Et(X) denote the category whose objects are étale morphisms $Y \to X$, and morphisms are commutative triangles. Do Exercise 1.6 with Et(X) instead of LH(X).

Explicitly:

Definition 1.8. Let X be a scheme. The étale topology on the category Et(X) of étale X-schemes is the Grothendieck topology whose coverings are families $\{f_i: Y_i \to Y\}_{i \in I}$ of morphisms in Et(X) such that $\bigcup_{i \in I} f_i(Y_i) = Y$.

Definition 1.9. A presheaf F on a category C is just a functor $C^{op} \to \text{Set.}$ A morphism of presheaves $F \to G$ is just natural transformation of functors $F \to G$.

Remark 1.10.

- 1. A presheaf of abelian groups, K-vector spaces, Λ -modules, etc is a functor from \mathcal{C}^{op} to the category of abelian groups, K-vector spaces, Λ -modules, etc.
- 2. Morphisms $F \to G$ of presheaves of abelian groups, etc, are again natural transformations, but now since F, G take values in abelian groups, etc, the morphisms $F(U) \to G(U)$ must be group homomorphisms, etc.
- 3. Given a morphism $f: V \to U$ in \mathcal{C} and a presheaf F we often write $(-)|_V: F(U) \to F(V)$ or $f^*: F(U) \to F(V)$ for the morphism $F(f): F(U) \to F(V)$.

2 Sheaves

Definition 2.1. If C is a site, then a presheaf F is called a sheaf if for any object U and any covering $\{U_i \rightarrow U\}_{i \in I}$ we have

$$F(U) = \operatorname{eq}\left(\prod_{i \in I} F(U_i) \Rightarrow \prod_{i,j \in I} F(U_i \times_U U_j)\right).$$
(III)

A morphism of sheaves is just a morphism of presheaves. A sheaf on Et(X) for some scheme X is called an étale sheaf on X.

Remark 2.2. If A is a ring, we will write Et(A) instead of $Et(\operatorname{Spec}(A))$ and if $A \to B$ is an étale algebra, and F a presheaf on Et(A) we will write F(B) instead of $F(\operatorname{Spec}(B))$. Since all the information about an étale sheaf is contained in affine schemes (cf. Exercise 4.4), we will sometimes pretend that all schemes in $Et(\operatorname{Spec}(A))$ are affine.

Example 2.3. Let X be a topological space and consider the Op(X) from Exercise 1.5. Then the assignment $U \mapsto \hom_{cont.}(U,\mathbb{R})$ from Example 1.1 is a sheaf. More generally, for any topological space Y, the assignment $U \mapsto \hom_{cont.}(U,Y)$ is a sheaf on Op(X).

If Y is equipped with a map $Y \to X$, there is also a relative version $U \mapsto \lim_{X} (U, Y)$ where $\lim_{X} (U, Y)$ is the set of commutative triangles of continuous maps $\bigvee_{X} \swarrow_{X}$

Exercise 2.4. Show that every sheaf on a topological space X is of the form $\hom_{X}(-, Y)$ for some $Y \to X$. Hint.⁴

Example 2.5. Let A be a ring. We have the following important examples of étale sheaves on Et(A), cf. Exercise ??.

1. $\mathcal{O}: B \mapsto (B, +)$.

2.
$$\mathcal{O}^* : B \mapsto (B^*, *)$$

- 3. $\mu_n : B \mapsto \{b \in B^* : b^n = 1\}.$
- 4. $GL_n : B \mapsto \{ \text{ invertible } n \times n \text{ matrices with coefficients in } B \}.$
- 5. $\Omega^n : B \mapsto \Omega^n_{B/k}$ (if A is a k-algebra for some ring k).

Remark 2.6. If a presheaf takes values in the category of abelian groups, then the sheaf condition (III) is equivalent to asking that the sequence

$$0 \to F(U) \to \prod_{i \in I} F(U_i) \to \prod_{i,j \in I} F(U_i \times_U U_j)$$

be exact, where the last morphism is the difference of the two morphisms induced by the two projections $U_i \times_U U_j \Rightarrow U_i, U_j$.

