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1 Some commutative algebra

A derived scheme should be something like a collection of derived affine schemes
glued together along open immersions. To talk about open immersions of derived
affine schemes we first need to understand localisation of derived rings. To do this
we begin with quotients.

Definition 1. Given a simplicial ring A ∈ Ring∆ and an element f ∈ A0 we define
A//f as the pushout

Z[∂∆1]

!!

(0,f)
"" A

!!
Z[∆1] "" A//f

Remark 2. The idea is that instead of formally setting f = 0 we have instead freely
attached a homotopy f ∼ 0. If we are thinking of A as a Kan complex, we think of
this as an isomorphism f ∼= 0.

Remark 3. Recall that since ∂∆1 ∼= ∗⊔∗, the simplicial ring Z[∂∆1] is the constant1

polynomial ring Z[x0, x1]. The upper horizontal map is x0 !" 0, x1 !" f . Since the
pushout in Ring∆ is ⊗ we have (A//f)n = Z[∆1]n ⊗Z[∂∆1]n An. Explicitly, let’s write
xi for the variable corresponding to the unique epimorphism σi : [n] " [1] which
satisfies σi(i−1) = 0 and σi(i) = 1. Then we have

(A//f)n = An[x1, . . . , xn].

The face morphisms di : (A//f)n " (A//f)n−1 are

di : xj !"

!
""#

""$

f (i, j) = (0, 1)
xj−1 i < j; (i, j) ∕= (0, 1)
xj j ≤ i; (i, j) ∕= (n, n)
0 (i, j) = (n, n)

Exercise 4. Show that if A is cofibrant then so is A//f .

1“Constant” means constant as a functor ∆op ! Ring.
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Exercise 5. Suppose that A is a constant simplicial ring (so Ai = Ai+1 for all i) and
f ∈ A. Show that

πn(A//f) = 0 for n > 0

π0(A//f) = A/〈f〉.

In other words, A//f " A/〈f〉 is a quasi-isomorphism.

Definition 6. Let A ∈ Ring∆ be a simplicial ring. Define

A[1//f ] := A[t]//(1− ft).

Here A[t]n = An[t].

Remark 7. We have freely attached an element to A0 (namely t) and then a freely
attached a homotopy from 0 to 1− ft, or equivalently, from 1 to ft.

Exercise 8. Show that if A is cofibrant then so is A[1//f ].

Exercise 9. Given a morphism of simplicial rings φ : A " B and f ∈ A0, show that
there is an isomorphism of simplicial rings B ⊗A A[1//f ] ∼= B[1//φf ].

Exercise 10.
1. Show that there is an isomorphism of simplicial rings

A[1//f ] ∼= A⊗A0 (A0[
1//f ])

where we consider A0 as a constant simplicial ring and the morphism of simpli-
cial rings A0 " A is the canonical one induced by the degeneracy morphisms.

2. Using the fact that if A is cofibrant then A⊗A0− preserves quasi-isomorphisms,
show that there is a quasi-isomorphism

A[1//f ]
q.i
" A⊗A0 A0[f

−1]

where A0[f
−1] on the right hand side is the usual localisation of classical rings.

3. Using the fact that localisation −[f−1] : A0-mod " A0-mod of classical mod-
ules is an exact functor, show that for each n, we have

πn(A[
1//f ]) = (πnA)[f

−1]

where on the right we consider f as an element of π0A and πnA as a π0A-
module.2

2Note that the ring structure on A0 really does induce a ring structure on π0A thanks to the
common section A0 ! A1 of the face maps A1 ! A0.
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Proposition 11. Suppose A ∈ Ringcof∆ and that f, g ∈ A0 are two elements gener-
ating the unit ideal in π0A. The square

A ""

!!

A[1//f ]

!!

A[1//g] "" A[1//fg]

is cartesian in the quasicategory NRingcof∆ of simplicial rings.

Sketch of proof. Any choice of pullback A′ comes equipped with a morphism A " A′.
We want to show that this is an equivalence. Consider the adjunction3

Kan ⇄ Ringcof∆

of simplicial categories. The right adjoint detects weak equivalences and preserves
limits. In Kan to any pullback square of pointed simplicial sets (W,w) = (X, x)×(Z,z)

(Y, y) we have an associated long exact sequence

· · · " πnW " πnX × πnY " πnZ " πn−1W " . . .

