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1 Motivation

The main goal of this weeks lecture is to say something about the Yoneda embedding
for ∞-categories. For simplicial categories, Yoneda’s lemma is an exercise, similar to
the classical case.

Exercise 1. Let C be a simplicial category.
1. Show that for each object X the assignment Y  Map(Y,X) defines a mor-

phism of simplicial categories jX : Cop  Set∆.
2. Show that the assignment X  jX also defines a morphism of simplicial

categories j : C  Fun(Cop,Set∆).
3. Show that the canonical maps MapC(X,X ′)  MapFun(Cop,Set∆)(jX, jX ′) are

isomorphisms.

For quasi-categories, Yoneda’s lemma is a theorem. The obstacles are easy to
explain.

Obstacle 1: Functoriality. We would like to define a functor

j : C
?
 FunQCat(C

op, NKan)

such that for each X, Y ∈ C, there are equivalences

j(X)(Y ) ∼= MapR
C(Y,X),

and then show that j is fully faithful. However, MapR
C(Y,X) does not have obvious

compositions. For example, we can assign the Kan complex MapR
C(Y,X) to X, Y ∈

C0, but given morphisms f : X  X ′ or g : Y ′  Y in C1 it is unclear what the
corresponding morphisms

MapR
C(Y,X)

?
 MapR

C(Y,X
′), MapR

C(Y,X)
?
 MapR

C(Y
′, X).

of (NKan)1 should be, let alone higher simplicies in Cn.
Obstacle 2: Non-cofibrant presheaves. Recall the adjunction

C[−] : QCat ⇄ Cat∆ : N
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from Lecture 7. This gives another model for the mapping spaces of a quasi-category
C. Namely, the mapping spaces MapRC[C](Y,X) = Sing |MapC[C](Y,X)| of the fi-
brant simplicial category RC[C] associated to C. Moreover, we have an easy fully
faithful embedding

j : RC[C]  FunCat∆(RC[C]op,Kan)

into the simplicial category of simplicial functors from Exercise 1. Additionally, there
is a canonical comparison functor

Φ : N


FunCat∆(RC[C]op,Kan)


 FunQCat(C

op, NKan)

which sends a functor f : RC[C]op  Kan to the adjoint f † : Cop  NKan of the
composition C[C]op  RC[C]op  Kan. The problem is that:

Φ is not a categorical equivalence.

Example 2. Consider C = Λ2
2. Since Λ

2
2 = ∆1 ⊔∆0 ∆1 and C preserves colimits, one

sees that C[C] is the small category {0  2  1} considered as a simplicial category.
Since all mapping spaces are ∅ or ∗ we have RC[C] = C[C]. Choose any contractible
Kan complex I with at least two distinct points a, b ∈ I, e.g., Sing∆1

top, and consider
the morphism of diagrams

{a} 



I



{b}


∗  ∗ ∗

(1)

Since a ∕= b, this morphism of diagrams has no inverse in Fun(C[C],Kan). However,
in Fun(C,NKan) we do have an inverse. Note that a natural transformation is a
map C ×∆1  NKan whose end points are our two diagrams. The quasi-category
Λ2

2 × ∆1 is built from four nondegenerate two simplices. We send three of these to
the obvious commutative triangles. For the fourth one, choose a map ∆1  I with
end points a and b (this exists because I is a contractible Kan complex). Then this
defines a simplicial homotopy from a ∈ I to b ∈ I, and therefore a two cell in NKan.

∗
a
❇❇

❇❇
⇒

↺
❇

❇❇
❇





∗
b


∗

b
⑥⑥
⑥⑥↺

↺
⑥⑥
⑥⑥ 

{a}  I {b}

(2)

Apparent problem. The problem seems to be that Fun(C[C],Kan) consists of
functors which are strictly compatible with composition but Fun(C,NKan) allows
functors which are only preserve composition up to coherent homotopy.

Fun(C[C],Kan)“ = ”


F

 F (g ◦ f) = F (g) ◦ F (f)
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Fun(C,NKan)“ = ”


F

 F (g ◦ f) ∼ F (g) ◦ F (f)



That is, we suspect that Fun(C[C],Kan) is too small. However, this is not the
true problem. It turns out that every functor in Fun(C,NKan) can be rigidified to a
functor which strictly preserves composition. For example, if I is a classical category,
then for every morphism of quasi-categories F : NI  NKan is a morphism of
simplicial categories G : I  NKan and an equivalence F ∼= NG. This phenomenon
is well studied in SGA the case of groupoids.

