Notes on the [HTT] proof of sheafification

Shane Kelly, Oct. 2023

Throughout we assume that C is a small ${ }^{1}$ category equipped with a topology. We write

$$
j: C \rightarrow \operatorname{PSh}(C)
$$

for Yoneda. Indices are functorial in categories, not topoi. So for example, if u : $C \rightarrow D$ is a functor then $u^{*}: \operatorname{PSh}(D) \rightarrow \operatorname{PSh}(C)$ is the functor $F \mapsto F \circ u$, and its left and right Kan extensions $\operatorname{PSh}(C) \rightrightarrows \operatorname{PSh}(D)$ are written $u_{!}$and u_{*} respectively.

Theorem 1 ([Lur06, Prop.6.2.2.7]). The canonical inclusion $\operatorname{Shv}(C) \rightarrow \operatorname{PSh}(C)$ admits a left adjoint

$$
L: \operatorname{PSh}(C) \rightarrow \operatorname{Shv}(C)
$$

which commutes with finite limits.
Sketch of proof. One defines $F^{\dagger}(X)=\operatorname{colim}_{R \rightarrow j X} \operatorname{Map}(R, F)$ and $L F$ to be a transfinite composition of $(-)^{\dagger}$ applied κ times, where κ is any regular cardinal such that
(*) $F \mapsto \operatorname{Map}(R, F)$ commutes with κ-filtered colimits for every covering seive R. Then it suffices to prove:

1. For any presheaf F and sheaf G we have $\operatorname{Map}\left(F^{\dagger}, G\right) \cong \operatorname{Map}(F, G)$.
2. For any presheaf F the presheaf $L F$ is a sheaf.
3. $(-)^{\dagger}$ commutes with finite limits.

The third part is obvious since the category of covering sieves on an object is filtered. The first and second parts are Lemma 3 and Lemma 6 below.

1 Step 1

For functoriality reasons, it is nicer to express $(-)^{\dagger}$ using Kan extensions. Let $\operatorname{Cov}(C) \subseteq \operatorname{Fun}\left(\Delta^{1}, \operatorname{PSh}(C)\right)$ denote the full subcategory morphisms of the form $R \rightarrow j X$ with R a covering sieve of X. This comes equipped with a projection functor $(R \rightarrow j X) \mapsto j X$ which admits a right adjoint $s: X \mapsto(j X \rightarrow j X)$.

$$
\pi: \operatorname{Cov}(C) \rightleftarrows C: s
$$

As such, we get four functors, each one left adjoint to the one below it.

$$
\operatorname{PSh}\left(\operatorname{Cov} \underset{\pi^{!}}{\substack{C)) \underset{\pi_{*}}{\stackrel{\pi^{*}}{\leftrightarrows}}}} \operatorname{Pa} \operatorname{Sh}(C)\right.
$$

[^0]Explicitly, $\pi^{*}=(-) \circ \pi$ and $\pi_{*}=(-) \circ s$ and $\pi_{!}$, resp. $\pi^{!}$, is the left resp. right, Kan extension along π, resp. s. Informally,

$$
\begin{aligned}
\operatorname{colim}_{R \rightarrow j(Y)} F(R \rightarrow j Y) & =\pi_{!} F(Y) \\
\pi^{*} F(R \rightarrow j Y) & =F(Y) \\
F(j Y \rightarrow j Y) & =\pi_{*} F(Y) \\
\pi^{!} F(R \rightarrow j Y) & =\operatorname{Map}(R, F)
\end{aligned}
$$

Remark 2. Note the last equation is actually expressing the formal fact that π ! is the functor associated to

$$
\begin{gathered}
\operatorname{PSh}(C) \times \operatorname{Cov}(C) \rightarrow \mathcal{S} \\
(F,(R \rightarrow j Y)) \mapsto \operatorname{Map}(R, F)
\end{gathered}
$$

Lemma 3. For any presheaf F and sheaf G the canonical morphism

$$
\operatorname{Map}\left(F^{\dagger}, G\right) \rightarrow \operatorname{Map}(F, G)
$$

is an equivalence.
Proof.

