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Whatever an ∞-category is, it should have a set of objects, and for every two ob-
jects X, Y a mapping space Map(X, Y ) of morphisms; as opposed to a set hom(X, Y )
of morphisms. Then, for example, a functor will be fully faithful if and only if it
induces a weak equivalence on all mapping spaces.

This week the most urgent goal is to define what space and weak equivalence
means. We will meet simplicial sets, which will also be used to define the category
of quasi-categories—one model for the category of ∞-categories.

More explicitly, the outline is the following.
1. homotopy groups πn(X, x0) and weak equivalences of topological spaces.
2. simplicial sets and the functor Sing : Top  Set∆.
3. geometric realisation | − | : Set∆  Top and weak equivalence of simplicial

sets.
We also discuss:
4. Kan complexes (i.e,. ∞-groupoids) as models for homotopy types, and
5. fibrant, resp. cofibrant, replacement in Set∆, resp. Top.

1 Topological spaces

Definition 1. Let f, g : X  Y be two continuous morphisms between topological
spaces. A homotopy from f to g is a continuous morphism h : X × [0, 1]  Y such
that h(−, 0) = f(−) and h(−, 1) = g(−). If there exists a homotopy from f to g we
write f ∼ g.
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Exercise 2.
1. Show that any two continuous morphisms X  R are homotopic. Give an

example of two continuous morphisms X  Y which are not homotopic.1

2. Show that ∼ is an equivalence relation on the set of continuous morphisms
homTop(X, Y ) between two topological spaces.

3. Show that ∼ is preserved by pre- and post-composition. That is, if f ∼ g then

fa ∼ ga and bf ∼ bg for any continuous W
a
 X, X

f
 Y , X

g
 Y , Y

b
 Z.

Definition 3. The homotopy category hTop has as objects topological spaces and
hom sets homhTop(X, Y ) = homTop(X, Y )/ ∼.

A continuous morphism of topological spaces f : X  Y is a homotopy equiva-
lence if it becomes an isomorphism in hTop. If there exists a homotopy equivalence
from X to Y we say that X and Y are homotopy equivalent.

If X is homotopy equivalent to a singleton {∗} then we say X is contractible.

Exercise 4.
1. Show that Rn is contractible.
2. Give an example of two topological spaces which are not homeomorphic, but

which are homotopy equivalent.
3. Given an example of two topological spaces which are not homotopy equivalent.

Remark 5. There is also a pointed notion of homotopy. A pointed space is a pair
(X, x0) with X a topological space and x0 ∈ X a point. A morphism of pointed
spaces (X, x0)  (Y, y0) is any continuous map f : X  Y such that f(x0) = y0.
We write Top∗ for the category of pointed topological spaces. A homotopy between
morphisms f, g : (X, x0)  (Y, y0) of pointed spaces is a homotopy h : X× [0, 1]  Y

from X
f
 Y to X

g
 Y such that h(x0, t) = y0 for all t ∈ [0, 1]. Exercise 2 can also

be done in the pointed setting.

1Hint: Try X = {0} and Y = {±1}
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Definition 6. The set of path components of a topological space X is

π0(X) = homTop({∗}, X)/ ∼ .

Let Sn := {(x0, . . . , xn) ∈ Rn+1 :


x2
i = 1}. Equipped with e0 := (1, 0, . . . , 0) ∈ Sn

it becomes a pointed space. For n ≥ 0, the nth homotopy group of a pointed
space (X, x0) is the set of morphisms of pointed spaces up to (pointed) homotopy
equivalence

πn(X, x0) = homTop∗((S
n, e0), (X, x0))/ ∼ .

The homotopy groups πn(X, x0) are a way of formalising how many “holes” are
in a topological space.

Remark 7. Note that S0 = {±1} and Sn = ∅ for n < 0.

Example 8.
1. If X is contractible, then πj(X, x0) has one element for all 0 ≤ j and x0 ∈ X.
2. If x0, x1, . . . , xn ∈ R2 are n+1 distinct points, then π1(R2 \ {x1, . . . , xn}, x0) is

the free group on n generators.

3.