In the first part of the course we saw that for any π0A-module M

0 " M " M [f−1]⊕M [g−1] " M [(gf)−1] " 0

is a short exact sequence of π0A-modules. Applying this to each πnA shows that

πnA
′ ∼= ker(πnA[f

−1]⊕ πnA[g
−1] " πnA[(gf)

−1]) ∼= πnA.

2 Sheaves

Definition 12. A morphism of Kan complexes f : K " L is a subobject if it is
the inclusion of a direct summand, so L = K ⊔ K ′ for some K ′, [HTT, §6.1.6]. A
morphism of Kan complexes is an effective epimorphism if the induced morphism
π0K " π0L is surjective, [HTT, §6.2.3].

The following proposition is the higher version of the fact that given a morphism
of sets f : K " L we have coeq(K ×L K ⇒ K) ∼= im(f). The higher products
are needed because we are not just enforcing a relation on points of K, but also on
homotopies, homotopies between homotopies, etc.

3Instead of Kan on the left one could alternatively use simplicial abelian groups or, equivalently,
homologically bounded below zero chain complexes.
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Proposition 13. Let f : K " L be a morphism in Kan and consider the sum
I ⊆ L of those connected components in the image of f . Then there is a canonical
equivalence

colimn∈∆ K×L(n+1) ∼
" I

in the quasicategory NKan.

In other words, colimn∈∆ K×L(n+1) is (hoomotopic to) a direct summand of L,
and is precisely the set of those connected components hit by K.

Recall that a sieve R on an object X in a classical category C is a subpresheaf
R ⊆ hom(−, X).

Definition 14 ([HTT, Def.6.2.2.1, Lem.6.2.2.4, Prop.6.2.2.5). Let C be a quasicat-
egory and X ∈ C an object. A sieve on X is a subobject R ⊆ jX of the presheaf jX
represented by X. That is, a sieve is a morphism of presheaves R " jX in PSh(C)
such that for every object Y ∈ C the map of Kan complexes R(Y ) " jX(Y ) is the
inclusion of a direct summand.

Example 15.
1. The maximal sieve R = j(X) and the minimal sieve R = ∅ are the easiest

examples.
2. More interestingly, for any morphism F " jX of presheaves, one can take

the image im(F " jX). Informally, this is the presheaf that sends an object
Y to the connected components of jX(Y ) in the image of F (Y ) " jX(Y ).
Formally, one can use colimn∈∆ F×jX(n+1) since colimits and limits in presheaf
categories are computed objectwise (see the lecture on limits).

Definition 16. A topology on a quasicategory C is the data of: for each object X
a collection J(X) of sieves called covering sieves. These covering sieves are required
to satisfy the following axioms.
(T1) If R ⊆ jX is a covering sieve and Y " X is any morphism in C then jY ×jX R

is a covering sieve of Y .
jY ×jX R

|∩

"" R

|∩

jY "" jX.

(T2) If R ⊆ jX is a covering sieve and R′ ⊆ jX is any other sieve satisfying: for
every morphism jY " R " jX in R(Y ), the pullback jY ×jX R′ ⊆ jY is a
covering sieve, then R′ is also a covering sieve.

jY ×jX R′

|∩

"" R ∩R′

|∩

"" R′

|∩

jY "" R "" jX
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(T3) For every object X, the maximal sieve

R = jX ⊆ jX

is a covering sieve.

Example 17. A topology on any small classical category C ∈ Cat is the same thing
as a topology on its associated quasicategory NC ∈ QCat.

Example 18. A sieve R ⊆ j SpecA is a covering sieve for the Zariski topology on

dAff := (NRingcof∆ )op

if there exists a sequence of elements f1, . . . , fn ∈ A0 which generate the unit ideal
of π0A, and factorisations j SpecA[1//fi ] " R " j SpecA.

Exercise 19. Using the exercises in the first section, show that the covering sieves
for the Zariski topology do satisfy the axioms for a Grothendieck topology on dAff.

Definition 20. Let C be a quasicategory equipped with a topology τ . A presheaf
F : Cop " NKan is a sheaf if for every covering sieve R ⊆ jX the induced map

Map(jX, F ) " Map(R,F )

is a weak equivalence of Kan complexes. The quasicategory of τ -sheaves is the
fullsubcategory Shvτ (C) ⊆ PSh(C) consisting of those presheaves F which are τ -
sheaves.

