Notes on the [HTT] proof of sheafification

Shane Kelly, Oct.2023

Throughout we assume that C' is a small! category equipped with a topology.
We write

j: C — PSh(C)

for Yoneda. Indices are functorial in categories, not topoi. So for example, if u :
C — D is a functor then u* : PSh(D) — PSh(C) is the functor F' — F o wu, and its
left and right Kan extensions PSh(C') =% PSh(D) are written u, and u, respectively.

Theorem 1 ([Lur06, Prop.6.2.2.7]). The canonical inclusion Shv(C') — PSh(C)
admits a left adjoint
L : PSh(C) — Shv(C)

which commutes with finite limits.

Sketch of proof. One defines F'(X) = colimp_,;x Map(R, F') and LF to be a trans-
finite composition of (=) applied x times, where s is any regular cardinal such
that
(¥) F'— Map(R, F') commutes with s-filtered colimits for every covering seive R.

Then it suffices to prove:

1. For any presheaf F' and sheaf G’ we have Map(F', G) = Map(F, G).

2. For any presheaf F' the presheaf LI is a sheaf.

3. (=) commutes with finite limits.
The third part is obvious since the category of covering sieves on an object is filtered.
The first and second parts are Lemma 3 and Lemma 6 below. O

1 Step 1

For functoriality reasons, it is nicer to express (—)" using Kan extensions. Let
Cov(C) C Fun(A',PSh(C)) denote the full subcategory morphisms of the form
R — jX with R a covering sieve of X. This comes equipped with a projection
functor (R — jX) +— jX which admits a right adjoint s : X — (X — jX).

m:Cov(C)=—=C":s

As such, we get four functors, each one left adjoint to the one below it.

/mw*\
PSh(Cou(C)) === PSh(C)
~_ ™ _~
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IThis is, for example, so that we can sensibly take colimits over the category of sieves on an
object, and so that the over categories C/r are uniformly bounded in size, implying that we can
find k satisfying Hypothesis (x).



Explicitly, 7* = (=) o7 and 7, = (—) o s and m, resp. 7', is the left resp. right, Kan
extension along 7, resp. s. Informally,
colimp_,jiyy F(R = jY) = mF(Y)
T F(R—jY) = F(Y)
F(GY—jY) =mF(Y)
' F(R—jY) = Map(R, F)

Remark 2. Note the last equation is actually expressing the formal fact that 7' is

the functor associated to
PSh(C) x Cov(C) — S

(F, (R—=jY)) = Map(R, F)
Lemma 3. For any presheaf F' and sheaf G the canonical morphism
Map(FT, G) — Map(F, G)

1S an equivalence.

Proof.
MapPSh(C)(FT, G) = MapPSh(C)(mW!F, Q) by definition
= Mappgpcov(c ))(W!F Q) by adjunction
LS Mappgspcon(c)) (7T F,7'Q) G is a sheaf
"2 Mappgy ey (F, G) 7" is fully faithful
[
Lemma 4. The unit and two counits
mr* 5 id
id S mr*
T S id

are equivalences. Equivalently, the two functors
7,7 : PSh(C') — PSh(Cov(C))
are fully faithful.

Proof. Since m admits a right adjoint s : C' — Cov(C) satisfying 7w o s = id, we have
Tt = (—)omos=id. So 7* is fully faithful, so we also have m7* = id. Since s is
fully faithful, s*s, = id, or in other words, . 22 id since s* =, and s, = 7. [
Lemma 5. A presheaf G is a sheaf if and only if the composition of the two counits
G & ' G — 7'G is an equivalence.

Proof. By definition, G is a sheaf if and only if Map(jX,G) — Map(R,G) is an
equivalence for every covering sieve. This map is precisely the composition 7*G <
. m' G — 7'G evaluated on R — jX in Cov(C). O
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2 Step 2

We defined LF as a transfinite composition of (—)" applied x times. Explicitly,
ToF .= F,

for successor ordinals
Thii F = (T\F)T,

and for limit ordinals
T3F = colimy<p Tp, F.

Then
LF :=T,F.

Lemma 6. For any presheaf ' the presheaf LF is a sheaf.

Proof. We want to show that Map(jX, LF') — Map(R, LF) is an equivalence for
any covering sieve. By the definition of L and the hypothesis (x) it suffices to show
that the canonical morphism of morphisms

Map(jX,G) —= — Map(j X, GT)

T

Map<R7 G) - Map(R7 GT)

factor through an equivalence ®.

