Derived Algebraic Geometry Shane Kelly, UTokyo Autumn Semester 2023-2024

Lecture 9: Yoneda

December 7th 2023

1 Motivation

The main goal of this weeks lecture is to say something about the Yoneda embedding for ∞ -categories. For simplicial categories, Yoneda's lemma is an exercise, similar to the classical case.

Exercise 1. Let C be a simplicial category.

- 1. Show that for each object X the assignment $Y \mapsto \operatorname{Map}(Y, X)$ defines a morphism of simplicial categories $jX : C^{\operatorname{op}} \to \mathcal{S}et_{\Delta}$.
- 2. Show that the assignment $X \mapsto jX$ also defines a morphism of simplicial categories $j: C \to \operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set}_{\Delta})$.
- 3. Show that the canonical maps $\operatorname{Map}_{C}(X, X') \to \operatorname{Map}_{\operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set}_{\Delta})}(jX, jX')$ are isomorphisms.

For quasi-categories, Yoneda's lemma is a theorem. The obstacles are easy to explain.

Obstacle 1: Functoriality. We would like to define a functor

$$j: C \xrightarrow{?} \operatorname{Fun}_{\mathcal{Q}\operatorname{Cat}}(C^{\operatorname{op}}, N\mathcal{K}\operatorname{an})$$

such that for each $X, Y \in C$, there are equivalences

$$j(X)(Y) \cong \operatorname{Map}_{C}^{R}(Y, X),$$

and then show that j is fully faithful. However, $\operatorname{Map}_{C}^{R}(Y, X)$ does not have obvious compositions. For example, we can assign the Kan complex $\operatorname{Map}_{C}^{R}(Y, X)$ to $X, Y \in C_{0}$, but given morphisms $f : X \to X'$ or $g : Y' \to Y$ in C_{1} it is unclear what the corresponding morphisms

$$\operatorname{Map}_{C}^{R}(Y,X) \xrightarrow{?} \operatorname{Map}_{C}^{R}(Y,X'), \qquad \operatorname{Map}_{C}^{R}(Y,X) \xrightarrow{?} \operatorname{Map}_{C}^{R}(Y',X).$$

of $(N\mathcal{K}an)_1$ should be, let alone higher simplicies in C_n .

Obstacle 2: Non-cofibrant presheaves. Recall the adjunction

$$\mathfrak{C}[-]: \mathcal{Q}Cat \rightleftharpoons \mathcal{C}at_{\Delta}: N$$

from Lecture 7. This gives another model for the mapping spaces of a quasi-category C. Namely, the mapping spaces $\operatorname{Map}_{R\mathfrak{C}[C]}(Y, X) = \operatorname{Sing} |\operatorname{Map}_{\mathfrak{C}[C]}(Y, X)|$ of the fibrant simplicial category $R\mathfrak{C}[C]$ associated to C. Moreover, we have an easy fully faithful embedding

$$j: R\mathfrak{C}[C] \to \operatorname{Fun}_{\mathcal{Cat}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \mathcal{K}an)$$

into the simplicial category of simplicial functors from Exercise 1. Additionally, there is a canonical comparison functor

$$\Phi: N\bigg(\operatorname{Fun}_{\mathcal{C}\mathrm{at}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \mathcal{K}\mathrm{an})\bigg) \to \operatorname{Fun}_{\mathcal{Q}\mathrm{Cat}}(C^{\operatorname{op}}, N\mathcal{K}\mathrm{an})$$

which sends a functor $f : R\mathfrak{C}[C]^{\mathrm{op}} \to \mathcal{K}$ an to the adjoint $f^{\dagger} : C^{\mathrm{op}} \to N\mathcal{K}$ an of the composition $\mathfrak{C}[C]^{\mathrm{op}} \to R\mathfrak{C}[C]^{\mathrm{op}} \to \mathcal{K}$ an. The problem is that:

 Φ is not a categorical equivalence.