Exercise 2.7. Let X be a topological space in the conventional sense. Consider the Grothendieck topology defined on Op(X) in Exercise 1.5. Show that a presheaf on X is the same thing as a presheaf on Op(X), and a presheaf on X is a sheaf if and only if its associated presheaf on Op(X) is a sheaf. That is, Definition 2.1 is an honest generalisation of the classical notion of a sheaf.

3 Galois modules

Exercise 3.1. Let $\text{Spec}(L) \to \text{Spec}(L')$ be a morphism in Et(k) such that L/L' is Galois with Galois group G = Aut(L/L'). Recall that there is a canonical isomorphism

$$L \otimes_{L'} L \cong \prod_G L$$

⁴Given a sheaf F on X, define Y_F to be the quotient of the set of triples (U, s, x) consisting of an open $U \subseteq X$, an element $s \in F(U)$, and a point $x \in U$, subject to the equivalence relation: $(U, s, x) \sim (V, t, y)$ if x = y and $s|_{U \cap V} = t|_{U \cap V}$. Give the set Y_F the coarsest topology such that for every $U \subseteq X$ and $s \in F(U)$, the morphism $U \to Y_F$; $x \mapsto (U, s, x)$ is continuous. In other words, $Y_F = \varinjlim_{U \subseteq X} \amalg_{s \in F(U)} U$. Show that $F(-) = \hom_{X}(-, Y_F)$.

where two morphisms $L \rightrightarrows L \otimes_{L'} L; a \mapsto 1 \otimes a, a \otimes 1$ are identified with $a \mapsto (a, a, \ldots, a)$ and $a \mapsto (a^{g_1}, \ldots, a^{g_n})$ where g_i are the elements of G. Show that if F is an étale sheaf on Spec(k), then $F(\prod_G L) \cong \prod_G F(L)$, and

$$F(L') = F(L)^G$$

where $F(L)^G = \{s \in F(L) : g^*s = s \forall g \in G\}$. Deduce that if $F_1 \to F_2$ is a morphism of étale sheaves such that $F_1(L) \cong F_2(L)$ for every Galois extension L/k, then $F_1 \cong F_2$.

Remark 3.2. We will be able to show later on that a presheaf F on Et(k) is a sheaf if and only if

- 1. $F(\coprod_{i \in I} U_i) \cong \prod_{i \in I} F(U_i)$ for any collection $U_i, i \in I$, and
- 2. $F(L) = F(L')^{Aut(L'/L)}$ for every Galois extension L'/L.

Theorem 3.3 (cf.Milne, Thm.II.1.9). Suppose that k is a field, k^{sep}/k is a separable closure, and $G = Gal(k^{sep}/k)$. Then there is a canonical equivalence between the category G-Set of discrete⁵ G-sets⁶ and the category Shv(Et(k)) of étale sheaves on k.

Remark 3.4. An easy case of the above theorem is $k = \mathbb{R}$. In this case the equivalence $\text{Shv}(Et(k)) \to G$ -Set is given by $F \mapsto F(\mathbb{C})$. In general, however, k^{sep}/k will not be finite, and therefore $\text{Spec}(k^{sep})$ is not in Et(k). This "problem" will go away next quarter when we discuss the pro-étale topology.

Proof. The association $F \mapsto X_F$. For $F \in \text{Shv}(Et(k))$ we define

$$X_F = \lim_{\substack{k \to e_P/L/k}} F(L) \tag{1}$$

as the colimit over all subfields L of k^{sep} which are finite Galois extensions of k.

 X_F is a discrete G-set. For any Galois L/k and any $\sigma \in G$ we have $\sigma(L) = L$ so σ restricts to a (finite) automorphism of L/k (and hence an automorphism of F(L)) via the canonical map $G \to Gal(L/k) \cong G/Aut(k^{sep}/L)$ where $Aut(k^{sep}/L) = \{g \in G : g(a) = a \forall a \in L\}$. These actions are compatible with inclusions $L \subseteq L'$ (and hence, the morphisms $F(L) \to F(L')$), hence we get an action of G on X_F . Moreover, every $x \in X_F$ is the image of some $y \in F(L)$, so X_F is a discrete G-set. The assignment $F \mapsto X_F$ is clearly natural in F, that is, it defines a functor.