πj(S
n, e0) =






{∗} j = 0 < n
{0} 0 < j < n
Z 0 < j = n

major open problem 1 < n ≪ j

4. πj


X×Y, (x0, y0)


∼= πj(X, x0)× πj(Y, y0).

Definition 9 ([HTT, Def.1.1.3.4]). A continuous morphism X  Y of topological
spaces is a weak equivalence if

1. π0(X)  π0(Y ) is an isomorphism, and
2. πj(X, x0)  πj(Y, fx0) is an isomorphism for all x0 ∈ X.

Exercise 10. Show that any homotopy equivalence is a weak equivalence.
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Example 11. There are weak equivalences which are not homotopy equivalences.
Consider the topologists sin curve

X =


(0, y) ∈ R2 | y ∈ R


⊔

(t, sin π

t
) ∈ R2 | t > 0



with points a = (0, 0) and b = (1, 0). There are no continuous surjections X  {a, b}
so the inclusion

{a, b}  X

is a weak equivalence which is not a homotopy equivalence; it has no inverse in hTop.

2 Simplicial sets

Recall that a directed graph consists of a set G0 of verticies a set G1 of edges and
two morphisms

d0, d1 : G1  G0

which associate to each edge e ∈ G1 a source d1e ∈ G0 and a target d0e ∈ G0.
We can generalise this in higher dimensions by allowing “n-dimensional edges”

between “(n−1)-dimensional edges” for all n ∈ N. The information of all these
higher edges and how they are related to each other is organised in the concept of a
simplicial set.

Definition 12. We write ∆ ⊆ LinOrdSet for the full subcategory of the category
LinOrdSet of linearly ordered sets whose objects are finite and non-empty. In other
words, those linearly ordered sets which are isomorphic to [n] = {0 < 1 < · · · < n}
for some n ≥ 0. Morphisms are those morphisms of sets p : [n]  [m] such that
i ≤ j ⇒ p(i) ≤ p(j).

4



The category of simplicial sets Set∆ is the category of functors ∆op  Set, so

Set∆ := PSh(∆)

Given such a functor K : ∆op  Set we write Kn := K([n]). Elements of Kn are
called n-simplicies of K.

Example 13 (∆n). For each n, the functor ∆n := hom∆(−, [n]) : ∆op  Set defines
a simplicial set. By Yoneda’s Lemma, for any K ∈ Set∆,

homSet∆(∆
n, K) ∼= Kn.

Example 14 (SingX). Define

∆n
top :=


(x0, . . . , xn) | 0 ≤ xi ≤ 1;

n

i=0

xi = 1



to be the convex hull of the standard basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0). So ∆0
top

is a point, ∆1
top is a line segment, ∆2

top is a triangle, ∆3
top is a tetrahedron, . . .

Any morphism p : [n]  [m] in ∆ defines an R-linear morphism Rn+1  Rm+1;
ei  ep(i), which restricts to a continuous morphism ∆n

top  ∆m
top. In this way we

get a functor
∆  Top; [n]  ∆n

top

from ∆ to the category of topological spaces. For any other topological space X, the
assignment

SingX : [n]  homTop(∆
n
top, X)

defines a simplicial set. Explicitly,
1. Sing0 X is the set of points of X,
2. Sing1 X is the set of paths in X,
3. Sing2 X is the set of triangles in X,
4. . . .
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Remark 15. The term “singular” refers to the fact that we might have restricted
our attention to smooth manifolds X and smooth maps ∆n

top  X. However, our
maps are only required to be continuous, and we allow any topological space X.

Remark 16. Since the boundary ∂∆n+1
top of ∆n+1

top is homeomorphic to Sn, all homo-
topy groups of X can be recovered from the simplicial set SingX. One can think of
SingX as a combinatorial model of X.

3 Kan complexes

Definition 17. For each 0 ≤ j ≤ n ∕= 0 the face morphism δj : [n−1]  [n] are
defined as the unique injection which does not have j in its image.

0



1



. . . j−1



j

❄
❄❄

❄ j+1

❄
❄❄

❄ . . . n−1

❄
❄❄

❄

0 1 . . . j−1 j j+1 j+2 . . . n

For any simplicial set K : ∆op  Set we have a corresponding morphism

dj : Kn  Kn−1.