$$
\begin{array}{rlr}
\operatorname{Map}_{\mathrm{PSh}(C)}\left(F^{\dagger}, G\right) & =\operatorname{Map}_{\operatorname{PSh}(C)}\left(\pi!\pi^{!} F, G\right) & \text { by definition } \\
& =\operatorname{Map}_{\operatorname{PSh}(\operatorname{Cov}(C))}\left(\pi^{!} F, \pi^{*} G\right) & \text { by adjunction } \\
& \stackrel{\text { Lem. } 5}{=} \operatorname{Map}_{\operatorname{PSh}(C o v(C))}\left(\pi^{!} F, \pi^{!} G\right) & G \text { is a sheaf } \\
& \stackrel{\text { Lem. } 4}{=} \operatorname{Map} \operatorname{PSh}(C)(F, G) & \pi^{!} \text {is fully faithful }
\end{array}
$$

Lemma 4. The unit and two counits

$$
\begin{aligned}
& \pi_{!} \pi^{*} \xrightarrow{\sim} \mathrm{id} \\
& \text { id } \xrightarrow[\rightarrow]{\sim} \pi_{*} \pi^{*} \\
& \pi_{*} \pi^{!} \xrightarrow{\sim} \mathrm{id}
\end{aligned}
$$

are equivalences. Equivalently, the two functors

$$
\pi^{*}, \pi^{!}: \operatorname{PSh}(C) \rightarrow \operatorname{PSh}(\operatorname{Cov}(C))
$$

are fully faithful.
Proof. Since π admits a right adjoint $s: C \rightarrow \operatorname{Cov}(C)$ satisfying $\pi \circ s=\mathrm{id}$, we have $\pi_{*} \pi^{*}=(-) \circ \pi \circ s=\mathrm{id}$. So π^{*} is fully faithful, so we also have $\pi!\pi^{*} \cong \mathrm{id}$. Since s is fully faithful, $s^{*} s_{*}=\mathrm{id}$, or in other words, $\pi_{*} \pi^{!} \cong \mathrm{id}$ since $s^{*}=\pi_{*}$ and $s_{*}=\pi^{!}$.

Lemma 5. A presheaf G is a sheaf if and only if the composition of the two counits $\pi^{*} G \leftarrow \pi^{*} \pi_{*} \pi^{!} G \rightarrow \pi^{!} G$ is an equivalence.
Proof. By definition, G is a sheaf if and only if $\operatorname{Map}(j X, G) \rightarrow \operatorname{Map}(R, G)$ is an equivalence for every covering sieve. This map is precisely the composition $\pi^{*} G \leftleftarrows$ $\pi^{*} \pi_{*} \pi^{!} G \rightarrow \pi^{!} G$ evaluated on $R \rightarrow j X$ in $\operatorname{Cov}(C)$.

2 Step 2

We defined $L F$ as a transfinite composition of $(-)^{\dagger}$ applied κ times. Explicitly,

$$
T_{0} F:=F,
$$

for successor ordinals

$$
T_{\lambda+1} F:=\left(T_{\lambda} F\right)^{\dagger},
$$

and for limit ordinals

$$
T_{\beta} F:=\operatorname{colim}_{\alpha<\beta} T_{\alpha} F
$$

Then

$$
L F:=T_{\kappa} F .
$$

Lemma 6. For any presheaf F the presheaf $L F$ is a sheaf.
Proof. We want to show that $\operatorname{Map}(j X, L F) \rightarrow \operatorname{Map}(R, L F)$ is an equivalence for any covering sieve. By the definition of L and the hypothesis $(*)$ it suffices to show that the canonical morphism of morphisms

factor through an equivalence Φ.
Replacing C with $C_{/ X}$ with the induced topology, we can assume that X is the final object, see Lemma 7. With this assumption we can use a modified version of the adjunction we described above. Let $R_{0} \subseteq j *$ be our fixed covering sieve of X which is now the terminal object $*$. Let $\operatorname{Cov}(C)_{0} \subseteq \operatorname{Cov}(C)$ denote the full subcategory of those $R \rightarrow j Y$ such that $j Y \times R_{0} \subseteq R$, that is, those covering sieves R containing the pullback of our fixed covering sieve. The composition $\rho: \operatorname{Cov}(C)_{0} \subseteq \operatorname{Cov}(C) \xrightarrow{\pi} C$ gives rise to four analogous functors