For future reference, we note that since F is an étale sheaf, for each extension L'/L, the morphism $F(L) \to F(L')$ is injective, and moreover, for any two Galois extensions L'/L/k of k, by Exercise 3.1 we have $F(L) = F(L')^{Aut(L'/L)}$. Since

⁵Here discrete means that for every $x \in X$, there is a finite Galois extension L/k with stabiliser $Stab(L) \subseteq G$ such that $x \in X^{Stab(L)}$.

⁶That is, a set X equipped with an action of G.

the action of G commutes with the colimit (1), we get

$$X_F^{Aut(k^{sep}/L)} = \varinjlim_{k^{sep}/L'/L/k} F(L')^{Aut(k^{sep}/L)} = \varinjlim_{k^{sep}/L'/L/k} F(L')^{Aut(L'/L)}$$
$$= \varinjlim_{k^{sep}/L'/L/k} F(L) = F(L).$$

The association $X \mapsto F_X$. Now suppose we have a discrete *G*-set *X*. Recall that every étale *k*-algebra is of the form $\prod_{i=1}^n L_i$ for some finite separable field extensions L_i . We would like to define a presheaf which sends $\prod_{i=1}^n L_i$ to $\prod_{i=1}^n X^{Aut(k^{sep}/L_i)}$ but this depends on a choice of embeddings $L_i \to k^{sep}$. One way to get a choice-independent construction is to define a presheaf on Et(k) as

$$F_X(\prod_{i=1}^n L_i) = \hom_G \left(\hom_k \left(\prod_{i=1}^n L_i, k^{sep} \right), X \right)$$

where \hom_G means G-equivariant morphisms, and $G = Gal(k^{sep}/k) = \hom_k(k^{sep}, k^{sep})$ acts on $\hom_k(-, k^{sep})$ by composition.

 F_X is an étale sheaf. Cf. Milne, Lem.I.1.8. By Remark 3.2, to show F_X is a sheaf, it suffices to check that

$$F_X(L) = F_X(L')^{Aut(L'/L)}$$

for finite Galois extensions L'/L. Note that for any Galois extension L'/k and any subextension L'/L/k we have

$$\hom_k(L', k^{sep})_{Aut(L'/L)} \xrightarrow{\sim} \hom_k(L, k^{sep})$$

Where Y_{Γ} is the set of Γ -orbits in Y for a group Γ acting on a set Y. It follows from this that $F_X(L) = F_X(L')^{Aut(L'/L)}$. Note that for any finite Galois subextension $k^{sep}/L/k$ we have $\hom_k(L, k^{sep}) = \operatorname{Gal}(L/k)$. So

$$F_X(L) = \hom_G(\operatorname{Gal}(L/k), X) = X^{\operatorname{Aut}(k^{\operatorname{sep}}/L)}.$$
(2)

Combining (1) and (2) we get

$$X_{F_X} = \varinjlim_L F_X(L) = \varinjlim_L X^{Aut(k^{sep}/L)} = X.$$

On the other hand, by (2) we get

$$F_{X_F}(L) = X_F^{Aut(k^{sep}/L)} = F(L)$$

for Galois extensions L/k. Then by Exercise 3.1 we have $F_{X_F} = F$. So the assignments $X \mapsto F_X$ and $F \to X_F$ are inverse equivalences.

4 Some covering combinatorics

In this section we give some conditions for a presheaf on LH(X), resp. Et(X), to be a sheaf.

Exercise 4.1. Suppose that F is a presheaf on a site C, and $\{U_i \to U\}_{i \in I}$ and $\{U_{ij} \to U_i\}_{j \in J_i}$ are coverings. Using the diagram

show that if

- 1. F satisfies the sheaf condition (III) for $\{U_{ij} \rightarrow U\}_{i \in I, j \in J_i}$ and
- 2. each $F(U_i) \to \prod_{J_i} F(U_{ij})$ is injective,

then F satisfies the sheaf condition for $\{U_i \rightarrow U\}_{i \in I}$.

