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In this lecture we introduce two models for infinity categories—quasi-categories
and simplicial categories—and the adjunction between them. We finish with the
definition of the quasi-category of derived rings, or equivalently, the quasi-category
of affine derived schemes.

1 Quasi-categories

Just as a small category is a directed graph with composable edges, a quasi-category
is a kind of simplicial set.

Definition 1 (Boardman, Vogt, 1973). A quasi-category is a simplicial set K such
that for every 0 < i < n and each diagram

Λn
i

!!

""

K

∆n

##⑤
⑤

⑤
⑤

there exists a (not necessarily unique) dashed arrow making a commutative triangle.
A functor between quasi-categories is a morphism of simplicial sets. That is, the

category of quasi-categories is a full subcategory of the category of simplicial sets

QCat ⊂ Set∆.

Elements of K0 are called objects and elements of K1 are called 1-morphisms,
or often just morphisms. Given two morphisms f, g ∈ K1 such that d0f = d1g
(equivalently, a morphism of simplicial sets Λ2

1 ! K), for any factorisation Λ2
1 !

∆2 σ!!" K, the morphism d1σ ∈ K1 will be called a composition of g and f . For any
object X ∈ K0, the morphism s0X ∈ K1 is called the identity morphism of X, and
written idX .

Example 2. Let C be a small category. Considering the ordered sets [n] as cate-
gories1 the assignment

N : [n] "! Fun([n], C)

sending [n] to the set of functors [n] ! C defines a simplicial set. This is called the
nerve of C.

Explicitly,

1So, for 0 ≤ i, j ≤ n there is exactly one morphism i ! j if i ≤ j, and no morphisms otherwise.
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1. N(C)0 is the set of objects of C,
2. N(C)1 is the set of (all) morphisms in C,
3. The two morphisms N(C)1 ⇒ N(C)0 induced by the two morphisms [0] ⇒ [1]

send morphisms in N(C)1 to their source and target.

(X
f
! Y ) "! X, Y

4. The morphism N(C)0 ! N(C)1 induced by [1] ! [0] sends each object to its
identity morphism.

X "! (X
idX! X)

5. N(C)2 is the set of composable morphisms X
f
! Y

g
! Z.

6. The three maps d0, d1, d2 : N(C)2!!
!
N(C)1 induced by the three monomor-

phisms [1]!!
!
[2] send

f
!

g
! to g, g ◦ f , and f respectively.

Y
g

$$❄
❄❄

❄

X

f %%⑧⑧⑧⑧

g◦f
!! Z

"! (Y
g
! Z), (X

g◦f
! Y ), (X

f
! Y )

7. More generally, N(C)n is the set of sequences of n composable morphisms
f1!

· · · fn
! and the various maps N(C)n ! N(C)m come from various combinations

of composition and inserting identities.

Note that we can completely recover C from N(C). In fact we have a lot of
degenerate information.

Exercise 3. Suppose that C is a simplicial set such that:
1. Each Λ2

1 ! C extends to a unique ∆2 ! C, and
2. Each Λ3

1 ! C extends to some ∆3 ! C.
Show that C canonically determines a category whose set of objects is C0 and set of
morphisms is C1.

Exercise 4 (HTT, Proposition 1.1.2.2). (Difficult) Show that a simplicial set K is
of the form N(C) if and only if for every 0 < i < n and each diagram

Λn
i

!!

""

K

∆n

##⑤
⑤

⑤
⑤

there exists a unique dotted arrow making a commutative triangle.

Example 5. Any Kan complex is an quasi-category. That is, we have fully faithful
inclusions

Set∆ ⊃ QCat ⊃ Kan.