Actual problem. The actual problem is that not all equivalences in Fun(C[C],Kan)
are equivalences in Fun(C,NKan). That is, Fun(C[C],Kan) is too big!

Remark 3. For the reader who knows some homological algebra, we point out now
that this is exactly the same phenomenon that there is a fully faithful inclusion

D(Z) ∼= K(Ch(Z)proj) ⊆ K(Ch(Z))

of the derived category of abelian groups (considered as a triangulated category) into
homotopy category of all chain complexes.

To describe this more accurately we introduce the following definition.

Definition 4. A morphism α : F  G in Fun(I,Kan) is a weak equivalence if for
each i ∈ I the morphism of Kan complexes F (i)  G(i) is a weak equivalence.

Since Fun(I,Kan) is a simplicial category we also have a notion of homotopy
equivalence, namely, a map which becomes an isomorphism in the homotopy cate-
gory hFun(I,Kan). Example 2 is an example of a general phenomenon that even
though all homotopy equivalences are weak equivalences, not all weak equivalences
are homotopy equivalences.

{ homotopy equivalence } ⊊ { weak equivalence }

Example 5.
1. Recall that in Lecture 6 we had the topologists sin curve X, and an inclusion

{a, b} ⊆ X which was a weak equivalence, but not a homotopy equivalence.
Conversely, it can be show that every weak equivalence of CW complexes is a
homotopy equivalence. Moreover, every topological space is weakly equivalent
to a CW complex

| SingX| w.e.
 X.

2. It can be shown that every weak equivalence of Kan complexes is a homotopy
equivalence, however, there are certainly (Quillen) weak equivalences of sim-
plicial sets which are not homotopy equivalences. On the other hand, every
simplicial set is weakly equivalent to a Kan complex

K
w.e.
 Sing |K|.
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3. It can be shown that every weak equivalence of cofibrant simplicial rings is a
homotopy equivalence, but in Lecture 7 we saw an example of weak equivalence
of simplicial rings that had no inverse. We also saw in Lecture 7 that every
simplicial ring is weakly equivalent to a cofibrant simplicial ring

P∆(A)
w.e.
 A.

4. We have not introduced the category of chain complexes yet, but this would
also be an example.

Question 6. What is the corresponding entry in the following table?

hom.equiv.⊊ w.e. hom.equiv = w.e. resolution functor
Top CW | Sing−|
Set∆ Kan Sing |− |
Ring∆ Ringcof∆ P∆(−)
Ch(Z) Ch(Z)proj projective resolution

Fun(I,Kan) ? ?

2 Model categories

One language used to work in the above situation is the language of model categories.

Definition 7 (Quillin 1967, [Hirschhorn, Def.7.1.3, Def.9.1.6], [HTT, Def.A.3.1.5]).
A model category is a category M equipped with three classes of morphisms C,W ,F
called weak equivalences, cofibrations, and fibrations, satisfying five axioms which we
will introduce as we need them. An object X is called fibrant if X  ∗ is a fibration,
and cofibrant if ∅  X is a cofibration.

Example 8. In the Quillen model structure on the category Set∆ of simplicial sets:
(W) The weak equivalences are weak equivalences, i.e., morphisms K  L such

that π0|K| ∼= π0|L| and πn(|K|, k) ∼= πn(|L|, fk) for all n, k.
(C) The cofibrations are monomorphisms.
(F) The fibrations are Kan fibrations.

(Mcf) All objects are cofibrant. The fibrant objects are Kan complexes.

Example 9. In a canonical model structure on the category Ring∆ of simplicial
rings:
(W) The weak equivalences are weak equivalences, i.e., morphisms A  B such that

the underlying morphism of simplicial sets UA  UB is a weak equivalence.
(C) A morphism is called cellular if it is a colimit of the form

A  B = colim(A = A(−1)  A(0)  A(1)  . . . )

were each morphism is of the form


In
Z[∂∆n]

gn 



A(n−1)


In
Z[∆n]  A(n)
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for some set In and morphism gn. Cofibrations are retracts of cellular mor-
phisms.

