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In this lecture we present some motivation for the course.

1 Counting points with Zeta functions

We begin with the following question:

Question 1. Let X is a smooth projective variety over Fq, how many elements
does the set X(Fqn) = homSpec(Fq)(Spec(Fqn), X)) of Fqn -points of X have for
each n?

Or equivalently:

Question 2. If f1, . . . , fc ∈ Fq[t0, . . . , td] are the homogeneous polynomials
defining1 X, how many solutions do f1, . . . , fc have in Fqn for each n?

#X(Fq) =
#

(a0, . . . , ad) ∈ Fd+1

qn \ {0} | fi(a) = 0, ∀i = 1, . . . c


qn − 1

In order to work with all the sets X(Fqn) at once, we introduce the zeta
function

Z(X, t) = exp

 ∞

n=1

#X(Fqn)
tn

n


(∗)
=



x∈X(0)


1− tdeg(x)

−1

.

Here, exp(T ) is the power series
∞

i=0
1
i!T

i ∈ C[[T ]] = limn C[T ]/Tn. The
product is over the set X(0) of closed points x of the scheme X and deg(x)
means [k(x) : Fq] where k(x) is the residue field at x.

Exercise 1. Using the power series log 1
1−T =

∞
i=1

1
i T

i, prove the equality
(∗).

Remark 3. Note Z(X, t) is defined for any Fq-variety, possibly not projective,
not smooth.

1That is, X = Proj


Fq [t0,...,td]
〈f1,...,fc〉
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Remark 4. For any sequence of closed subsets Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = X, it
follows from the definition that we have

Z(X, t) =


i

Z(Yi \ Yi−1, t).

Remark 5. There is a reason that the product form of Z(X, p−s) looks similar
to the Riemann zeta function ζ(X, s) =


p prime(1 − p−s)−1. The Riemann

zeta function and the above Z(X, t) are both special cases of more general zeta
functions defined for any scheme of finite type over Z.

Now our question has become:

Question 6. Calculate Z(X, t).

Example 7. First consider Z(Ad, t). We have #Ad(Fqn) = qnd so

Z(Ad, t) = exp

∞

n=1

(qdt)n/n = exp(− log(1− qdt)) =
1

(1− qdt)
.

Example 8. Consider X = Pd. Choosing coordinates gives a sequence P0 ⊂
P1 ⊂ · · · ⊂ Pd. Since Ai ∼= Pi \ Pi−1, we see that

Z(Pd, t) =
1

(1− t)(1− qt) . . . (1− qdt)

Example 9. Let X be an elliptic curve. Using the action Tℓφ : TℓX → TℓX

of the Frobenius φ : X → X on the Tate module TℓX = lim←−n
ker(X

ℓn→ X) ∈
Zℓ-mod one can calculate

#X(Fqn) = deg(1− φn) = det(1− Tℓφ
n) = 1− αn − βn + qn.

where α,β ∈ C are complex conjugates with absolute value
√
q. Then using the

log argument as in the case of Ad, we find that

Z(E, t) =
(1− αt)(1− βt)

(1− t)(1− qt)
.

For more details see Silverman, “The Arithmetic of Elliptic Curves”, Chapter
5. This method generalises to higher dimension abelian varieties.

Example 10. If X is a curve, then the Zeta function can be rewritten in terms
of divisors, and from there, in terms of linear systems of divisors of line bundles.
Then using the Riemann-Roch theorem for curves, one can calculate

Z(X, t) =
f(t)

(1− t)(1− qt)

where f(t) ∈ Z[t] has degree 2g. For more details see, for example, Raskin,
“The Weil conjectures for curves”.
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Example 11. Using characters χ : F∗
qn → C, one can calculate explicitly the

case X is a smooth hypersurface defined by an equation of the form a0x
n0
0 +

a1x
n1
1 + · · ·+ arx

nr
r .

Z(X, t) =
1

(1− t)(1− qt) . . . (1− qr−1T )



α

(1− C(α)tµ(α))
(−1)r

µ(α)

where α ∈ (F∗
q)

r+1, µ(α) ∈ N, C(α) ∈ C, |C(α)| = q
(r−1)µ(α)

2 , and we do not
say what the product is over. For details see Weil, “Numbers of solutions of
equations in finite fields”.

Examples such as the above lead Weil to make the following conjectures:

Theorem 12 (Weil conjectures). Suppose X is a connected smooth projective
variety of dimension n over Fq. Then the Zeta function of X satisfies the
following properties:

1. (Rationality) The Zeta function Z(X, t) is a rational function of t.

2. (Functional equation) There is an integer e such that

Z(X, q−nt−1) = ±qen/2teZ(X, t).

3. (Riemann Hypothesis) The Zeta function can be written as an alternating
product

Z(X, t) =
P1(t)P3(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)

where each Pi(t) is an integral polynomial all of whose roots have absolute
value q−i/2. Moreover, P0(t) = 1− t and P2n(t) = 1− qnt.