also satisfying Lemma 4. Moreover, ρ has a left adjoint $z: Y \mapsto\left(j Y \times R_{0} \rightarrow j Y\right)$ so $\rho_{!}=(-) \circ z$ or informally

$$
F\left(j Y \times R_{0} \rightarrow j Y\right)=\rho_{!} F(Y)
$$

The transformation id $\rightarrow \pi_{!} \pi^{!}=(-)^{\dagger}$ naturally factors as id $\rightarrow \rho_{!} \rho^{!} \rightarrow \pi!\pi^{!}$, Lemma 8. So to conclude our proof it remains only to show that

$$
\Phi: \operatorname{Map}\left(j X, \rho_{!} \rho^{\prime} G\right) \rightarrow \operatorname{Map}\left(R_{0}, \rho_{!} \rho^{!} G\right)
$$

is an equivalence. By what is essentially the cofinality argument aluded to in [Lur06, Rem.6.2.2.15], we have $\operatorname{Map}\left(R_{0}, \rho_{*} F\right) \cong \operatorname{Map}\left(R_{0}, \rho_{!} F\right)$, Lemma 9. Inputting this, we get

$$
\begin{array}{rlr}
\operatorname{Map}\left(R_{0}, \rho!\rho!G\right) & =\operatorname{Map}\left(R_{0}, \rho_{*} \rho \cdot G\right) & \text { Lemma } 9 \\
& =\operatorname{Map}\left(R_{0}, G\right) & \\
& =\operatorname{Map}\left(\left(R_{0} \rightarrow *\right), \rho!G\right) & \\
& =\operatorname{Map}\left(*, \rho_{!} \rho \cdot G\right) &
\end{array}
$$

where the last two equalities are the definitions of $\rho^{!}$and $\rho_{!}$. So Φ is indeed an equivalence.

3 Lemmas used in the proof.

Let $p: C_{/ X} \rightarrow C$ the canonical projection. Recall that in general there is a bijection ${ }^{2}$ of sieves

$$
\begin{equation*}
p_{!}: \operatorname{Sub}(j(Y \rightarrow X)) \xrightarrow{\sim} \operatorname{Sub}(j Y) \tag{1}
\end{equation*}
$$

and the covering sieves of $C_{/ X}$ are precisely those sieves $R \rightarrow j(Y \rightarrow X)$ of $C_{/ X}$ such that $p_{!} R \rightarrow p_{!} j(Y \rightarrow X)=j Y$ is a covering sieve of C.
Lemma 7. There is a natural equivalence $p^{*}(-)^{\dagger} \cong\left(p^{*}-\right)^{\dagger}$. In other words, the square

commutes up to natural isomorphism. Consequently, the square below on the left is equivalent to the square on the right (note that $j X=p_{!} j *$)

Proof. We seek natural isomorphisms $p^{*} \pi!\cong \pi!p^{*}$ and $p^{*} \pi^{!} \cong \pi^{!} p^{*}$ where the latter uses the functor $p: \operatorname{Cov}\left(C_{/ X}\right) \rightarrow \operatorname{Cov}(C)$. For this latter we can calculate directly, cf.Remark 2,

$$
\begin{aligned}
p^{*} \pi^{!} F(R \rightarrow j(Y \rightarrow X)) & =\pi^{!} F\left(p_{!} R \rightarrow j Y\right) \\
& \cong \operatorname{Map}\left(p_{!} R, F\right) \\
& \cong \operatorname{Map}\left(R, p^{*} F\right) \\
& \cong \pi^{!} p^{*} F(R \rightarrow j(Y \rightarrow X))
\end{aligned}
$$