(F) Recall that π0A = coker(A1
d0−d1 A0). A morphism A  B is a fibration if

An  π0A×π0B Bn

is surjective for all n.
(Mcf) Every simplicial ring is fibrant. Cofibrant simplicial rings were introduced last

week.

Example 10 (cf. [HTT, Def.A.3.3.1]). Suppose M is a model category and I a
small category. A morphism α : F  G in FunCat(I,M) is called:

1. a weak equivalence if α(i) : F (i)  G(i) is a weak equivalence for each i ∈ I,
2. an injective cofibration if α(i) : F (i)  G(i) is a cofibration for each i ∈ I,
3. an injective fibration if it has the right lifting property with respect to all γ

which are both a weak equivalence and injective cofibration, that is, for every
commutative square

inj.cof.

+ w.e.


 F

α



✂
✂

✂
✂

✂ G

there exists a diagonal morphism making two commutative triangles.
4. a projective fibration if α(i) : F (i)  G(i) is a fibration for each i ∈ I.
5. an projective cofibration if it has the left lifting property with respect to all

γ which are both weak equivalence and projective fibration, that is, for every
commutative square

F

α




proj.fib.

+ w.e.
G 

✂
✂

✂
✂

there exists a diagonal morphism making two commutative triangles.

Remark 11. The above example has a simplicial version too, where I and M are
simplicial categories and we consider simplicial functors FunCat∆(I,M).

Remark 12. All of the above model categories are combinatorial model categories,
cf. [HTT, A.3.3.2]. Indeed, every model category we see in this course will be
combinatorial.

Remark 13. There is a very large amount of abstract homotopy theory that we are
not mentioning here. Basically, there notion of a model category is an abstraction
of many situations where one can “do homotopy theory”. In particular, in model
categories there is a very robust notion of homotopy equivalence. One consequence
of the lifting properties described above is that weak equivalence and homotopy
equivalence will agree on the subcategory Mcf of fibrant-cofibrant objects.
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Clearly, in general, the cofibrant-fibrant objects1 in Fun(I,M) will be difficult to
describe, but in some nice cases we can give a complete characterisation.

Exercise 14. Let I be a small category and M a model category. An easy conse-
quence of the axioms of a model category is :
(∗) an object is cofibrant if and only if for every f : X  Y in W ∩ F , and

morphism A  Y , there exists a factorisation A  X  Y .
For i ∈ I and a cofibrant object A ∈ Mcof let i!A ∈ Fun(I,M) be the functor
j  ⊔hom(i,j)A. Show that i!A is projectively cofibrant. Hint.2

Exercise 15. Recall that for a simplicial set K we wrote skn K ⊆ K for the smallest
subsimplicial set containing all non-degenerate i-simplicies for i ≤ n. Admitting the
fact that pushouts of cofibrations are cofibrations, and coproducts of cofibrations are
cofibrations, show that the canonical morphism

skn−1 N(I/−)  skn N(I/−)

in Fun(I,Set∆) is a projective cofibration. Hint.3 Hint.4

Exercise 16. Admitting that a colimit colim(∅  A(0)  A(1)  . . . ) of cofibra-
tions is cofibrant, using the previous exercises show that for any small category I,
the diagram i  N(I/i) in Fun(I,Set∆) is projectively cofibrant.

Example 17. Consider the case I=Λ2
2 and M=(Set∆)Quillen. An object

X1


X0

 X2

in Fun(Λ2
2,Set∆) is:

1. always injectively cofibrant,
2. injectively fibrant5 if and only if X2 ∈ Kan and both morphisms are Kan

fibrations.
3. projectively cofibrant6 if and only if X0 ⊔X1  X2 is a monomorphism.
4. projectively fibrant if and only if X0, X1, X2 ∈ Kan.

1Recall that an object X is cofibrant if the canonical morphism ∅  X from the initial object
is a cofibration and fibrant if the canonical morphism X  ∗ to the terminal object is a fibration.

2Note that the functor i! is left adjoint to the evaluation-at-i functor i∗ : Fun(I,M)  M;
p  p(i).