Deduce that a presheaf F on LH(X) from Exercise 1.6 is a presheaf if and only if $F|_{Op(Y)}$ is a sheaf on Op(Y) from Exercise 1.5 for every $Y \in LH(X)$.

Exercise 4.2. Suppose that F is a presheaf on a category C with fibre products and $\{V \to U\}$ and $\{U \to X\}$ are families consisting of single morphisms. Using the diagram

show that if

- 1. F satisfies the sheaf condition (III) for $\{V \to U\}$ (cf.middle row) and $\{U \to X\}$ (cf.right column), and
- 2. each $F(U \times_X U) \to F(V \times_X V)$ is injective (cf. top row),

then F satisfies the sheaf condition for $\{V \rightarrow X\}$ (cf. diagonal).

Exercise 4.3 (Harder). Do Exercise 4.2 for coverings $\{U_i \rightarrow X\}_{i \in I}$ and $\{V_{ij} \rightarrow U_i\}_{j \in J_i}$ containing more than one element.

Exercise 4.4. Let C be a category with fibre products.

- 1. Suppose that $\mathcal{Y} = \{Y_i \to X\}_{i \in I}$ is a family in \mathcal{C} such that $Y_{i_0} \to X$ is an isomorphism for some $i_0 \in I$. Show that every presheaf on \mathcal{C} satisfies the sheaf condition for \mathcal{Y} .
- 2. Suppose $\mathcal{U} = \{U_i \to X\}_{i \in I}$ and $\mathcal{V} = \{V_j \to X\}_{j \in J}$ are families in \mathcal{C} and for each j there exists $i_j \in I$ and a factorisation $V_j \to U_{i_j} \to X$. Using Part 1, Exercise 4.1, and Exercise 4.3 show that if a presheaf F satisfies the sheaf condition for \mathcal{V} , then it satisfies the sheaf condition for \mathcal{U} .
- 3. Using Lemma 4.5 below, deduce that a presheaf F on Et(X) is a sheaf if and only if
 - (a) $F|_{Op(Y)}$ is a sheaf for every $Y \in Et(X)$, and
 - (b) F satisfies the sheaf condition (III) for every covering $\{Y' \to Y\}$ containing a single element such that Y and Y' are affine schemes.

Lemma 4.5. Let Y be a scheme, $\{f_i : Y_i \to Y\}_{i \in I}$ be an étale covering, and $y \in Y$ a point. Then there exists an open neighbourhood $y \in U \subseteq Y$ and a surjective étale morphism $V \to U$ such that $V \to Y$ factors through $V \to Y_i \to Y$ for some $i \in I$, and U and V are affine.

Proof. Choose any *i* ∈ *I* such that there is a point $y' \in Y_i$ with $f_i(y') = y$. Let Spec(*A*) ⊆ *Y* and Spec(*B*) ⊆ Y_i be open affine neighbourhoods of *y* and *y'* such that $Y_i \to Y$ induces a map Spec(*B*) → Spec(*A*). Since flat morphisms of finite presentation are open, [Stacks Project, 01UA], the image $f_i(\text{Spec}(B)) \subseteq$ Spec(*A*) is an open subscheme. By construction this image contains *y*. Choose an open affine neighbourhood $y \in \text{Spec}(A') \subseteq f_i(\text{Spec}(B)) \subseteq \text{Spec}(A')$ and $V \coloneqq \text{Spec}(A' \otimes_A B)$ satisfy the requirements of the statement. □

Corollary 4.6. The following representable presheaves are étale sheaves.