Example 2. Consider $C = \Lambda_2^2$. Since $\Lambda_2^2 = \Delta^1 \sqcup_{\Delta^0} \Delta^1$ and \mathfrak{C} preserves colimits, one sees that $\mathfrak{C}[C]$ is the small category $\{0 \to 2 \leftarrow 1\}$ considered as a simplicial category. Since all mapping spaces are \emptyset or \ast we have $R\mathfrak{C}[C] = \mathfrak{C}[C]$. Choose any contractible Kan complex I with at least two distinct points $a, b \in I$, e.g., Sing Δ_{top}^1 , and consider the morphism of diagrams

Since $a \neq b$, this morphism of diagrams has no inverse in Fun($\mathfrak{C}[C], \mathcal{K}$ an). However, in Fun($C, N\mathcal{K}$ an) we do have an inverse. Note that a natural transformation is a map $C \times \Delta^1 \to N\mathcal{K}$ an whose end points are our two diagrams. The quasi-category $\Lambda_2^2 \times \Delta^1$ is built from four nondegenerate two simplices. We send three of these to the obvious commutative triangles. For the fourth one, choose a map $\Delta^1 \to I$ with end points a and b (this exists because I is a contractible Kan complex). Then this defines a simplicial homotopy from $a \in I$ to $b \in I$, and therefore a two cell in $N\mathcal{K}$ an.

$$\begin{array}{c}
 * \longrightarrow * & \longleftarrow * \\
 \downarrow & \searrow & \downarrow & & & \\
\downarrow & & & \downarrow & & & \\
 a & \longrightarrow & I & \longleftarrow & \{b\}
\end{array}$$
(2)

Apparent problem. The problem seems to be that $\operatorname{Fun}(\mathfrak{C}[C], \mathcal{K}an)$ consists of functors which are strictly compatible with composition but $\operatorname{Fun}(C, N\mathcal{K}an)$ allows functors which are only preserve composition up to coherent homotopy.

$$\operatorname{Fun}(\mathfrak{C}[C], \mathcal{K}an) = \left\{ F \mid F(g \circ f) = F(g) \circ F(f) \right\}$$

$$\operatorname{Fun}(C, N\mathcal{K}\operatorname{an})^{"} = "\left\{ F \mid F(g \circ f) \sim F(g) \circ F(f) \right\}$$

That is, we suspect that $\operatorname{Fun}(\mathfrak{C}[C], \mathcal{K}an)$ is too small. However, this is not the true problem. It turns out that every functor in $\operatorname{Fun}(C, N\mathcal{K}an)$ can be *rigidified* to a functor which strictly preserves composition. For example, if I is a classical category, then for every morphism of quasi-categories $F : NI \to N\mathcal{K}an$ is a morphism of simplicial categories $G : I \to N\mathcal{K}an$ and an equivalence $F \cong NG$. This phenomenon is well studied in SGA the case of groupoids.

Actual problem. The actual problem is that not all equivalences in Fun($\mathfrak{C}[C], \mathcal{K}$ an) are equivalences in Fun($C, N\mathcal{K}$ an). That is, Fun($\mathfrak{C}[C], \mathcal{K}$ an) is too big!

Remark 3. For the reader who knows some homological algebra, we point out now that this is exactly the same phenomenon that there is a fully faithful inclusion

$$D(\mathbb{Z}) \cong K(Ch(\mathbb{Z})_{proj}) \subseteq K(Ch(\mathbb{Z}))$$

of the derived category of abelian groups (considered as a triangulated category) into homotopy category of all chain complexes.

To describe this more accurately we introduce the following definition.

Definition 4. A morphism $\alpha : F \to G$ in Fun $(I, \mathcal{K}an)$ is a weak equivalence if for each $i \in I$ the morphism of Kan complexes $F(i) \to G(i)$ is a weak equivalence.

Since $\operatorname{Fun}(I, \mathcal{K}an)$ is a simplicial category we also have a notion of homotopy equivalence, namely, a map which becomes an isomorphism in the homotopy category $h \operatorname{Fun}(I, \mathcal{K}an)$. Example 2 is an example of a general phenomenon that even though all homotopy equivalences are weak equivalences, not all weak equivalences are homotopy equivalences.

{ homotopy equivalence } \subseteq { weak equivalence }

Example 5.

