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The goal of this course will be derived blowups. In this lecture we discuss the
1-categorical version. At the end we paint a picture of the deformation to the normal
cone construction.

1 Blowups of affine schemes

Definition 1. Suppose that R is a ring and I C R an ideal. Similar to P", we define
a presheaf on Aff/r by sending a ring homomorphism R — A to the set

BIRI(A) == {A®@gr [—L}/ ~

of equivalence classes of surjections A ®g [ — L towards an invertible A-module L
assuch that: For each d the morphism induced by I — A ®x I — L factors as!

Symf (1) Sym (L)

\]d//7

As with P, one declares two surjections to be equivalent if there exists an isomor-
phism L = L' of A-modules making a commutative triangle

—
A@RI \L%
\L/

Proposition 2. For any set of generators I = (r)) ea there is a closed immersion
Blpl — P%. Consequently, the presheaf Blpl is a scheme.

Proof. Let R®* — I be the surjection of R-modules induced by the generators
rx. Then for each R — A, the pullback A®* — A ®p I is surjective, and sending
[A®@gr I — L] to [A®* — A®p [ —» L] defines a morphism of presheaves

Blgl — P,

1 Given an A-module M, one defines

SymfflM::(‘:joeliEm My - Q@a M
d N——
d factors

where the colimit is over elements in the symmetric group %4, which acts by permuting the factors
of M®ad,



We claim that this is a closed immersion. First note that it is a monomorphism, since
the outer triangle below is commutative if and only if the inner one is by surjectivity

of (x).

\

APA Z> A@p T

A

L/

Let j Spec(A) — PA be any morphism from an affine, with corresponding epimor-
phism [A®A — L]. We wish to find an isomorphism Spec(A/J) = Blgrl xpa Spec(A)
for some ideal J. Since L is an invertible module, it is projective, so there exists an
isomorphism L @ L' = A®M for some A-module L’ and set M. On the other hand,
choose a surjection from a free module to the kernel of R®* —» I so we get an exact

sequence
/
RON L RN T 0.

Finally, consider the composition ® : A®A — A®A o [ < A®M_ The A-module
morphism @ is represented by a matrix [®]. Let J C A be the ideal generated by the
coefficients of [®]. Since (A/J) ®4 ® = 0 (by definition of .J) we get a factorisation

(A/ D) —= (A} )" —=(A/T) @ ] 0
H (A/)®a® \\V
(A )N —=(A)T)®a L <~ (A/])*M = (A/J)@a (Lo L)

(1)
The surjection (A/J)®4 1 — (A/J)®4 L corresponds to a morphism Spec(A/J) —
BlgI. Moreover, the fact that the composition (A/J)®* — (A/J)@4I — (A/J)@4L
is the pullback of the original A®* — L corresponds to the following square being
commutative.

Spec(A/J) — Spec(A)
| |
Blgl PA

So we have found a morphism
Spec(A/J) — Blrl xps Spec(A).

We claim it is an isomorphism. It is clearly injective since Spec(A/J) — Spec(A)
is injective, so it suffices to show that it is surjective. But this is almost by design.
Suppose

s : Spec(B) — BlgI Xpa Spec(A)

is any morphism. Since Spec(A/J) — Blgrl xpa Spec(A) — Spec(A) are both
monomorphisms, to show that s factors through Spec(A/J), it suffices to show that
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Spec(B) — Spec(A) factors through Spec(A/J). lLe., that the corresponding A — B
sends all elements of J to zero. The original s corresponds to a commutative square

Spec(B) — Spec(A)

| |

Blrl PA

The existence of such a square implies there is a factorisation B®* — B ®@p I --»
B ®4 L. This implies B®Y — B®M is zero (cf. the diagram Eq.(1)), which implies
all coefficients of [®] are zero, which implies all elements of J are sent to zero in
B. O

Example 3.
1. Suppose that the canonical morphism A ® I — A is an isomorphism (e.g.,
A = R[r7']) for some r € I). In this case we are considering surjections
A — L. But any surjection of invertible modules is an isomorphism? so in this
case BlgI(A) consists of a single element [A @ I — A]. In particular, every
r € I, induces an isomorphism

UXXBZR];U

where U — X is the open immersion j Spec(R[r!]) — jSpec(R). In other
words, Blrl — jSpec(R) is an isomorphism outside of the closed subscheme
jSpec(R/I) C jSpec(R).

2. Next, consider the case A = R/I. In this case A ®g I = [/I*. If furthermore
there are ty,...,t. € I that induce an isomorphism [/I* = (R/I)®¢ then
BIgI(R/I) is the set of equivalence classes of quotients of A @p [ = [/I? =
(R/I)®c. That is,

BIRI(R/I) = P~V (R/I).

It follows that, in this case, there is an isomorphism
Z Xx BZR]; Z X]P)C_l

where Z = jSpec(R/I).

The geometric interpretation is as follows. The R/I-module I/I? is the module
of functions on Spec(R) which vanish on R/I, module the relation: f ~ g if
their if their “linear terms” agree. This is called the conormal module. Then
a point x of Blrl over a point z in Z is a “normal direction” to Z at z up to
scalar.