- 1. hom $(-, \mathbb{A}^1)$; $X \mapsto \Gamma(X, \mathcal{O}_X)$,
- 2. hom $(-, \mathbb{G}_m)$; $X \mapsto \Gamma(X, \mathcal{O}_X^*)$,
- 3. $\mu_n = \operatorname{hom}(-, \operatorname{Spec}(\frac{\mathbb{Z}[T]}{T^n-1})); X \mapsto \{a \in \Gamma(X, \mathcal{O}_X^*) : a^n = 1\},\$
- 4. $GL_n = \hom(-, \operatorname{Spec}\left(\frac{\mathbb{Z}[U, T_{ij}: 1 \le i, j \le n]}{U \cdot \det T_{ij} 1}\right); X \mapsto GL_n(\Gamma(X, \mathcal{O}_X)),$

5 Sheafification

Proposition 5.1. Suppose that C is a small site such that all covering families are finite.⁷ Then the inclusion $Shv(C) \subseteq PSh(C)$ admits a left adjoint

$$L: \mathrm{PSh}(\mathcal{C}) \to \mathrm{Shv}(\mathcal{C}).$$

That is, for every presheaf F, there exists a morphism $F \rightarrow LF$ such that:

 $^{^7 \}mathrm{See}$ Remark 5.4

1. LF is a sheaf, and

2. for any sheaf G we have

$$\hom(LF,G) = \hom(F,G).$$

Definition 5.2. The sheaf LF in Proposition 5.1 is called the sheafification or associated sheaf of F.

We give the proof from Higher Topos Theory. For the classical proof see [Artin, Grothendieck topologies, 1962, Lemma.2.1.2(ii)].

Proof. It suffices to find a functor L and natural transformation $id \rightarrow L$ such that:

- 1. for every sheaf G, the morphism $G \to LG$ is an isomorphism, and
- 2. for every presheaf F, the presheaf LF is a sheaf.

Cf.Exercise 5.3.

For an object $X \in \mathcal{C}$ we have the representable presheaves $h_X(-) \coloneqq \hom(-, X)$. We extend this to families $\mathcal{U} = \{U_i \to X\}_{i \in I}$ by constructing the presheaves $h_{\mathcal{U}}(-) \coloneqq \operatorname{coeq}(\underset{i,j}{\amalg} h_{U_i \times_X U_j} \rightrightarrows \underset{i}{\amalg} h_{U_i})$. Then the condition for a presheaf F to be a sheaf is precisely that

$$\hom(h_X, F) \to \hom(h_{\mathcal{U}}, F) \tag{(B)}$$

is an *isomorphism* for every covering family \mathcal{U} . A first attempt to force F to satisfy (\boxplus) is to define

$$F^{\dagger}(Y) \coloneqq \lim_{\mathcal{V} = \{V_j \to Y\}_{j \in J}} \hom(h_{\mathcal{V}}, F)$$

where the colimit is over all coverings $\mathcal{V} = \{V_j \to Y\}_{j \in J}$ of Y. Note that this is functorial in $Y \in \mathcal{C}$, and that there is a canonical natural transformation

$$F \rightarrow F^{\dagger}$$

In general F^{\dagger} will not be a sheaf, but we can repeatedly apply the construction, and define

$$LF := \lim_{\longrightarrow} (F \to F^{\dagger} \to F^{\dagger\dagger} \to F^{\dagger\dagger\dagger} \to \dots).$$

We claim that $id \rightarrow L$ satisfies the two desired conditions.

It is easy to see that if G is a sheaf then $G \to LG$ is an isomorphism. Let F be a presheaf. We want to show that LF is a sheaf. That is, given a covering $\mathcal{U} = \{U_i \to X\}_{i \in I}$, we want to show that the morphism

$$\hom(h_X, LF) \to \hom(h_U, LF)$$

is an isomorphism. For this it will be enough to show that for all of the presheaves $G=F^{\dagger\dots\dagger}$ we have factorisations

$$\begin{array}{ccc} \hom(h_X, G) & \longrightarrow & \hom(h_X, G^{\dagger}) \\ & & & \downarrow \\ & & & \downarrow \\ \hom(h_{\mathcal{U}}, G) & \longrightarrow & \hom(h_{\mathcal{U}}, G^{\dagger}) \end{array}$$
(3)

through isomorphisms. Indeed, since coverings are finite, we have the identification (*) in the diagram