1. Recall that in Lecture 6 we had the topologists sin curve X, and an inclusion $\{a, b\} \subseteq X$ which was a weak equivalence, but not a homotopy equivalence. Conversely, it can be show that every weak equivalence of CW complexes is a homotopy equivalence. Moreover, every topological space is weakly equivalent to a CW complex

 $|\operatorname{Sing} X| \xrightarrow{w.e.} X.$

2. It can be shown that every weak equivalence of Kan complexes is a homotopy equivalence, however, there are certainly (Quillen) weak equivalences of simplicial sets which are not homotopy equivalences. On the other hand, every simplicial set is weakly equivalent to a Kan complex

$$K \xrightarrow{w.e.} \operatorname{Sing} |K|.$$

3. It can be shown that every weak equivalence of cofibrant simplicial rings is a homotopy equivalence, but in Lecture 7 we saw an example of weak equivalence of simplicial rings that had no inverse. We also saw in Lecture 7 that every simplicial ring is weakly equivalent to a cofibrant simplicial ring

$$P^{\Delta}(A) \xrightarrow{w.e.} A$$

4. We have not introduced the category of chain complexes yet, but this would also be an example.

Question 6.	What is the	corresponding entry in	the following table?
-------------	-------------	------------------------	----------------------

hom.equiv. \subsetneq w.e.	hom.equiv $=$ w.e.	resolution functor
Top	CW	Sing -
${\mathcal{S}}{\operatorname{et}}_\Delta$	$\mathcal{K}\mathrm{an}$	$\operatorname{Sing} - $
$\mathcal{R}\mathrm{ing}_\Delta$	$\mathcal{R}\mathrm{ing}^\mathrm{cof}_\Delta$	$P^{\Delta}(-)$
$\operatorname{Ch}(\mathbb{Z})$	$\operatorname{Ch}(\mathbb{Z})_{\operatorname{proj}}$	projective resolution
$\operatorname{Fun}(I,\operatorname{\mathcal{K}an})$?	?

2 Model categories

One language used to work in the above situation is the language of *model categories*.

Definition 7 (Quillin 1967, [Hirschhorn, Def.7.1.3, Def.9.1.6], [HTT, Def.A.3.1.5]). A model category is a category \mathcal{M} equipped with three classes of morphisms $\mathcal{C}, \mathcal{W}, \mathcal{F}$ called *weak equivalences, cofibrations,* and *fibrations,* satisfying five axioms which we will introduce as we need them. An object X is called *fibrant* if $X \to *$ is a fibration, and *cofibrant* if $\emptyset \to X$ is a cofibration.

Example 8. In the Quillen model structure on the category Set_{Δ} of simplicial sets: (W) The weak equivalences are weak equivalences, i.e., morphisms $K \to L$ such

- that $\pi_0|K| \cong \pi_0|L|$ and $\pi_n(|K|, k) \cong \pi_n(|L|, fk)$ for all n, k.
- (\mathcal{C}) The cofibrations are monomorphisms.
- (\mathcal{F}) The fibrations are Kan fibrations.

 (\mathcal{M}^{cf}) All objects are cofibrant. The fibrant objects are Kan complexes.

Example 9. In a canonical model structure on the category $\mathcal{R}ing_{\Delta}$ of simplicial rings:

- (\mathcal{W}) The weak equivalences are weak equivalences, i.e., morphisms $A \to B$ such that the underlying morphism of simplicial sets $UA \to UB$ is a weak equivalence.
- (\mathcal{C}) A morphism is called *cellular* if it is a colimit of the form

$$A \to B = \operatorname{colim}(A = A(-1) \to A(0) \to A(1) \to \dots)$$

were each morphism is of the form

for some set I_n and morphism g_n . Cofibrations are retracts of cellular morphisms.

 (\mathcal{F}) Recall that $\pi_0 A = \operatorname{coker}(A_1 \xrightarrow{d_0-d_1} A_0)$. A morphism $A \to B$ is a fibration if

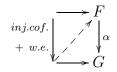
$$A_n \to \pi_0 A \times_{\pi_0 B} B_n$$

is surjective for all n.

 (\mathcal{M}^{cf}) Every simplicial ring is fibrant. Cofibrant simplicial rings were introduced last week.