2A homomorphism A — L is an isomorphism if A[f~!] — L[f~!] is an isomorphism for all
elements A[f~!] of a covering family. Choose one which trivialises L. Then we are reduced to
showing that every epimorphism of A-modules A — A is an isomorphism. Morphisms of A-
modules ¢ : A — A are all of the form a — ab for some b, namely, b = ¢(1). Such a ¢ is surjective
if and only if 1 is in the image, i.e., if and only if ab = 1 for some a, i.e., if and only if b is a unit.
But in this case ¢ is invertible with inverse a — ab™!.



3. Suppose that I = (0) is the zero ideal, but R is not the zero ring. Then there
are no surjections A ®z I — L unless A is the zero ring. So in this case
Blgrl = & is the empty sheaf.

2 Strict transform

Definition 4. Let R — R’ be a ring homomorphism, I/ C R an ideal and set
I' := IR'. Then there is a canonical morphism

BlpI' — BIgl

which sends a given R — A and [A ®g I' — L] to the compositions R—R'— A and
ARrI ZAQR R @rl —» A@p I' — L.

Exercise 5. Check that this is well defined and functorial. That is, check that:
1. if Sym}, I’ — L factors through (I’)", then Sym}, [ — L factors through I,
2. given R — A — B, the square

BZR/I/(A) I BZR](A)

| l

BZR/I’(B) — BZR[(B)
commutes.

Exercise 6. Suppose that R — R’ is a flat ring homomorphism. I.e., the functor
M — R'®pr M preserves monomorphisms. Let I C R be an ideal, and set I’ := I R/.
Show that the canonical morphism

BZR/II — Spec(R') X Spec(R) BZRI
is an isomorphism.

Example 7. The morphism
BZR/I/ — Spec(R') X Spec(R) BZRI

is not always an isomorphism. For example, if R = Z[z,y|, [ = (z,y), and R' = Z
(with R-algebra structure x,y — 0) then I’ = (0) so BlgI' = @. However, since
I/I? 2 Z &7 is free, the pullback along Spec(Z) — Spec(Z|x,y]) is P!, as discussed
at the beginning of the lecture.

@ = Blp I —>P' = Spec(R') Xspee(r) Blrl Bigl

T |

Spec(Z) Spec(Zlz, y])
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3 Descent for schemes

We want to define blowups along closed immersions of schemes. We will do this by
a descent argument. We will use the following easy fact.

Exercise 8. Suppose that X is a sheaf and {Uy, — X} ep is a family of open
immersions such that each U, is a scheme and LU, — X is an epimorphism of
sheaves. Show that X is a scheme.

Theorem 9. Write Schr = Sch/gpec(ry for the comma category. The assignment
R — Schg is a 2-functor satisfying excision. That is, for every Zariski covering in
Aft of the form {U — X,V — X}, the canonical functor

D . SCh/X — 2-lim (SCh/U X SCh/V = SCh/W> (2)

s an equivalence of categories. Here W =U xx V.

Proof. To begin with we construct a left adjoint to (2). Suppose that we have
morphisms of schemes Yy — U, Yy — V, Yy — W and an isomorphisms of W-

a b
schemes Yy xg W 2 Yy 2 Yy Xy W. Define Y via the pushout of sheaves
\I’(Yv, Yw, YU, a, b) =Y = YV |—|YW YU-

This is clearly functorial in Y,. Since X =V Ly V it is equipped with a canonical
morphism Y — X. We show that Y is a scheme.

Since Yy and Yy are schemes, it suffices to show that Yy, Yy — Y are open
immersions and Yy LYy — Y is an epimorphism, see Exercise 8. Since Y = Yy Lly,,
Yy, the morphism Yy U Yy — Y is automatically an epimorphism. For the open
immersions, it suffices to show that the two squares

YVHY YU4>Y
V—X U——X
are cartesian. We have
VXXYW%JVXXWXWYW%WXWYWgYW (3)

and similarly, V xx Yy 2 Yy and V xx Yy 2 Yy so
Vv Xx (YV |_|YW YU) = (V Xx YV |—|V><XYW V Xx YU) = (YV |_|YW Yw) = YV

So we have a functor ¥. To conclude it suffices to show that the canonical natural
transformations Yo — id and id — ®WV are ismorphisms. That is, we want to show
that for (Yy, Yy, Yw,a,b) as above, and 7' — X in Sch/x the canonical morphisms

TXXUL]TXX{/[/TXXVHT
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and
Yo =Y xx U
Yy - Y xxV
Yiw =2 Y xx W

are isomorphisms. The first one is true because colimits are universal, and the second
set of three is the same as Eq.(3). O

4 Blowups of schemes

Corollary 10. Let Z — X be a closed immersion of schemes. Then there exists an
X -scheme
Blx Z,

unique up to unique isomorphism, such that for open immersion U := Spec(A) — X
we have an isomorphism

U X x Bl)(Z = BZAI
where Spec(A) X x Z = Spec(A/I), and for every open immersion V = Spec(B) —
Spec(A) = U we have a commutative square

VXX Ble BlBIB

| o

VxyUXx BlxZ —=V xy Blal

where (x) is the canonical morphism from Definition 4.