In particular, for any topological space X, the simplicial set SingX is a quasi-
category.
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Exercise 6.
1. Show that every Kan complex is a quasi-category.
2. Show that if K is a Kan complex, then every morphism in K is invertible up

to homotopy in the sense that:

• For everyX
f
! Y inK1 we can find two 2-cells inK2 fitting into a diagram

of the form

Y
g

&&❆
❆❆

❆❆
❆❆

idY !! Y

X
idX

!!

f
##⑦⑦⑦⑦⑦⑦⑦⑦

X
f

##⑦⑦⑦⑦⑦⑦⑦⑦

3. (Harder) Show that if K is a quasi-category satisfying the above property, then
K is a Kan complex. Hint.2

Note that in general, for a topological space X, composition in SingX is not
unique, but any two choices of composition are homotopic. This is a general feature
of ∞-categories.

Exercise 7. Show that in a quasi-category C, any two compositions are “homotopic”
in the sense that if there exist two 2-cells in C2 of the form

g

$$❄
❄❄

❄❄
❄❄

❄
g

$$❄
❄❄

❄❄
❄❄

❄

h
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

h′
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

then there exists a 2-cell of the form

h′

$$❄
❄❄

❄❄
❄❄

❄

h
!!

id
%%⑧⑧⑧⑧⑧⑧⑧⑧

Similarly, in SingX composition is not associative on the nose, but only up to
homotopy.

Exercise 8. Show that composition in a quasi-category C is associative “up to
homotopy” in the sense that if we have 2-cells in C2 of the form

g

$$❄
❄❄

❄❄
❄❄

❄
h

$$❄
❄❄

❄❄
❄❄

❄
hg

$$❄
❄❄

❄❄
❄❄

❄

gf
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

hg
!!

g
%%⑧⑧⑧⑧⑧⑧⑧⑧

(hg)f
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

Then (hg)f is a composition of gf and h. In particular, by Exercise 7, if h(gf) is
any other choice of composition of gf and h, then there is a 2-cell of the form:

h(gf)

$$❄
❄❄

❄❄
❄❄

❄

(hg)f
!!

id
%%⑧⑧⑧⑧⑧⑧⑧⑧

2Start with the case Λ2
0 ! C and work up to Λn

0 by induction. Use opposite categories to deduce
Λn
n from Λn

0 .
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Exercise 9. Recall the nerve functor from Example 2. We will show that the nerve
functor admits a left adjoint.

1. Let C be a quasi-category. Define a relation on 1-morphisms in C by saying
f ∼ g if f is a composition of g and id. That is, if there exists a 2-cell in C2 of
the form

g

$$❄
❄❄

❄❄
❄❄

❄

f
!!

id
%%⑧⑧⑧⑧⑧⑧⑧⑧

Show that this is an equivalence relation.
2. Show that the above equivalence relation preserves composition. That is, sup-

pose that g ∈ C1 is equivalent to g′ ∈ C1, and suppose we have 2-cells of the
following form.

g

$$❄
❄❄

❄❄
❄❄

❄
g′

$$❄
❄❄

❄❄
❄❄

❄

x
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

x′
!!

f
%%⑧⑧⑧⑧⑧⑧⑧⑧

h

$$❄
❄❄

❄❄
❄❄

❄
h

$$❄
❄❄

❄❄
❄❄

❄

y
!!

g
%%⑧⑧⑧⑧⑧⑧⑧⑧

y′
!!

g′
%%⑧⑧⑧⑧⑧⑧⑧⑧

Show that x ∼ x and y ∼ y′. (Use Exercise 7 if necessary).
3. Define hC to be the category whose objects are vertices C0, morphisms are

edges C1 modulo the above equivalence relation, and composition is induced
by composition in C. Show that this is actually a category. That is, show
that it satisfies the identity and associativity axioms. (Use Exercise 8 for
associativity).

4. Show that
h : QCat ! Cat

defines a functor which is left adjoint to N . Hint.3

Definition 10. The category hC defined above is called the homotopy category of

C. A morphism X
f
! Y ∈ C1 in a quasi-category is said to be an equivalence if it

becomes an isomorphism in hC. If such an equivalence exists, we say X and Y are
equivalent.