Example 10 (cf. [HTT, Def.A.3.3.1]). Suppose \mathcal{M} is a model category and I a small category. A morphism $\alpha : F \to G$ in $\operatorname{Fun}_{Cat}(I, \mathcal{M})$ is called:

- 1. a weak equivalence if $\alpha(i): F(i) \to G(i)$ is a weak equivalence for each $i \in I$,
- 2. an *injective cofibration* if $\alpha(i) : F(i) \to G(i)$ is a cofibration for each $i \in I$,
- 3. an *injective fibration* if it has the right lifting property with respect to all γ which are both a weak equivalence and injective cofibration, that is, for every commutative square



there exists a diagonal morphism making two commutative triangles.

- 4. a projective fibration if $\alpha(i) : F(i) \to G(i)$ is a fibration for each $i \in I$.
- 5. an projective cofibration if it has the left lifting property with respect to all γ which are both weak equivalence and projective fibration, that is, for every commutative square

$$\begin{array}{c} F \longrightarrow \\ \alpha \\ \alpha \\ f \end{pmatrix} \xrightarrow{\checkmark} \left| \begin{array}{c} proj.fib \\ + w.e. \end{array} \right|$$

there exists a diagonal morphism making two commutative triangles.

Remark 11. The above example has a simplicial version too, where I and \mathcal{M} are simplicial categories and we consider simplicial functors $\operatorname{Fun}_{\operatorname{Cat}}(I, \mathcal{M})$.

Remark 12. All of the above model categories are combinatorial model categories, cf. [HTT, A.3.3.2]. Indeed, every model category we see in this course will be combinatorial.

Remark 13. There is a very large amount of abstract homotopy theory that we are not mentioning here. Basically, there notion of a model category is an abstraction of many situations where one can "do homotopy theory". In particular, in model categories there is a very robust notion of homotopy equivalence. One consequence of the lifting properties described above is that weak equivalence and homotopy equivalence will agree on the subcategory \mathcal{M}^{cf} of fibrant-cofibrant objects.

Clearly, in general, the cofibrant-fibrant objects¹ in $\operatorname{Fun}(I, \mathcal{M})$ will be difficult to describe, but in some nice cases we can give a complete characterisation.

Exercise 14. Let I be a small category and \mathcal{M} a model category. An easy consequence of the axioms of a model category is :

(*) an object is cofibrant if and only if for every $f : X \to Y$ in $\mathcal{W} \cap \mathcal{F}$, and morphism $A \to Y$, there exists a factorisation $A \dashrightarrow Y$.

For $i \in I$ and a cofibrant object $A \in \mathcal{M}^{cof}$ let $i_!A \in \operatorname{Fun}(I, \mathcal{M})$ be the functor $j \mapsto \bigsqcup_{\hom(i,i)} A$. Show that $i_!A$ is projectively cofibrant. Hint.²

Exercise 15. Recall that for a simplicial set K we wrote $\operatorname{sk}_n K \subseteq K$ for the smallest subsimplicial set containing all non-degenerate *i*-simplicies for $i \leq n$. Admitting the fact that pushouts of cofibrations are cofibrations, and coproducts of cofibrations are cofibrations, show that the canonical morphism

$$\operatorname{sk}_{n-1} N(I_{/-}) \to \operatorname{sk}_n N(I_{/-})$$

in $\operatorname{Fun}(I, \operatorname{Set}_{\Delta})$ is a projective cofibration. Hint.⁴

Exercise 16. Admitting that a colimit $\operatorname{colim}(\emptyset \to A(0) \to A(1) \to \dots)$ of cofibrations is cofibrant, using the previous exercises show that for any small category I, the diagram $i \mapsto N(I_{i})$ in $\operatorname{Fun}(I, \mathcal{S}et_{\Delta})$ is projectively cofibrant.