4. (Betti numbers) Suppose there is a number field K/Q, and homogeneous
polynomials f1, . . . , fc ∈ OK [t0, . . . , td] where OK is the ring of integers of
K, such that X is defined by the fi mod p for some prime p ⊆ OK such
that OK/p ∼= Fq. Suppose furthermore that the complex projective variety
X(C) defined by the fi ∈ OK ⊆ K ⊆ C is smooth (for some choice of
embedding K ⊆ C). Then

degPi(t) = dimQ Hi(X(C),Q)

where XC ⊆ Pd
C is given the topology induced from Pd

C considered as a
complex analytic space.

Remark 13. The Riemann Hypothesis is so called because it places the zeroes
and poles of Z(X, q−s) on vertical lines in the complex plane.

Remark 14. In (Betti numbers) we are of course allowed to take K = Q, in
which case OK = Z, and p corresponds to a prime of Z so the base field is Fp.
When q is a larger power of p we need to use more general K.

Exercise 2. Show that if s is a zero or pole of Z(X, q−s) then ℜs = j/2 for
some j ∈ Z.
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2 Counting points with cohomology

References for this section could include:

[Hatcher, “Algebraic topology”§2.1, §2.2]

[Bott, Tu, “Differential forms in algebraic topology”, III§15]

[Weibel, “An introduction to homological algebra”]

Now we show why one might expect cohomology to be useful. Suppose
M is an n-dimensional compact real manifold. Its cohomology groups (with
Q-coefficients) are a sequence of Q-vector spaces

H0(M,Q), H1(M,Q), H2(M,Q), . . . .

The dimension of the ith space is roughly how many “i-dimensional holes” M
has in some sense.

The definition is not so important here. We are more interested in the
properties listed below.

Before we get to them though, let us give some examples.

Example 15. If M = Sm = {(x0, . . . , xm) ∈ Rm+1 : x2
0 + · · ·+ x2

m = 1} is the
m-dimensional sphere, then

Hn(Sm,Q) =


Q n = 0,m
0 otherwise

So Sm has one zero dimension hole (i.e., one connected component), and one
m-dimensional hole. As cohomology groups are homotopy invariant, and there
is a continuous retraction of Cm \ {0} ∼= R2m \ {0} to S2m−1, we get

Hn(Cm \ {0},Q) =


Q n = 0, 2m− 1
0 otherwise

Example 16. If M is a sphere with g handles, then

Hn(M,Q) =






Q n = 0
Q2g n = 1
Q n = 2
0 otherwise

The case g = 1 is the surface of a doughnut. A model is the topological space
C/Z+Zi. The two dimensions of H1 correspond to the fact that there are two
distinct ways of going “around” the doughnut (horizontally or vertically).

Example 17. If M = Pm(C) is projective space of dimension m (considered as
a real manifold) then

Hn(Pm(C),Q) =


Q n = 0, 2, 4, . . . , 2m
0 otherwise
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In general, the cohomology groups of a connected compact real manifold
have the following properties.

1. (Finiteness) dimQ Hi(M,Q) < ∞ for all i. Moreover, if M = X(C) comes
from a complex algebraic variety X, then Hi(M,Q) = 0 for i > 2 dimC X.

2. (Functoriality) For any continuous map φ : M → N , there are induced
maps Hi(φ) : Hi(N,Q) → Hi(M,Q) compatible with composition. That

is, Hi(ψ ◦ φ) = Hi(φ) ◦Hi(ψ) for any two composable morphisms M
φ→

N
ψ→ N ′.

3. (Poincaré Duality) There is a canonical isomorphism HdimM (M,Q) ∼= Q,
and a natural perfect pairing

Hi(M,Q)×HdimM−i(M,Q) → HdimM (M,Q).

In other words, there is a canonical identification of HdimM−i(M,Q) with
the dual vector space Hi(M,Q)∗ = homQ(H

i(M,Q),Q).

4. (Lefschetz Trace Formula) Suppose φ : M → M is a continuous map
with only simple isolated fixed points (e.g., the graph is transverse to the
diagonal). Then

#{ fixed points } =

n

i=0

(−1)itr(Hi(φ))

where tr is the trace of the vector space automorphismHi(φ) : Hi(M,Q) →
Hi(M,Q).