2 Mapping spaces

We wanted to replace sets with homotopy types, so for any two objects x, y ∈ C0 in
a quasi-category, we should have a homotopy type MapC(x, y) of morphisms. Here
are two models for this homotopy type.

3It suffices to show that hN = id and to give a natural transformation η : id ! Nh such that
h(η) is the identity natural transformation.
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Definition 11. Let C be a quasi-category, and x, y ∈ C0 objects. Define

homR
C(x, y)J = {z : ∆J⊔[0] ! C | z|∆J = x and z|∆0 = y}

where J ⊔ [0] = {j0 < · · · < jn} ⊔ {0} = {j0 < j1 < · · · < jn < 0} and we use x for
the constant morphism ∆J ! ∆0 x

! C. Similarly, define

homL
C(x, y)J = {z : ∆[0]⊔J ! C | z|∆0 = x and z|∆j = y}

where [0] ⊔ J = {0} ⊔ {j0 < · · · < jn} = {0 < j0 < j1 < · · · < jn}.

Exercise 12. Suppose C is a quasi-category and x, y ∈ C0 are objects. Show that
homR

C(x, y) and homL
C(x, y) are Kan complexes.

Exercise 13.
1. Let C be a small category. Show that homR

NC(x, y)J = homC(x, y) for all J .
2. Let X be a topological space and x, y ∈ X two points. Let PX denote the set

homTop(∆
1
top, X) equipped with the compact-open topology4 and PX(x, y) ⊆

homTop(∆
1
top, X) the subspace of maps γ : ∆1

top ! X such that γ(0) = x and
γ(1) = y. Define an isomorphism of simplicial sets

homR
SingX(x, y)

∼= SingPX(x, y).

Definition 14. A morphism C ! D of quasi-categories is:
1. fully faithful if for every pair of objects X, Y ∈ C0 the induced morphism

homR
C(X, Y ) ! homR

D(FX,FY ) is an equivalence of Kan complexes,
2. essentially surjective if hC ! hD is essentially surjective,
3. a categorical equivalence if it is essentially surjective and fully faithful.

Exercise 15. Let F : C ! C ′ be a functor between small categories. Show that
F is an equivalence of categories if and only if F : NC ! NC ′ is an equivalence of
quasi-categories.

2.1 Simplicial categories

References:
[1982 Max Kelly, Basic Concepts of Enriched Category Theory]
[2003 Hirschorn, Model categories and their localisations, Def.9.1.2]
[2012 Lurie, Higher Topos Theory]
Quasi-categories are good for some things but not so good for other things. For

example, proving the Yoneda lemma purely in the context of quasi-categories is
particularly uncomfortable (cf. Cisinski’s book). For such things (i.e., Yoneda)
simplicial categories are much nicer.

Definition 16 ([HTT, Def.1.1.4.1]). A simplicial category C is a category enriched
over Set∆. Explicitly, it is the data of:

4Or indeed, any topology such that homTop(∆
n
top, homTop(∆

1
top, X)) = homTop(∆

n
top×∆1

top, X).
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1. A collection of objects Ob C.
2. For every pair of objects X, Y ∈ Ob C, a simplicial set MapC(X, Y ).
3. For every triple of objects W,X, Y ∈ Ob C a morphism of simplicial sets

− ◦ − : MapC(W,X)×MapC(X, Y ) ! MapC(W,Y ).

These data are required to satisfy:
(Id.) Every object has an identity morphism. That is, for every X ∈ Ob C there is

a vertex idX ∈ Map(X,X)0 such that

∆0 ×Map(X, Y ) !!

{idX}×idMap(X,Y )

Map(X,X)×Map(X, Y ) ◦ !!Map(X, Y )

is the canonical identification ∆0×Map(X, Y ) ∼= Map(X, Y ), and similarly for
Map(W,X)×Map(X,X)!Map(W,X).