Proof. Since X = colim AR j Spec(A), by Theorem 9 (and the 2-category version
of the excision theorem from last week) we have

Schy — 2-lim Schy.
Spec(A)—X
open

Above we have constructed:

1. For every A an A-scheme Bl4l,

2. For every open immersion Spec(B) — Spec(A) an isomorphism BlglB =

SpeC(B) X Spec(A) BlA[.

So to finish defining an object of 2-lim Sch 4 we have to show that for open immersions
W —V — U — X with W,V,U affine, the square (below) of isomorphisms is
commutative. Here we write Z;, Zy, Zy for the respective pullbacks of Z — X to
U,V,W. For this it suffices to check that the triangle on the right is commutative.

BleW %74 Xy BZVZV BleW I BZVZV
wW va XU BlUZU—>W XU BZUZU BlUZU
This follows from the definition, Def.4. O



5 Deformation to the normal cone

Suppose that Spec(B) = Spec(A/I) = Z — X = Spec(A) is a closed immersion
of affine schemes. Suppose furthermore, that I/1? = B% for some c. if U =
im(Uqer Spec(A[a™']) — Spec(A) is the open complement to Z, as discussed in
Example 3, we obtain the following cartesian squares

U——BlxZ<~— 7 x P!

L

U X A

Now we consider X x A! = Spec(A[t]) with closed subscheme Z x {0} = Spec(A[t]/J)
where J = T A[t] + tA[t]. One can check that we have J/J? = (I/I?) & B. So this
leads to the cartesian square

BZXXAIZX{0}<— Z x P¢

| |

X x Al Z x {0}

Moreover, we have the zero section sy : X — X x Al and it’s induced square

BleHBlXXAlzX{O}
X X x Al

This square is not cartesian, but the horizontal morphisms are none-the-less closed
immersions. We want to consider the open complement

@X7Z = BZXXAIZX{O} \ Ble

with it’s canonical morphism
T Dx gz — Al

More precisely, Zx 7 is the union of all open immersions V' C Bl 12 x{0} whose
intersection with BlxZ is empty.

This comes equipped with the following closed immersion Z x A! — Px . Since
the ideal tB[t] C BJt] of Z x {0} — Z x A is generated by a single non-zero divisor,
there is an isomorphism ¢B[t] = Blt], so BlgusZ x {0} & Z x Al and we get a
canonical morphism

7 X Al & BlZXAIZ X {O} — BZXXAIZX{O}.
One can check that this doesn’t intersection Z x P¢~! C Z x P° so it factors as

LZZXA1%9X7z.
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By construction, away from {0} C A' the maps Py 7 — Blxxs1Zx{0} — X are
isomorphisms. That is, if we pullback ¢ along A"\ {0} we get the closed immersion
Z x (A*\ {0}) — X x (A'\ {0}). On the other hand, by construction, over {0} we
have a closed immersion of the form Z — Z x A° and one can check that this is the
zero section. So we have the following cartesian squares.

Zx (A'\0)—=Z x Al=——Z x {0}

| .

X x (A1) 0) Dx.z Z x A°
| I
A\ 0 Al {0}

That is, we have “deformed” the closed immersion Z — X into the zero section
7 — 7 x A° of a vector bundle. In fact, all of this works with the weaker assumption
that I/I? is finite rank projective, but not necessarily free, in which case we get the
vector bundle Spec(@® Sym$, I/1?) over Z = Spec(B).

6 Further exercises

Exercise 11 ((Harder) The standard open affine covering). Consider the closed
immersion Blpl — P4 from Proposition 2. Recall from the Schemes lecture that for

each A € A we get an open immersion Ag\{A} — P2, and these form an open affine
covering of P4. This induces an open affine covering

Usea BRI xpn AR — Blgl.
Show that Blgl Xpa AII\%\{)‘} is the affine scheme associated to the ring

S

o=colim(R2 T3 123 )

where the transition morphisms are multiplication by r,. Note that S,, can be
considered as the subring
{% € R[ry'l| meI"}

by assembling the morphisms 1™ — R[ry']; m — 2.
A

Definition 12. As with P", the assignment
O1):[A®rI—L|— L

(where we make a choice in each equivalence class) defines an invertible module on
the presheaf BlgI.



Exercise 13 (The invertible module O(1)). Consider the assignment
O1):[A®r [—L] — L

(where we make a choice in each equivalence class).

Show that O(1) actually is a quasi-coherent module. That is, show that one can
choose an isomorphism ¢, ; : B®4 O(1)(s) = O(1)(sf) for every pair of morphisms
f : Spec(B) — Spec(A) and s € BlgI(A) = hom(Spec(A), Blrl), such that given a
third morphism g : Spec(C') — Spec(B) the square

C @5 B®aO1)(s) —C @4 0(1)(s)

C®B¢s,fl l¢safg

€ &5 0(1)(sf) 5 O(1)(sf0)
commutes.
Example 14. Show that Blyy, . ..(%1,...,%,) admits an open affine covering by
the schemes SpecZ[Z!, ..., ==h oy, =2 L 2n] AT