Example 17. Consider the case $I = \Lambda_2^2$ and $\mathcal{M} = (\mathcal{S}et_\Delta)_{\text{Quillen}}$. An object

$$\begin{array}{c} X_1 \\ \downarrow \\ X_0 \succ X_2 \end{array}$$

in Fun $(\Lambda_2^2, \mathcal{S}et_{\Delta})$ is:

- 1. always injectively cofibrant,
- 2. *injectively fibrant*⁵ if and only if $X_2 \in \mathcal{K}$ an and both morphisms are Kan fibrations.
- 3. projectively cofibrant⁶ if and only if $X_0 \sqcup X_1 \to X_2$ is a monomorphism.
- 4. projectively fibrant if and only if $X_0, X_1, X_2 \in \mathcal{K}$ an.

¹Recall that an object X is *cofibrant* if the canonical morphism $\emptyset \to X$ from the initial object is a cofibration and *fibrant* if the canonical morphism $X \to *$ to the terminal object is a fibration.

²Note that the functor $i_!$ is left adjoint to the evaluation-at-*i* functor i^* : Fun $(I, \mathcal{M}) \to \mathcal{M}$; $p \mapsto p(i)$.

³Use Exercise 14 applied to the cofibrations $\partial \Delta^n \to \Delta^n$.

⁴Note also that every *n*-simplex $(i_n \to \ldots \to i_0 \to i)$ in $N(I_{/i})_n$ can be written uniquely as the image of a simplex of the form $(i_n \to \ldots \to i_0 = i_0)$ in $N(I_{/i_0})_n$. So in particular, $N(I_{/i})_n = \prod_{\hom(i_0,i)} \{(i_n \to \ldots \to i_0 = i_0) \in N(I_{/i_0})_n\}$.

⁵More generally, a morphism $\alpha : X \to Y$ is an injective fibration if and only if $\alpha_2 : X_2 \to Y_2$ is a Kan fibration, and $X_{\varepsilon} \to Y_{\varepsilon} \times_{Y_2} X_2$ are Kan fibrations for $\varepsilon = 0, 1$.

⁶More generally, a morphism $\alpha : A \to B$ is a projective cofibration if and only if $\alpha_{\varepsilon} : A_{\varepsilon} \to B_{\varepsilon}$ are monomorphisms for $\varepsilon = 0, 1$ and $B_0 \sqcup_{A_0} A_2 \sqcup_{A_1} B_1 \to B_2$ is a monomorphism.

 $\begin{array}{c|c} \text{inj.cof.} & \text{no conditions} \\ \text{inj.fib.} & Z \to Y \\ \text{proj.cof.} & X \sqcup Z \to Y \\ \text{proj.fib.} & X, Y, Z \\ \end{array} \right. \text{Kan complexes}$

3 Yoneda

Now we want to construct the Yoneda functor

$$j: C \to \operatorname{Fun}(C^{\operatorname{op}}, N\mathcal{K}\operatorname{an})$$

associated to a quasi-category C.

Construction 18. To begin with note that for any simplicial sets K, L, applying \mathfrak{C} to the canonical projections $K \times L \to K$ and $K \times L \to L$ produces a simplicial functor

$$\Phi: \mathfrak{C}[K \times L] \to \mathfrak{C}[K] \times \mathfrak{C}[L].$$

Construction 19 ([HTT, §5.1.3, pg.317]). Let C be a simplicial set and $\mathfrak{C}[C] \to R\mathfrak{C}[C]$ a categorical equivalence towards a fibrant simplicial category. Consider the simplicial Yoneda functor

$$j: R\mathfrak{C}[C] \to \operatorname{Fun}_{\operatorname{Cat}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \operatorname{Kan})$$

Note that for any fixed object X, the functor j(X) is projectively fibrant because $R\mathfrak{C}[C]$ is fibrant, and projectively cofibrant because it is representable.

Composing the adjoint $j^{\dagger} : R\mathfrak{C}[C]^{\mathrm{op}} \times R\mathfrak{C}[C] \to \mathcal{K}$ an with $\mathfrak{C}[C] \to R\mathfrak{C}[C]$ and Φ we obtain three functors which determine each other by adjunction.

$$\mathfrak{C}[C^{op} \times C] \to \mathfrak{C}[C]^{op} \times \mathfrak{C}[C] \to R\mathfrak{C}[C]^{op} \times R\mathfrak{C}[C] \to \mathcal{K}an \qquad \in \mathcal{C}at_{\Delta}$$
$$C^{op} \times C \to N(\mathcal{K}an) \qquad \in \mathcal{C}at_{\infty}$$
$$C \to \operatorname{Fun}_{\mathcal{S}et_{\Delta}}(C^{op}, N\mathcal{K}an) \qquad \in \mathcal{C}at_{\infty}.$$

The last one of these is the quasi-categorical Yoneda functor.