(Assoc.) The composition is associative. That is the following diagram of simplicial sets
commutes for any objects W,X, Y, Z.

MapC(W,X)×MapC(X, Y )×MapC(Y, Z) !!

""

MapC(W,Y )×MapC(Y, Z)

""
MapC(W,X)×MapC(X,Z) !!MapC(W,Z)

A simplicial category is called fibrant if all MapC(X, Y ) are Kan complexes.

Example 17. The simplicial category of simplicial sets is defined as follows. Objects
are simplicial sets. Given two simplicial sets K,L the mapping space is defined by

MapSet∆(K,L)n = homSet∆(K ×∆n, L).

The simplicial set structure comes from functoriality in [n] ∈ ∆. Composition is
defined using the diagonal maps ∆n ! ∆n ×∆n. Explicitly, the composition of two
n-cells f : K×∆n ! L and g : L×∆n ! M is

K×∆n diag.
−! K×∆n×∆n f×id∆n

−! L×∆n g
−! M.

Exercise 18. Show that composition in the simplicial category Set∆ satisfies the
identity and associativity axioms.

Exercise 19 ([HTT, Prop.1.2.7.3], [Gabriel-Zisman, 3.1.3]). Let C be a quasi-
category (resp. Kan complex). It turns out [HTT, Cor.2.3.2.4],5 [Gabriel-Zisman,
Prop.2.2] that C satisfies the stronger property:
(*) For every simplicial set K, every 0 < i < n (resp. 0 ≤ i ≤ n), and every

morphism Λn
i ×K ! C there exists a factorisation

Λn
i ×K

""

!! C

∆n ×K

''✈
✈

✈
✈

✈

5This is a result of Joyal.

6



Using this property, show that for any K ∈ Set∆, the simplicial set Map(K,C) is an
quasi-category (resp. Kan complex).

Deduce that the simplicial category of Kan complexes is fibrant.

Exercise 20. Give an example of C,C ′ ∈ QCat such that MapSet∆(C,C
′) is not a

Kan complex.

Like quasi-categories, simplicial categories also have associated categories.

Exercise 21.
1. Let C be a simplicial category. For X, Y ∈ Ob C define homC(X, Y ) =

MapC(X, Y )0. Show that this defines a category. This category is sometimes
denoted C0. Be careful not to confuse this with the set of 0-simplicies of a
simplicial set.

2. (Harder) If K,L are simplicial sets, define a map π0|K|× π0|L| ! π0|K × L|.
Hint.6

3. Let C be a fibrant simplicial category. For X, Y ∈ Ob C define homhC(X, Y ) =
π0|MapC(X, Y )|. Show that this defines a category.

Definition 22. A morphism F : C ! D between two simplicial categories is defined
in the obvious way. We have a map Ob C ! Ob D, for every pair X, Y ∈ Ob C we
have a morphism of simpicial sets MapC(X, Y ) ! MapD(FX,FY ), and these mor-
phisms are required to be compatible with composition and send identity morphisms
to identity morphisms. The category of simplicial categories is denoted Cat∆.

Definition 23 ([HTT, Def.1.1.4.4]). A morphism F : C ! C ′ of simplicial categories
is an equivalence if

1. it is fully faithful in the sense that for everyX, Y ∈ Ob C the map MapC(X, Y ) !
MapC′(FX,FY ) is a weak equivalence of simplicial sets, and

2. it is essentially surjective in the sense that hC ! hC ′ is essentially surjective.

3 Comparing quasi-categories and simplicial cat-

egories

In this section we construct the adjunction

C : QCat ⇄ Cat∆ : N.

As with geometric realisation |− | : Set∆ ⇄ Top : Sing, the strategy is to define
C[∆n] for the quasi-categories ∆n, take the hom out of this functor to define N , and
then observe that N admits a left adjoint, determined by its values on ∆n and the
requirement that it preserve colimits.