These (i.e., δj and dj) are called face morphisms. For σ ∈ Kn we call djσ the jth
face of σ.

Exercise 18. Show that every monomorphism in ∆ is a composition of δj’s.

Exercise 19. Consider the morphism ∆n
top  ∆n+1

top associated to δj. Draw this
morphism for 0 ≤ j ≤ n ≤ 2.

Example 20 (∂∆n). Consider the morphisms of simplicial sets δj : ∆
n−1  ∆n. We

define

∂∆n =
n

j=0

δj(∆
n−1)

as the union of these faces. Explicitly, (∂∆n)j ⊆ (∆n)j = hom∆([j], [n]) is the set of
morphisms [j]  [n] of linearly ordered sets which are not surjective.

Exercise 21. Show that ∂∆n
top = ∪n

j=0δj(∆
n−1
top ) is the boundary of ∆n

top ⊆ Rn+1.

Exercise 22. Let K be a simplicial set.
1. Show that a morphism f : ∂∆n  K of simplicial sets canonically determines

a collection of simplicies k0, k1, . . . , kn ∈ Kn−1 such that we have δ∗i kj = δ∗j−1ki
for i < j.

2. (Harder) Conversely, show that a collection of simplicies k0, k1, . . . , kn ∈ Kn−1

such that we have δ∗i kj = δ∗j−1ki for i < j determines a morphism f : ∂∆n  K
of simplicial sets. Hint.2

2I would do this as follows. Consider the partially ordered set I consisting of those sub-linearly
ordered sets σ ⊆ [n] such that σ ∼= [n−1] or σ ∼= [n−2]. This determines a diagram I  Set∆;
σ  ∆σ. Show that ∂∆n ∼= colimσ∈I ∆

σ, and therefore hom(∂∆n,K) = limσ∈I hom(∆σ,K). Now
use Yoneda hom(∆σ,K) ∼= K|σ|−1.
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Definition 23 (Λn
j ). For 0 ≤ j ≤ n we define the jth horn as the union

Λn
j =



i ∕=j

δi(∆
n−1).

Equivalently, (Λn
j )i ⊆ (∆n)i = hom∆([i], [n]) is the set of those [i]  [n] whose image

does not contain the subset {0, 1, . . . , j−1, j+1, . . . , n}.

Exercise 24. Define Λn+1
top,j =


i ∕=j δi(∆

n
top). Draw Λn

top,j for 0 ≤ j ≤ n ≤ 2.

Exercise 25. Do the Λn
i analogue of Exercise 22.

Definition 26 (Kan fibration). A morphism f : X  Y of simplicial sets is a Kan
fibration if for every 0 ≤ j ≤ n with 0 ∕= n and commutative square

Λn
j





K


∆n 

⑥
⑥

⑥
⑥

L

a dashed morphism exists making two triangles commutative. A simplicial set K is
a Kan complex if the canonical morphism K  ∆0 is a Kan fibration.

Remark 27. Note ∅  Y is a Kan fibration.

Exercise 28. Recall the topological space Λn
top,j =


i ∕=j δi(∆

n−1
top ) from Exercise 24.

Show that for any 0 ≤ j ≤ n there exists a continuous retraction3 ∆n
top  Λn

top,j to
the inclusion Λn

top,j ⊆ ∆n
top. Deduce that for any commutative square

Λn
top,j





X


∆n

top


②
②

②
②

②
{∗}

of topological spaces, there exists a dashed line making commutative triangles.

Example 29. Below we will see that Sing admits a left adjoint | − | with |∆n| =
∆n

top and |Λn
j | = Λn

top,j. Then it follows immediately from Exercise 28 that for any
topological space X the simplicial set SingX is a Kan complex.

Remark 30. One way of thinking about Kan fibrations is as an ∞-groupoid valued
∞-functor from a ∞-directed graph. We will see more about this next week.