Theorem 20 ([HTT, 5.1.3.1). Let C be a quasi-category. The Yoneda functor constructed above is fully faithful. Explicitly, for all objects X, Y of C the induced map

$$\operatorname{Map}_{C}^{R}(X,Y) \to \operatorname{Map}_{\operatorname{Fun}(C^{\operatorname{op}},N\mathcal{K}\operatorname{an})}^{R}(jX,jY)$$

is an equivalence.

Sketch of proof. If one follows the adjunctions around, one can see that the Yoneda functor factors as

$$C \xrightarrow{j'} N(\operatorname{Fun}_{\mathcal{C}\mathrm{at}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \mathcal{K}\mathrm{an})^{\operatorname{cf}}) \xrightarrow{j''} \operatorname{Fun}_{\mathcal{S}\mathrm{et}_{\Delta}}(C^{\operatorname{op}}, N\mathcal{K}\mathrm{an}).$$

We claim that both of these are fully faithful. To show j' is fully faithful, it suffices to show that the adjoint

$$\mathfrak{C}[C] \to R\mathfrak{C}[C] \to \operatorname{Fun}_{\mathcal{Cat}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \mathcal{K}an)^{\operatorname{cf}}$$

is fully faithful. The first map is a categorical equivalence by assumption, and the second map is the simplicial Yoneda. To show that j'' is an equivalence is a serious business contained in the following theorem.

Theorem 21 ([HTT, Prop.4.2.4.4]). Let K be a simplicial set, and $u : \mathfrak{C}[C] \to R$ an equivalence of simplicial categories. Then the induced map

$$N(\operatorname{Fun}_{\operatorname{Cat}_{\Delta}}(R, \operatorname{Kan})^{\operatorname{ct}}) \to \operatorname{Fun}_{\operatorname{Set}_{\Delta}}(K, N\operatorname{Kan})$$

is a categorical equivalence of simplicial sets.

Exercise 22. Prove the claim in the proof that the quasi-categorical Yoneda functor $j: C \to \operatorname{Fun}_{Q\operatorname{Cat}}(C^{\operatorname{op}}, N\mathcal{K}\operatorname{an})$ factors through the nerve of the simplicial Yoneda functor $NR\mathfrak{C}[C] \to N\operatorname{Fun}_{\operatorname{Cat}_{\Delta}}(R\mathfrak{C}[C]^{\operatorname{op}}, \mathcal{K}\operatorname{an})^{\operatorname{cf}}$.

Remark 23. One case we are particularly interested in is the case $S = N\mathcal{R}ing_{\Delta}^{cf}$. In this case we can take $u : \mathfrak{C}[S] \to C$ to be the canonical equivalence $\mathfrak{C}[N\mathcal{R}ing_{\Delta}^{cf}] \to \mathcal{R}ing_{\Delta}^{cf}$. Then the theorem says that

$$N \operatorname{Fun}_{\operatorname{Cat}_{\Delta}}(\operatorname{\mathcal{R}ing}_{\Delta}^{\operatorname{cof}}, \operatorname{\mathcal{K}an})^{\operatorname{cof}} \to \operatorname{Fun}_{\operatorname{Set}_{\Delta}}(N \operatorname{\mathcal{R}ing}_{\Delta}^{\operatorname{cof}}, N \operatorname{\mathcal{K}an})$$

is a categorical equivalence. In particular, this says that any derived scheme (which we haven't defined yet) can be represented by a projectively cofibrant simplicial functor $X : \operatorname{Ring}_{\Delta}^{\mathrm{cf}} \to \operatorname{Kan}$. Affine schemes are the corepresentable functors; $\operatorname{Map}_{\operatorname{Ring}_{\Delta}}(A, -)$ with A cofibrant.