6Note that for diagrams X,Y : N ⇒ Top such that for each n, the maps X(n) ! X(n+ 1),
Y (n) ! Y (n+ 1) are inclusions of closed subspaces, we have colimN X(n) × colimN Y (m) ∼=
colimN×N X(n)× Y (m), and homTop(∆

1
top, colimn∈N Xn) = colimn∈N hom(∆1

top, X(n)).
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Definition 24 (Cordier 1982, [HTT, §1.1.5]). Define C[∆n] to be the simplicial
category whose objects are elements of [n] = {0 < · · · < n}. For 0 ≤ i, j ≤ n the
mapping space is the nerve of the partially ordered set

MapC[∆n](i, j) = N

!
{i, j} ⊆ J ⊆ {i, i+1, . . . , j}

"

of subsets J containing i, j and contained in {i, i+1, . . . , j}. Composition

MapC[∆n](i, j)×MapC[∆n](j, k) ! MapC[∆n](i, k)

is induced by union.

Exercise 25. Show that MapC[∆n](i, j) = N [1]j−i−1 where [1]m is the poset

[1]× · · ·× [1]# $% &
m times

= {(ε1, . . . , εm) | εk ∈ {0, 1}}.

That is, show that MapC[∆n](i, j) = ∆1 × · · · ×∆1 is the (j−i−1)-dimensional sim-
plicial cube.

Remark 26. The 0-simplices of MapC[∆n](i, j) can be interpreted as all of the dif-
ferent ways of writing the morphism i ! j in N [n] as a composition

i = k0 ! k1 ! · · · ! km ! km+1 = j,

with kℓ ∕= kℓ+1 (unless i = j). The higher simplicies can be interpreted as homotopies
between these various compositions. See Remark 32 for more details.

Note that C[∆n] is functorial in n, cf.[HTT, Def.1.1.5.3], so we obtain a functor

C[∆−] : ∆ ! Cat∆

Definition 27. The nerve of a simplicial category C is the simplicial set, [HTT,
Def.1.1.5.5],

NC : [n] "! homCat∆(C[∆
n], C).

Here is the main comparison theorem.

Theorem 28 ([HTT, §2.2], [HTT, Prop.1.1.5.10, Thm.2.2.5.1]).
1. The nerve functor admits a left adjoint

C : Set∆ ⇄ Cat∆ : N.

2. The functor N sends fibrant simplicial categories7 to quasi-categories.
3. Both C and N both preserve and reflect categorical equivalences.8

7Recall, a simplicial category if fibrant if all Map are Kan complexes.
8That is, a morphism f in Cat∞ (resp. Cat∆) is a categorical equivalence if and only if C(f)

(resp. N(f)) is a categorical equivalence.
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4. Given C ∈ QCat and X, Y ∈ C0 there exist homotopy equivalences of Kan
complexes

homL
C(X, Y ) ∼= Sing |MapC[C](X, Y )| ∼= MapR

C(X, Y ).

Remark 29.
1. Since the functor C is a left adjoint and we know its values on the representables

∆n, its value on a general simplicial set K is a kind of geometric realisation
C[K] = colim([n],f)∈∆/K

C[∆n].9 This description is usually useless since colimits
(for example coequalisers) in Cat∆ are difficult to describe in general. Only in
some simple cases (e.g. ∂∆n, Λn

i ) something can be said.
2. In [HTT, Thm.2.2.5.1] categorical equivalences of simplicial sets are defined as

those morphisms sent to equivalences under C[−]. So this part of the above
theorem is empty in some sense. However, as we saw above, for quasi-categories
C, the mapping spaces in C[C] can also be computed via other more accessible
models.

Definition 30. The quasi-category of spaces is the nerve of the simplicial category
of Kan complexes.

S := N(Kan).