3Use Exercise 14 applied to the cofibrations ∂∆n  ∆n.
4Note also that every n-simplex (in . . .i0i) in N(I/i)n can be written uniquely as the

image of a simplex of the form (in . . .i0=i0) in N(I/i0)n. So in particular, N(I/i)n =
hom(i0,i)

{(in . . .i0=i0) ∈ N(I/i0)n}.
5More generally, a morphism α : X  Y is an injective fibration if and only if α2 : X2  Y2 is

a Kan fibration, and Xε  Yε ×Y2 X2 are Kan fibrations for ε = 0, 1.
6More generally, a morphism α : A  B is a projective cofibration if and only if αε : Aε  Bε

are monomorphisms for ε = 0, 1 and B0 ⊔A0 A2 ⊔A1 B1  B2 is a monomorphism.
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inj.cof. no conditions
inj.fib. XY

ZY Kan fibrations, Y Kan complex
proj.cof. X ⊔ ZY monomorphism
proj.fib. X, Y, Z Kan complexes

3 Yoneda

Now we want to construct the Yoneda functor

j : C  Fun(Cop, NKan)

associated to a quasi-category C.

Construction 18. To begin with note that for any simplicial sets K,L, applying
C to the canonical projections K × L  K and K × L  L produces a simplicial
functor

Φ : C[K × L]  C[K]× C[L].

Construction 19 ([HTT, §5.1.3, pg.317]). Let C be a simplicial set and C[C] 
RC[C] a categorical equivalence towards a fibrant simplicial category. Consider the
simplicial Yoneda functor

j : RC[C]  FunCat∆(RC[C]op,Kan)

Note that for any fixed object X, the functor j(X) is projectively fibrant because
RC[C] is fibrant, and projectively cofibrant because it is representable.

Composing the adjoint j† : RC[C]op × RC[C]  Kan with C[C]  RC[C] and Φ
we obtain three functors which determine each other by adjunction.

C[Cop×C]  C[C]op×C[C]  RC[C]op×RC[C]  Kan ∈ Cat∆
Cop×C  N(Kan) ∈ Cat∞

C  FunSet∆(C
op, NKan) ∈ Cat∞.

The last one of these is the quasi-categorical Yoneda functor.

Theorem 20 ([HTT, 5.1.3.1). Let C be a quasi-category. The Yoneda functor con-
structed above is fully faithful. Explicitly, for all objects X, Y of C the induced map

MapR
C(X, Y )  MapR

Fun(Cop,NKan)(jX, jY )

is an equivalence.

Sketch of proof. If one follows the adjunctions around, one can see that the Yoneda
functor factors as

C
j′
 N(FunCat∆(RC[C]op,Kan)cf)

j′′
 FunSet∆(C

op, NKan).
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We claim that both of these are fully faithful. To show j′ is fully faithful, it suffices
to show that the adjoint

C[C]  RC[C]  FunCat∆(RC[C]op,Kan)cf

is fully faithful. The first map is a categorical equivalence by assumption, and the
second map is the simplicial Yoneda. To show that j′′ is an equivalence is a serious
business contained in the following theorem.

Theorem 21 ([HTT, Prop.4.2.4.4]). Let K be a simplicial set, and u : C[C]  R
an equivalence of simplicial categories. Then the induced map

N(FunCat∆(R,Kan)cf)  FunSet∆(K,NKan)

is a categorical equivalence of simplicial sets.

Exercise 22. Prove the claim in the proof that the quasi-categorical Yoneda functor
j : C  FunQCat(C

op, NKan) factors through the nerve of the simplicial Yoneda
functor NRC[C]  N FunCat∆(RC[C]op,Kan)cf .

Remark 23. One case we are particularly interested in is the case S = NRingcf∆. In
this case we can take u : C[S]  C to be the canonical equivalence C[NRingcf∆] 
Ringcf∆. Then the theorem says that

N FunCat∆(Ringcof∆ ,Kan)cof  FunSet∆(NRingcof∆ , NKan)

is a categorical equivalence. In particular, this says that any derived scheme (which
we haven’t defined yet) can be represented by a projectively cofibrant simplicial func-
torX : Ringcf∆  Kan. Affine schemes are the corepresentable functors; MapRing∆

(A,−)
with A cofibrant.
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