1. Note that there is a pushout square

∆0 d1 

d0


∆1



∆1  Λ2
1

3That is, a continuous morphism such that the composition Λn
top,j∆n

topΛn
top,j is the identity.
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So giving a map Λ2
1  K is the same as giving two edges f, g ∈ K1 such that

d0f = d1g. In this way, a map Λ2
1  K can be thought of as a a pair of

composable edges
f


g
. Then for any extension Λ2

1  ∆2  K, the third

edge ∆1 δ1 ∆2  K can be thought of as a choice of composition g ◦ f .
2. We can extend any edge e : ∆1  K to map eε : Λ2

ε  K in two canonical

ways (ε = 0, 2), using the degeneracies ∆1  ∆0
σε/2
 ∆1 e

 K. Then for any

extension Λ2
1  ∆2  K, the edge ∆1

δε/2
 ∆2  K can be thought of as a

choice of left, resp. right, inverse.
3. The higher extensions can be thought of as higher compositions / inverses.
4. If π : X  Y is a Kan fibration, then for every y : ∆0  Y , the fibre ∆0 ×Y X

is a Kan complex.
5. Suppose we have x : ∆0  X and an edge e : ∆1  Y such that πx = σ0e.

The lifting condition applied to Λ1
1 assures a lift ∆1  X  Y , from which

we get x′ : ∆0 σ1 ∆1  X. Choosing a x′ for every x in this way, we get a
map (π−1y)0  (π−1y′)0 (where y, y′ are the endpoints of e). We can think of
this as part of an ∞-functor π−1y  π−1y′ associated to the edge e ∈ Y1.

Just as for topological spaces, we can define the notion of homotopy equivalence
of simplicial sets.

Definition 31. If K,L are two simplicial sets, we get a new simplicial set K ×L by
setting

(K × L)n = Kn × Ln.

Exercise 32.
1. Given [m]  [n] in ∆, describe the associated morphisms of sets (K × L)n 

(K × L)m.
2. LetX, Y be topological spaces and show that Sing(X×Y ) = (SingX)×(Sing Y ).
3. Draw the topological spaces ∆1

top × ∆1
top and ∆1

top × ∆2
top. Describe all non-

degenerate simplices4 in ∆1, ∆2, ∆1 ×∆1 and ∆1 ×∆2.

Definition 33. Let f, g : K  L be two morphisms of simplicial sets. A homotopy
from f to g is a morphism

h : K ×∆1  L

such that h(−, 0) = f(−) and h(−, 1) = g(−). Here, h(−, 0) (resp. h(−, 1)) means
the the composition K ∼= K ×∆0  K ×∆1  L where ∆0  ∆1 corresponds to
[0]  [1]; 0  0 (resp. 0  1).

Exercise 34. Suppose that f, g : X  Y are two continuous morphisms of topo-
logical spaces which are homotopic. Show that Sing f, Sing g : SingX  Sing Y are
homotopic.

4A simplex σ ∈ Kn is called non-degenerate if it is not of the form p∗σ for some surjection
p : [n]  [n−1].
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Remark 35. Unlike Top, being homotopic is not an equivalence relation on hom(K,L)
for general K,L ∈ Set∆ since there is no appropriate morphism of simplicial sets
∆1  Λ2

1. However, we will see below that K is a Kan complex, then simplicial
homotopy does become an equivalence relation on hom(L,K) for any L.

Definition 36. A morphism of simplicial sets K  L is a (Quillen) weak equivalence
if |K|  |L| is a weak equivalence of topological spaces.

4 Geometric realisation

In this section we consider the left adjoint |−| to Sing. To begin with the just assume
it exists, but this existence will follow from the concrete descriptions we obtain.

We will heavily use colimits of topological spaces so to be clear, we recall a
construction.

Definition 37 (Colimits of topological spaces). Let I be a category andX : I  Top
a functor. The colimit of this diagram can be constructed explicitly as follows. The
underlying set of colimi∈I Xi is the colimit taken in the category of sets. That is, it
is the quotient of the disjoint union ⊔i∈IXi by the equivalence relation generated by
xi ∈ Xi is equivalent to xj ∈ Xj if there exists u : i  j in I such that Xu(xi) = xj.