Remark 31 ([HTT, §1.2.15]). Here we run into Russell’s paradox, the set of all sets
cannot be a set. There are various ways to resolve this. One way is to choose a
Grothendieck universe, or equivalently, a strongly inaccessible cardinal κ. This is a
cardinal such that the category Setκ of sets of cardinality < κ satisfies: if f : X ! Y
is a morphism of sets such that Y ∈ Setκ and all f−1(y) ∈ Setκ then X ∈ Setκ and
{Z ⊆ Y } ∈ Setκ. Then we define Set∆ to be the category of simplicial sets in Setκ,
i.e., (Setκ)∆. In this way it’s not a member of itself.

Remark 32.
1. Elements of S0 are Kan complexes.
2. Elements of S1 are morphisms between Kan complexes.
3. Elements of S2 are tuples

(X0,X1, X2,

X0
f01! X1, X1

f12! X2, X0
f02! X2,

X0 ×∆1 f012! X1)

such that such X0, X1, X2 are Kan complexes and f012 is a simplicial homotopy
from f02 to f12◦f01, in the sense that f012|X0×{0} = f02 and f012|X0×{1} = f12◦f01.

9For this, we also need to know that Cat∆ admits colimits. This follows from abstract nonsense
because it sits in a monadic adjunction Gr∆ ⇄ Cat∆ with the category Gr∆ of simplicial graphs,
i.e., graph objects E ⇒ V in Set∆ such that V is a constant simplicial set. Cf. the Barr-Beck
Theorem.

9



X0

X1

X2

f01 (( f12

))

f02

**f012

++

4. Elements of S3 are tuples

((Xi : 0 ≤ 1 ≤ 3),

(Xi
fij
! Xj : 0 ≤ i < j ≤ 3),

(Xi×∆1 fijk
! Xj : 0 ≤ i < j < k ≤ 3)

(X0×∆1×∆1 f0123! X3)

such X0, X1, X2, X3 are Kan complexes, each of the four fijk satisfies the prop-
erty analogous to f012 above, and f0123 restricted to the four edges ∆1×{ε} ⊂
∆1 ×∆1 and {ε}×∆1 ⊂ ∆1 ×∆1 for ε = 0, 1 correspond to the four fijk.

f03
f023 ,,

f013
-- ..'

'''
'''

'''
''

'''
'''

'''
'''

f23 ◦ f02
f012
--

f13 ◦ f01 f123
,, f23 ◦ f12 ◦ f01

X0

f03

//

f02

0-

f01 &&
X1

f13

**
f12

(( X2
f23 !! X3

,,

-- 1$
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼

--,,

4 The quasi-category of derived rings

Definition 33. The categoryRing∆ of simplicial rings is the category Fun(∆op,Ring)
of functors from ∆op into the category of rings.

Example 34. Every simplicial set determines a simplicial ring via the canonical
free/forgetful adjunction

Z[−] : Set∆ ⇄ Ring∆ : U.

So Z[K]n is the polynomial ring with one variable xk for each element k ∈ Kn.
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Example 35.
1. The simplicial ring Z[∆0] has Z[∆0]n = Z[x] for all n.
2. The simplicial ring Z[∂∆1] has Z[∂∆1]n = Z[xδ1 , xδ0 ] for all n.
3. The simplicial ring Z[∆1] has

Z[∆1]n ∼= Z[xδ1 , xσ1 , . . . , . . . , xσn , xδ0 ],

where σi : [n] ! [1] is the unique surjection with σi(i−1) ∕= σi(i) and δε :
[n] ! [1] is the constant map i "! 1−ε. For p : [m] ! [n] the induced map
Z[∆1]n ! Z[∆1]m sends xq to xq◦p.