Theorem 21. The canonical inclusion Shv(C) " PSh(C) admits a left adjoint.

Proof. The proof from Lecture 2 works verbatim.

We would like to know that representable presheaves on dAff are sheaves in the
Zariski topology. For this we use the following proposition.

Proposition 22. A presheaf F on dAff is a Zariski sheaf if and only if for every
Spec(A) and f, g ∈ A0 generating the unit ideal of π0A, the square

F (Spec(A)) ""

!!

F (Spec(A[1//f ]))

!!

F (Spec(A[1//g])) "" F (Spec(A[1//fg]))

is cartesian in NKan.

Proposition 22 will be proven in a later version of these lecture notes.

Corollary 23. Every representable presheaf is a Zariski sheaf.
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3 Schemes

Proposition 24. Suppose that C is a quasicategory equipped with a topology and
f : F " G is a morphism in Shvτ (C). The following are equivalent.

1. For every X ∈ C and s : jX " G there exists a covering sieve R and a
commutative square in PSh(C)

R

!!

"" F

!!
jX "" G

2. The morphism colimn∈∆ F×G(n+1) " G is an equivalence in Shvτ (C).

Remark 25. One way to prove Proposition 24 is by looking at the construction of
the sheafification funtor.

Definition 26. A morphism satisfying the equivalent conditions of Proposition 24
is called an effective epimorphism.

Exercise 27. Using the fact that colimits are universal in a quasicategory of the
form Shv(C), show that the pullback of an effective epimorphism is an effective
epimorphism.

In this section sheaf means object of Shv(dAff).

Definition 28. A subsheaf U ⊆ j Spec(A) is an open immersion if there exists an
effective epimorphism of sheaves of the form

%

λ∈Λ

j Spec(A[1//fλ ]) " U.

In other words, if it is the sheafification of a union of opens Spec(A[1//fλ ]) ⊆ Spec(A).

Exercise 29. Show that if U ⊆ j Spec(A) is an open immersion and Spec(B) "
Spec(A) any morphism then U×j Spec(A)j Spec(B) ⊆ j Spec(B) is an open immersion.

Definition 30. A morphism F " G in Shv(dAff) is an open immersion if for every
j Spec(A) " G the pullback j Spec(A)×G F " j Spec(A) is an open immersion.

Exercise 31.
1. Suppose F ◦↩−" G is an open immersion and H " G any morphism. Show that

F ×G H " H is an open immersion.
2. Suppose that F ◦↩−" G and G ◦↩−" H are open immersions. Show that the

composition F " H is an open immersion.
3. Suppose that F " G is a morphism, H "" G is an epimorphism, and that

F ×GH ◦↩−" H is an open immersion. Show that F " G is an open immersion.
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Definition 32. A derived scheme is a sheaf X ∈ Shv(dAff) which admits an effective
epimorphism of sheaves of the form

%

λ∈Λ

j Spec(Aλ) " X

such that each j Spec(Aλ) " X is an open immersion. Such a morphism is called an
open affine covering. The category of derived schemes is the full subcategory

dSch ⊆ Shv(dAff)

whose objects are schemes.

Remark 33. Given a derived scheme X, the collection of open immersions U " X
are the opens of a topological space Xtop. Furthermore, restricting Map(−, SpecZ[t])
to these opens we obtain a sheafOX of spaces onXtop which has a canonical structure
of sheaf of derived rings. Conversely, one can reconstruct the derived scheme X from
this structure.

Exercise 34. Suppose U ⊆ j Spec(A) is an open immersion. Show that U is a
derived scheme.

Exercise 35. Suppose that X " Y is a morphism of derived schemes and {Vµ "
Y }µ∈M an open affine covering of Y . Show that there exists an open affine covering
{Uλ " X}λ∈Λ of X such that for each λ there is some µλ admitting a commutative
square

Uλ
""

!!

Vµλ

!!
X "" Y

Theorem 36. The category of derived schemes admits finite limits and the canonical
inclusion dSch ⊆ PSh(dAff) preserves those limits.

Proof. The proof from Lecture 3 works verbatim.
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