We equip ⊔i∈IXi/ ∼ with the finest topology such that the canonical morphisms
ιi : Xi  ⊔i∈IXi/ ∼ are continuous. Explicitly, a subset U ⊆ ⊔i∈IXi/ ∼ is open if
and only if ι−1

i (U) is open for all i.

Exercise 38. Suppose that Z1, Z2 ⊆ X are two subspaces of a topological space X.
Show that if Z1, Z2 are both closed, then Z1 ∪ Z2 is homeomorphic to Z1 ⊔Z1∪Z2 Z2.
Give an example of subspaces Z1, Z2 ⊆ X (not closed) such that Z1 ∪ Z2 is not
homeomorphic to Z1 ⊔Z1∪Z2 Z2.

Geometric realisation as a colimit of representables. Suppose that the left adjoint
| · | : Set∆  Top exists. Being left adjoint to Sing forces the following properties:

1. Since

homTop(|∆n|,−) = homSet∆(∆
n, Sing−) = (Sing−)n = homTop(∆

n
top,−)

by coYoneda we must have
|∆n| = ∆n

top.

2. Since |− | is a left adjoint it has to preserve colimits;

| colim(−)| = colim |− |

Since every presheaf can canonically be written as a colimit of representables, this
completely determines | − |. Explicitly, given a simplicial set K ∈ Set∆ let ∆/K be
the category whose objects are pairs ([n], k) where n ∈ N and k ∈ Kn; i.e., elements
of ∐NKn. A morphism ([n], k)  ([n′], k′) is a morphism σ : [n]  [n′] such that
Kn′  Kn sends k′ to k. Then K = colim([n],k)∈∆/K

∆n (see Exercise 39) so we must
have

|K| = colim([n],k)∈∆/K
∆n

top.

9



Exercise 39. Let F : Cop  Set be a presheaf of sets. Show that

F = colim c∈Ob C,

hom(−,c)
s
F

homC(−, c)

where the colimit is indexed by the category C/F described above (recall that F (c) ∼=
hom(hom(−, c), F ) by Yoneda’s Lemma).

Exercise 40. Let I be the category associated to the partially ordered set of the sub-
linearly ordered sets of [n] of size n and n−1. Let J be the category obtained from I
by removing the object {0, . . . , j−1, j+1, . . . , n}. Show that ∂∆n

top = colimL∈I ∆
L
top.

Using the fact that |− | preserves colimits deduce that |∂∆n| = ∂∆n
top.

Geometric realisation as a homotopy colimit. In general, any colimit can be writ-
ten as a coequalisers of coproducts , colimi∈I Xi = coeq(⊔

i
u
j∈IXi  ⊔i∈IXi). If we

do this for the above colimit, we getK = coeq


[n]
σ
[m]


k∈Km

∆n 


n∈∆


k∈Kn
∆n



where one morphism sends the kth copy of ∆n to the σ∗kth copy of ∆n, and the
other morphism is the canonical σ : ∆n  ∆m from the kth copy to the kth copy.

So we must have |K| = coeq


[n]
σ
[m]


k∈Km

∆n
top 


n∈∆


k∈Kn

∆n
top


which can

be written as

|K| = coeq






[n]
σ
[m]

Kδ
m ×∆n

top 


n∈∆

Kδ
n ×∆n

top





where Xδ means the set X equipped with the discrete topology. We will see in a few
weeks that this is a model for the homotopy colimit of discrete spaces

hocolim[n]∈∆ Kδ
n

in Top.
As a tower of relative cells complexes. Finally, recall that one defines a simplex

σ ∈ Kn to be degenerate if σ ∈


hom([n],[n−1]) im(Kn−1  Kn) and non-degenerate if
it is not degenerate. Write NKn ⊆ Kn for the set of non-degenerate simplicies of
dimension n, and for n ≥ −1 define sk−1 K = ∅ and let

skn K =


0≤j≤n
σ∈NKj

im(∆j σ
 K) ⊆ K

be the smallest subsimplicial set containing all σ ∈ NKj; j ≤ n. Note that skn is
functorial, and ∂∆n = skn−1 ∆

n. In particular, given any σ ∈ NKn, we have a cor-
responding morphism ∂∆n  skn−1 K. In fact, one sees that there exist cocartesian
squares 

NKn

∂∆n 



skn−1 K


NKn

∆n  skn K.
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We have seen that |∆n| = ∆n
top and by Exercise 40 we have |∂∆n| = ∂∆n

top. Conse-
quently, since |− | preserves all colimits there are cocartesian squares


NKn

∂∆n
top





| skn−1 K|


NKn

∆n
top

 | skn K|.