[^1]For the former, it suffices to show the right adjoints are equivalent, $\pi^{*} p_{*} \cong p_{*} \pi^{*}$. Noting that $p_{*} F(Y)=\operatorname{Map}((j Y \times j X \rightarrow j X), F)$, we calculate

$$
\begin{aligned}
\pi^{*} p_{*} F(R \rightarrow j Y) & \cong \operatorname{Map}((j Y \times j X \rightarrow j X), F) \\
& \left.\cong \operatorname{Map}(j(R \rightarrow j Y) \times j(j X \rightarrow j X) \rightarrow j(j X \rightarrow j X)), \pi^{*} F\right) \\
& \cong p_{*} \pi^{*} F(R \rightarrow j Y)
\end{aligned}
$$

Lemma 8. There is a canonical factorisation

Proof. One way to see this is to just evaluate on a presheaf F and an object Y and see that there is a canonical factorisation

$$
F(Y) \rightarrow \lim _{j V \rightarrow R_{0}} F(R) \rightarrow \operatorname{colim}_{R \rightarrow j Y} \lim _{j W \rightarrow R} F(W)
$$

Alternatively, if we want to be careful about functorialities: The triangle

commutes on the nose so we have an equality of functors $(-) \circ \iota \circ s_{0}=\rho_{*} \iota^{*}=\pi_{*}=$ $(-) \circ s$. This equality of left adjoints corresponds to an equivalence of right adjoints $\iota_{*} \rho^{!} \cong \pi^{!}$and since $\iota^{*} \iota_{*} \cong \mathrm{id}(\iota$ is fully faithful) we obtain a further equivalence $\rho^{!} \cong i^{*} \pi^{!}$. This last equivalence gives rise to a morphism.

$$
\begin{equation*}
\rho_{!} \rho^{!} \cong \pi_{!} \iota_{!} i^{*} \pi^{!} \rightarrow \pi_{!} \pi^{!} \tag{2}
\end{equation*}
$$

We claim that this forms the commutative triangle in the statement. Checking this is a (annoying) exercise in adjunctions.

Lemma 9. Consider $R \subseteq j *$ as a full subcategory $R \subseteq C$. When restricted to this subcategory the composition $\rho_{*} \leftleftarrows \rho_{!} \rho^{*} \rho_{*} \rightarrow \rho_{!}$becomes an equivalence. Consequently, for any presheaf $F \in \operatorname{PSh}\left(\operatorname{Cov}(C)_{0}\right)$ we have

$$
\operatorname{Map}\left(R_{0}, \rho_{*} F\right) \cong \operatorname{Map}\left(R_{0}, \rho_{!} F\right)
$$

Proof. All three functors in question are compositions, namely, with the functors

Explicitly $\rho_{!}, \rho^{*}, \rho_{*}$ are respectively $(-) \circ z,(-) \circ \rho$, and $(-) \circ s_{0}$. So it suffices to observe that id $\rightarrow \rho \circ s_{0}$ and $z \circ \rho \rightarrow \mathrm{id}$ are equivalences on R. The first one is always an equivalence, and the second one is the natural transformation $\left(j Y \times R_{0} \rightarrow j Y\right) \rightarrow$ $(R \rightarrow j Y)$. This is an equivalence on R_{0} by virtue of the fact that for any $j V \rightarrow$ R_{0} we have $j V \times R_{0}=j V$. For the "Consequently", observe that $\operatorname{Map}\left(R_{0}, F^{\prime}\right)=$ $\lim _{j Y \rightarrow R_{0}} F^{\prime}(j Y)$.

References

[Lur06] Jacob Lurie, Higher Topos Theory, arXiv Mathematics e-prints (2006), math/0608040.

[^0]: ${ }^{1}$ This is, for example, so that we can sensibly take colimits over the category of sieves on an object, and so that the over categories $C_{/ R}$ are uniformly bounded in size, implying that we can find κ satisfying Hypothesis (*).

[^1]: ${ }^{2}$ The inverse sends $R \rightarrow j Y$ to $j Y \times_{p^{*} j Y} p^{*} R \rightarrow j Y$.