Example 36. Suppose that L : C ⇄ D : R is an adjunction. So we have natural
transformations η : LR ! idD and ε : idC ! RL. Define Φ := LR : D !
D. Inserting the counit η : Φ = LR ! idD in the ith place defines a natural
transformation

di : Φ
◦i ◦ Φ ◦ Φ◦n−i ! Φ◦i ◦ idD ◦Φ◦n−i.

for i = 0, . . . , n. On the other hand the unit ε defines a natural transformation

Φ = L idC R ! L(RL)R = Φ ◦ Φ.

Inserting this in the ith place defines natural transformations

si : Φ
◦i ◦ Φ ◦ Φ◦n−i ! Φ◦i ◦ (Φ ◦ Φ) ◦ Φ◦n−i.

for i = 0, . . . , n. Since the two compositions R ! (RL)R = R(LR) ! R and
L ! L(RL) = (LR)L ! L are the identity natural transformation, and every
morphism p : [n] ! [m] of ∆ can be written as a composition of δi’s and σi’s, unique
up to the simplicial identities,10 we get a functor

∆op ! End(D); [n] "! Φ◦n+1

into the category of endofunctors of D. Doing this in the case of the adjunction

Z : Set ⇄ Ring : U

gives a functorial procedure to associate a simplicial ring B ∈ Ring∆ to any ring
A ∈ Ring. So

B0 = Z[UA], B1 = Z[UZ[UA]], B2 = Z[UZ[UZ[UA]]], . . . .

10Recall that δi : [n] ! [n+1] is the unique injection which misses i, and σi : [n+1] ! [n] is the
unique surjection which hits i twice. The simplicial identities are:

δjδi = δiδj−1 i < j

σjδi = δiσj−1 i < j

σjδi = id i = j, j + 1

σjδi = δi−1σj j < i− 1

σjσi = σiσj+1 i ≤ j

11



Notice that each Bn is a polynomial ring over Z, and the degeneracy morphisms
si : Bn ! Bn+1 are all of the form Z[−] applied to some morphism of sets.

Example 37. Colimits in functor categories are computed objectwise. In the cate-
gory of rings, pushout is degreewise tensor product. So if A $ B ! C are morphisms
of simplicial rings the colimit is the simplicial ring with (A⊗B C)n = An ⊗Bn Cn.

Example 38. Let f ∈ Z be any non-zero integer. Consider the morphism Z[∂∆1] !
Z which sends δ1, resp. δ0, to f , resp. 0. Define

Z//f := Z[∆1] ⊗
Z[∂∆0]

Z.

So we have

(Z//f)n ∼=
Z[∆1]n

〈xδ1−f, xδ0〉
∼= Z[xσ1 , . . . , xσn ]

with d0 : (Z//f)n ! (Z//f)n−1 sending xσ1 to 0 and dn : (Z//f)n ! (Z//f)n−1

sending xσn to f .

Definition 39. The normalised chain complex associated to a simplicial ring A is
NAn = ∩n

i=1 ker(di) equipped with differential d0 : NAn ! NAn−1. The homotopy
groups of A are

πnA =
ker(NAn

d0! NAn−1)

im(NAn+1
d0! NAn)

.

where we set NA−1 = 0.
A morphism of simplicial rings is a weak equivalence if it induces isomorphisms

on all homotopy groups.

Exercise 40. Show that Z[∆n] ! Z[∆0] are quasi-isomorphisms for all n.

Exercise 41. Let f ∈ Z be a nonzero integer.
1. Show that π0(Z//f) ∼= Z/f .
2. Show that πn(Z//f) = 0 for n > 0.
3. Show that the canonical morphism

Z//f ! Z/f

is a weak equivalence but there are no morphisms from Z/f to Z//f . Here Z/f
means the constant functor ∆op ! Ring with value Z/f .

Exercise 42. Consider the simplicial replacement A "! B from Example 36. Hint.11

1. Show that π0B ∼= A.
2. Show that πnB ∼= 0 for n > 0.

The category of simplicial rings admits a structure of simplicial category.