Morevoer, K =


j≥0 skj K = colim(sk0 K  sk1 K  . . . ) so

|K| = colim


| sk0 K|  | sk1 K|  | sk2 K|  . . .


.

In other words, we obtain |K| be sequentially glueing cells∆n
top along their boundaries

∂∆n
top  | skn−1 K|.

Corollary 41. For K ∈ Set∆ there is a bijection of sets

|K| ∼= K0 ∐



n>0



NKn

(∆n
top)

◦



where (∆n
top)

◦ means the interior of ∆n
top. In particular, a simplex k ∈ Kn is non-

degenerate if and only if the induced continuous morphism (∆n
top)

◦  |K| is injective,
and degenerate if and only if it factors via a linear projection (∆n

top)
◦  (∆m

top)
◦ 

|K| for some m < n and some non-degenerate ∆m  K.

5 (Co)fibrant replacement

To finish we state the following without proof.

Theorem 42.
1. For every K ∈ Set∆, the morphism K  Sing |K| is a weak equivalence.
2. For every X ∈ Top, the morphism | SingX|  X is a weak equivalence.
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3. If K,L are Kan complexes then a morphism K  L is a weak equivalence if
and only if it is a homotopy equivalence.

4. For any simplicial sets K,L a morphism |K|  |L| is a weak equivalence if
and only if it is a homotopy equivalence.

Exercise 43. Show that part 1 of the theorem follows from part 2.

Exercise 44. Kan fibrations don’t just lift through Λn
i  ∆n, but have the stronger

property that they also lift through Λn
i × L  ∆n × L for any simplicial set L,

[Goerss, Jardine, Cor.I.4.3 Cor.I.4.6]. That is, if K  M is a Kan fibration then any
commutative square

Λn
i × L



 K


∆n × L 

✈
✈

✈
✈

✈
M

admits a dashed morphism making commutative triangles. Using this, show that
if K is a Kan complex, then simplicial homotopy is an equivalence relation on
homSet∆(L,K).

Exercise 45. Let Kan ⊆ Set∆ denote the full subcategory of Kan complexes, and
write hKan for the category with the same objects as Kan, and hom sets homotopy
equivalences classes of morphisms homhKan(K,L) = homSet∆(K,L)/ ∼. Consider
the functor

Set∆  hKan; K  Sing |K|.
Using the theorem above show that for any category C, the induced functor

Fun(hKan, C)  Fun(Set∆, C)

is fully faithful and it’s essential image is the category of functors Set∆  C which
send all weak equivalences in Set∆ to isomorphisms in C. In other words, Set∆ 
hKan is the localisation along the class W of weak equivalences.

Set∆[W−1] ∼= hKan.

Here Fun means the category whose objects are functors, and morphisms are natural
transformations.

Definition 46. A CW-complex is a topological space that can be written as X =
colim(X−1  X0  X1  . . . ) such that X−1 = ∅ and for n ≥ 0 the nth transition
morphism is a pushout of the form


In

∂∆n
top

gn 



Xn−1


✤
✤
✤
✤


In

∆n
top

❴❴❴❴ Xn.

for some maps gn and sets In. Write CW ⊆ Top for the full subcategory of CW-
complexes. Note that the geometric realisation of a simplicial set is a CW-complex.
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Exercise 47. The same exercise as above but with CW ⊆ Top instead of Kan⊆Set∆.
So

Top[W−1] ∼= hCW.

Exercise 48. Using the theorem above show that the adjunction (|− |, Sing) induces
an equivalence of categories

hKan ∼= hCW.
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