Replacing C' with C/x with the induced topology, we can assume that X is the
final object, see Lemma 7. With this assumption we can use a modified version of the
adjunction we described above. Let Ry C j* be our fixed covering sieve of X which
is now the terminal object *. Let Cov(C)y C Cov(C') denote the full subcategory of
those R — jY such that jY x Ry C R, that is, those covering sieves R containing the
pullback of our fixed covering sieve. The composition p : Cov(C)y € Cov(C) = C
gives rise to four analogous functors

pr
/_N

PSh(Cov(C)e) === PSh(C)
\\_p*/

o'

also satisfying Lemma 4. Moreover, p has a left adjoint z : Y — (jY X Ry — jY) so
p = (=) o z or informally

F(JY xRo—jY) = pF'(Y).

The transformation id — m7n' = (=) naturally factors as id — pp' — m7',
Lemma 8. So to conclude our proof it remains only to show that

® : Map(j X, pp'G) = Map(Rg, prp'G)
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is an equivalence. By what is essentially the cofinality argument aluded to in [Lur06,
Rem.6.2.2.15], we have Map(Ry, p.F) = Map(Ry, p F'), Lemma 9. Inputting this, we
get

Map(Ro, pip'G) = Map(Ro, psp'G) Lemma 9
= Map(Ro, G) Lemma 4
= Map((Ro—+), p'G)
= Map(*, pp'G)

where the last two equalities are the definitions of p' and p. So ® is indeed an
equivalence. O

3 Lemmas used in the proof.

Let p : C/x — C the canonical projection. Recall that in general there is a bijection?
of sieves

p 2 Sub(j(Y—=X)) = Sub(jY) (1)
and the covering sieves of C)x are precisely those sieves R — j(Y —X) of C/x such
that pR — pij(Y—X) = jY is a covering sieve of C.

Lemma 7. There is a natural equivalence p*(—)" = (p*—)'. In other words, the
square
(=)

PSh(C) PSh(C)
PSh(C/x) =i PSh(C)x)

commutes up to natural isomorphism. Consequently, the square below on the left is
equivalent to the square on the right (note that j X = pyj*)

Map(j X, G) —— Map(j X, GT) Map(*, p*G) —— Map(x, (p*G))
Map<p!R07 G) - Map<p!R07 GT) Map(R(]ap*G) - Map(R07 (p*G)T)

Proof. We seek natural isomorphisms p*m = mp* and p*n' = 7'p* where the latter
uses the functor p : Cov(C)x) — Cov(C). For this latter we can calculate directly,
cf.Remark 2,
p*m'F(R—j(Y—=X)) = n'F(p R—jY)
= Map(p.R, F)
= Map(R, p"F)
>~ 1'p* F(R—j(Y—X)).

2The inverse sends R — jY to jY Xpejy PFR — jY.
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For the former, it suffices to show the right adjoints are equivalent, 7*p, = p,7*.
Noting that p, F(Y) = Map((jY xjX—jX), F), we calculate

W*p*F(R—>jY) = Map((jijX—>jX), F)
~ Map (j(R—>jY) X X) =i (X =i X)), m)
>~ p. 1 F(R—jY)

Lemma 8. There is a canonical factorisation

T
id pip m

Proof. One way to see this is to just evaluate on a presheaf F' and an object Y and
see that there is a canonical factorisation

F(Y) — limj\/_)RO F(R) — COhmR_”'y hmjw_ﬂ{ F(W)
Alternatively, if we want to be careful about functorialities: The triangle

50
/_\
COU(C)() - COU(C) D C

commutes on the nose so we have an equality of functors (—) o v 0 59 = put* =, =
(—) o s. This equality of left adjoints corresponds to an equivalence of right adjoints

Y [

Lpt = 7 and since t*1, = id (¢ is fully faithful) we obtain a further equivalence

>~

p' = i*r'. This last equivalence gives rise to a morphism.
p!p! %W!L[i*ﬂ! —>7T!7T!. (2)

We claim that this forms the commutative triangle in the statement. Checking this
is a (annoying) exercise in adjunctions. O

Lemma 9. Consider R C j* as a full subcategory R C C. When restricted to this
subcategory the composition p, < pip*p. — p1 becomes an equivalence. Consequently,
for any presheaf F' € PSh(Cov(C')y) we have

Map(R())p*F) = Map(R07p!F)‘

Proof. All three functors in question are compositions, namely, with the functors

z

TN
C OU(C )0 —C
~%
Explicitly pi, p*, p« are respectively (=) oz, (=) o p, and (=) o so. So it suffices to
observe that id — po sy and zop — id are equivalences on R. The first one is always
an equivalence, and the second one is the natural transformation (jY xRy — jY) —
(R — j7Y). This is an equivalence on Ry by virtue of the fact that for any jV —
Ry we have jV xRy = jV. For the “Consequently”, observe that Map(Ry, F') =
limjy_ﬂ{o F’(]Y) O
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