Now suppose we had cohomology groups defined for algebraic varieties over
finite fields, satisfying versions of the above properties. Since

X(Fqm) = fixed points of Frobm : X(Fq) → X(Fq)

we could hope that a version of (Lefschetz Trace Formula) would give

#X(Fqm) =

2 dimX

i=0

(−1)itr(Hi(φm))

with φ = Frob. Inserting this to the sum description of Z(X, t) we get

Z(X, t) = exp

∞

n=1


2 dimX

i=0

(−1)itr(Hi(φn))


tn

n

=

2 dimX

i=1


exp

∞

n=1

tr(Hi(φn))
tn

n

(−1)i
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Combining this with

det(1−A)−1 = exp

∞

n=1

trAn/n

valid for any matrix A, we get

Z(X, t) =

2 dimX

i=0

det


id−t ·Hi(φ)

(−1)i+1

and we would get (Rationality). Moreover, an appropriate version of (Poincaré
Duality) would give (Functional equation), and if our new cohomology groups
are compatible with usual cohomology groups in an appropriate way, then we
would get (Betti numbers). Finally, this description suggests that the polyno-
mials in (Riemann Hypothesis) are Pi(t) = det(id−t · Hi(φ)), and if so, then
the second part is reformulated as: the eigenvalues of Hi(φ) have absolute value
q−i/2.

3 Coefficients

It was observed very early that there could be no cohomology for Fp-varieties
with Q-coefficients. However, essentially due to the fact that polynomials have
finitely many solutions, using Z/ℓn-coefficients (for ℓ ∕= p) works well. Then
defining

Hr
et(X,Qℓ) :=


lim
n

Hr
et(X,Z/ℓn)


⊗Zℓ

Qℓ.

one obtains vector spaces over a field, Qℓ, of characteristic zero. This is techni-
cally awkward, especially when one tries to have a six functor formalism.

Namely, the cohomology groups Hr
et(X,Z/ℓn) are representable in a trian-

gulated category D(X,Z/ℓn) in the sense that

Hr
et(X,Z/ℓn) = homD(X,Z/ℓn)(Z/ℓn,Z/ℓn[r]).

Given a morphism f : Y → X one has an adjunction

f∗ : D(X,Z/ℓn) ⇄ D(Y,Z/ℓn) : f∗,

for nice f an adjunction

f! : D(Y,Z/ℓn) ⇄ D(X,Z/ℓn) : f !,

and for nice X and E ∈ D(X,Z/ℓn) an adjunction

−⊗ E : D(X,Z/ℓn) ⇄ D(Y,Z/ℓn) : Hom(E ,−),

and these six functors interact with each other in nice ways (proper base change,
smooth base change, projection formula, duality, ...). If one wants to promote
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these six functors to something with Qℓ-coefficients, one would first try to work
with uncomfortable2 objects such as limn D(X,Z/ℓn). In practice, this is not
exactly what was used, but it was still technically awkard.

As we mentioned above, the obstacle to using Zℓ-coefficients was that poly-
nomials only have finitely many solutions. However, if we allow our polynomials
to have rational exponents (e.g., t3+5t1/2−2t3/7), then instead of finitely many
solutions, we can obtain profinitely many.

Exercise 3.

1. Consider the ring homomorphism φ : C[t, t−1] → C[t, t−1]; t → tn (or
equivalently, the inclusion C[t, t−1] ⊆ C[t1/n, t−1/n]). Show that for each
a ∈ C∗, there are exactly n prime ideals p1, . . . , pn such that φ−1pi =
〈t− a〉. Hint.3

In other words, there are n = #Z/n points in the fibre of Spec(φ) :
Spec(C[t, t−1]) → Spec(C[t, t−1]) at t = a.

2. (Harder) Now consider the inclusion φ : C[t, t−1] ⊆ C[tQ] where

C[tQ] := {


i∈Q
ait

i | ai ∈ C and all but finitely many ai are zero}.

Show that primes p such that φ−1p = 〈t − a〉 are in bijection with Z =
limn Z/n. Hint.4

In other words, there are #Z points in the fibre of Spec(φ) : Spec(C[tQ]) →
Spec(C[t, t−1]) at t = a.

The idea behind proetale cohomology is to take the lim in Hr
et(X,Qℓ) :=

limn H
r
et(X,Z/ℓn)


⊗Zℓ

Qℓ and move it into the category of schemes (notice

that Spec(C[tQ]) = limn Spec(C[t1/n, t−1/n])). So the lim is then dealt with
geometrically, instead of homologically. Then one can recover Hr

et(X,Qℓ) di-
rectly as Hr

proet(X,Qℓ); which is not built articificially from a limit of sheaf
cohomology groups, but is directly a sheaf cohomology group itself.

2These are awkward because one works with categories defined up to equivalence, not
isomorphism. So the universal property of the limit has to take into account isomorphisms in
each of the factors D(X,Z/ℓn).

3For an nth root of unity ζ consider the ring homomorphism C[t, t−1] → C; t → ζa.
4Consider the abelian group Z/n as the multiplicative group of nth roots of unity in C. So

an element of Z is a system (ζn)n∈N of ζn ∈ C such that ζ1 = 1 and ζrrm = ζm for all r,m ∈ N.
Given such a system, show that there is a well-defined ring homomorphism C[tQ] → C sending
t1/n to ζna.
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