11Use the degeneracy morphism s0 : Bn ! Bn+1 and the canonical morphism of sets A ! Z[UA].
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Definition 43. For any simplicial ring A and simplicial set K define a functor

Ring∆ × Set∆ ! Ring∆
(A,K) "! A⊗K

by (A⊗K)n =
'

k∈Kn
An. Note that A⊗ (K × L) = (A⊗K)⊗ L. Setting

Map(A,B)n = hom(A⊗∆n, B).

endows Ring∆ with a structure of simplicial category. Composition is analogous to
Example 17.

At this point, one could try and use the quasi-category associated to the simplicial
category Ring∆, however this does not do the “correct” thing because there are
quasi-isomorphisms in Ring∆ which do not become isomorphisms in the homotopy
category of the simplicial category Ring∆, cf. Example 41.

We have seen this before. Recall that in the category of topological spaces, weak
equivalence also didn’t necessarily imply homotopy equivalence. However there was
a nice subcategory—the category of CW complexes— where these notions did align.
A retract of a CW complex is called a cofibrant topological space. We do the same
thing for simplicial rings.

Topcof ⊆ CW ⊆ Top

Ringcof∆ ⊆ Ringcell∆ ⊆ Ring∆

Definition 44. A simplicial ring is celluar if it is a colimit of the form

A(−1) ! A(0) ! A(1) ! A(2) ! . . .

where A(−1) = Z and for n ≥ 0 the morphism A(n− 1) ! A(n) is a pushout of the
form '

In
Z[∂∆n]

gn !!

""

A(n−1)

""'
In
Z[∆n] !! A(n)

for some set In and morphism gn. Retracts of cellular simplicial rings are called
cofibrant. The full subcategory of cofibrant simplicial rings is written Ringcof∆ .

Note that since pushouts of rings are tensor products, in the above squares we
have A(n)i = (⊗InZ[∆n])i

'
(⊗InZ[∂∆n])i

A(n−1)i.

Exercise 45 (Harder). Suppose A is a cellular simplicial ring. Show that

An
∼= Z[⊔[n]!![k]Ik]

13



where the disjoint union is over all surjections [n] !! [k] in ∆. Hint.12

Show furthermore that for any surjection p : [m] !! [n] the corresponding mor-
phism Ap : An ! Am is the morphism associated to ⊔[n]!![k]Ik ! ⊔[m]!![k]Ik which
sends the ([n] !! [k])th copy of Ik to the ([m] !! [n] !! [k])th copy.

Exercise 46.
1. Suppose that A is a simplicial ring. Let Z[∂∆n] ! A be the morphism which

sends all variables in Z[∂∆n] to zero. Define B := Z[∆n] ⊗
Z[∂∆n]

A. Show that

the canonical map πiA ! πiB is an isomorphism for i < n, and for i = n it is
injective, admits a retraction, and xid[n]

defines a nonzero element of πnB not
in the image of πnA.

2. Suppose that A is a simplicial ring and α ∈ πnA any element with lift α ∈
An. Let Z[∂∆n+1] ! A be the map which sends xδi ∈ Z[∂∆n+1]n to zero for
i < n+ 1 and xδn+1 to α and define B = Z[∆n+1] ⊗

Z[∂∆n+1]
A. Show that the

canonical morphism πiA ! πiB is an isomorphism for i < n, and for i = n is
a surjection sending α to zero.

Exercise 47. Suppose A is a cofibrant simplicial ring and X ! Y any morphism of
simplicial rings such that each Xn ! Yn is surjective. Show that for any morphism
A ! Y there exists a dashed morphism making a commutative triangle

X

""
A !!

##⑦
⑦

⑦
⑦

Y

Definition 48. The quasi-category of derived rings is the nerve of the simplicial
category of cofibrant simplicial rings N(Ringcof∆ ).

12Describe (∂∆k)n ⊆ (∆k)n for n < k and n ≤ k. Using this describe A(k)n for n < k and k ≤ n.
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