$$\begin{array}{rcl} \operatorname{hom}(h_X, LF) &=& \operatorname{hom}(h_X, \varinjlim F^{\dagger \dots \dagger}) &=& \varinjlim \operatorname{hom}(h_X, F^{\dagger \dots \dagger}) \\ (**) & & & & \downarrow \\ \operatorname{hom}(h_{\mathcal{U}}, LF) &=& \operatorname{hom}(h_{\mathcal{U}}, \varinjlim F^{\dagger \dots \dagger}) &=& \varinjlim \operatorname{hom}(h_{\mathcal{U}}, F^{\dagger \dots \dagger}) \\ (*) & & & & (*) & & & \\ \end{array}$$

so if there are factorisations (3), the morphism (**) is a colimit of isomorphisms.⁸

Notice that we have factorisations (3) if and only if we have the analogous factorisations for the restriction $G|_{C_{/X}} \in PSh(C_{/X})$. Indeed, for any $Y \in C_{/X}$ we have $G^{\dagger}(Y) = G|_{X}^{\dagger}(Y)$, etc. So we can assume that X is a terminal object of \mathcal{C} .

Taking our fixed covering \mathcal{U} of X we define

$$G^{\mathcal{U}}(Y) = \hom(h_Y \times h_{\mathcal{U}}, G).$$

This comes equipped with a factorisation

$$G(Y) \to G^{\mathcal{U}}(Y) \to G^{\mathcal{H}}(Y) \to G^{\dagger}(Y)$$

 $\lim_{\to \mathcal{V}} \hom(h_{\mathcal{V}},G) \to \lim_{\to \mathcal{V}} \hom(h_{\mathcal{V}},G)$

functorial in Y and therefore a commutative diagram

It remains only to show that (*) is an isomorphism. This follows directly from the definitions of $G^{\mathcal{U}}$ and $h_{\mathcal{U}}$, cf.Exercise 5.3.

Exercise 5.3.

⁸Note that if $E_0 \rightarrow E_1 \rightarrow \dots$ is any sequence of morphisms then $\varinjlim(E_0 \rightarrow E_2 \rightarrow E_4 \rightarrow \dots) = \lim(E_1 \rightarrow E_3 \rightarrow E_5 \rightarrow \dots).$

1. Prove that given a family $\{U_i \to X\}_{i \in I}$, the following two conditions are equivalent.

$$F(X) = eq(\prod_{i} F(U_i) \Rightarrow \prod_{i,j} F(U_i \times_X U_j))$$
(4)

$$\hom(h_X, F) = \hom(h_{\mathcal{U}}, F) \tag{5}$$

That is, we have Eq.(4) if and only if we have Eq.(5).

- 2. Suppose that $\iota : \mathcal{D} \to \mathcal{C}$ is a *fully faithful* functor, $L : \mathcal{C} \to \mathcal{D}$ another functor, and $\eta : \mathrm{id}_{\mathcal{C}} \to \iota L$ a natural transformation. Suppose further that for any F in \mathcal{D} , the morphism $\eta_F : F \to \iota LF$ is an isomorphism. Show that L is a left adjoint to ι .
- 3. Suppose that \mathcal{C} is a category with a terminal object X = * and that $\{U_i \to X\}_{i \in I}$ is a family of morphisms. Describe the set $h_{\mathcal{U}}(T)$ where $T \in \mathcal{C}$ is some other object. Using this prove that the two projections

$$h_{\mathcal{U}} \times h_{\mathcal{U}} \rightrightarrows h_{\mathcal{U}}$$

are isomorphisms. Deduce that (*) in the above proof is an isomorphism.

Remark 5.4.

- 1. The assumption that coverings are finite in Proposition 5.1 can be replaced by the assumption that all coverings are smaller than κ for some regular cardinal κ . In this case, the colimit $\lim_{\epsilon \to 0} F^{\dagger \dots \dagger}$ is replaced by a transfinite composition. Since we are assuming that C is small, there is always such a κ . So there is actually no assumption necessary on covering size at all.
- 2. Since we are working with presheaves of *sets* (i.e., not spaces), one can show that, in fact, $LF = F^{\dagger\dagger}$. So this discussion of transfinite composition and covering size is moot.
- 3. On the other hand, we do need some kind of assumption on the size of \mathcal{C} . There are examples of large categories with presheaves which do not admit a sheafification.

Corollary 5.5. Let C be a small category equipped with a Grothendieck topology. Then the category Shv(C, Ab) of sheaves of abelian groups is an abelian category.

Sketch of proof. Limits (i.e., products and kernels) can be calculated sectionwise. E.g., $\ker(F \to G)(U) = \ker(F(U) \to G(U))$. Colimits (i.e., sums and cokernels) are calculated sectionwise, and then sheafified. E.g., the sheaf cokernel of $F \to G$ is the sheafification of the presheaf $U \mapsto \operatorname{coker}(F(U) \to G(U))$.

6 Stalks

Definition 6.1. A geometric point of a scheme X is a morphism $\overline{x} \to X$ such that $\overline{x} = \operatorname{Spec}(\Omega)$ for some separably closed field Ω .

Definition 6.2. Let F be a presheaf on Et(X). For a geometric point $\overline{x} \to X$ we define the stalk at \overline{x} as

$$F_{\overline{x}} = \varinjlim_{\overline{x} \to \overline{Y} \to X} F(Y)$$

where the colimit is over factorisations of $\overline{x} \to X$ via some $Y \in Et(X)$.

Remark 6.3. If X is a topological space, F is a sheaf on X, and $x \in X$ is a point, then classically, the stalk of F at x is defined as the colimit

$$F_x = \lim_{x \in U \subseteq X} F(U)$$

over open subsets of X containing x. The above definition is the étale analogue of this classical definition.

Remark 6.4. If F is a presheaf defined on all schemes that commutes with filtered limits of affine schemes, then $F_{\overline{x}} = F(\mathcal{O}_{X,x}^{sh})$ where $x = \operatorname{im}(\overline{x}) \in X$ and $\mathcal{O}_{X,x}^{sh}$ is the strict henselisation of $\mathcal{O}_{X,x}$ defined by $k(\overline{x})/k(x)$. In particular, if $F = \mathcal{O}: Y \mapsto \Gamma(Y, \mathcal{O}_Y)$, then $F_{\overline{x}} = \mathcal{O}_{X,x}^{sh}$.

Remark 6.5. If k^{sep}/k is a separable closure, then $\overline{x} = \text{Spec}(k^{sep}) \to \text{Spec}(k)$ is a geometric point, and $F_{\overline{x}}$ is the *G*-set X_F defined above.

Proposition 6.6. Suppose that F is a sheaf of abelian groups on Et(X) and $Y \in Et(X)$. Then a section $s \in F(Y)$ is zero if and only if for any geometric point $\overline{x} \to Y$ its image in each $F_{\overline{x}}$ is zero.

Proof. Since all sheaves are separated, it suffices to show that for every $s \in F(Y)$, there exists a covering $\{U_i \to Y\}_{i \in I}$ such that $s|_{U_i} = 0$ for all $i \in I$. For every point $x \in Y$, choose a separable closure $k(x)^s/k(x)$, and let $\overline{x} \to X$ be the corresponding geometric point. Since the image of s in $F_{\overline{x}}$ is zero, there is some $\overline{x} \to V \to Y$ such that $s|_V = 0$. Since V is associated to x, let us write $V_x = V$. We do this for every point $x \in Y$, and obtain a family $\{V_x \to Y\}_{x \in Y}$ of étale morphisms indexed by points of Y. Since $x \in \operatorname{im}(V_x \to Y)$ for each $x \in Y$, the family is surjective, and therefore is a covering. By construction $s|_{Y_x} = 0$ for each Y_x , so s = 0.

Exercise 6.7. Show that a sheaf of abelian groups F on Et(X) is zero if and only if $F_{\overline{x}} = 0$ for each $x \in X$.

Exercise 6.8. Show that a morphism of sheaves of abelian groups $\phi : F \to G$ is a monomorphism, (resp. epimorphism, resp. isomorphism) if and only if $\phi_{\overline{x}} : F_{\overline{x}} \to G_{\overline{x}}$ is for each geometric point $\overline{x} \to X$.