Shane Kelly, UTokyo
Autumn Semester 2023-2024

Lecture 5: Blowups

November 2nd 2023

The goal of this course will be derived blowups. In this lecture we discuss the 1-categorical version. At the end we paint a picture of the deformation to the normal cone construction.

1 Blowups of affine schemes

Definition 1. Suppose that R is a ring and $I \subseteq R$ an ideal. Similar to \mathbb{P}^{n}, we define a presheaf on $\mathcal{A f f}_{/ R}$ by sending a ring homomorphism $R \rightarrow A$ to the set

$$
B l_{R} I(A):=\left\{A \otimes_{R} I \rightarrow L\right\} / \sim
$$

of equivalence classes of surjections $A \otimes_{R} I \rightarrow L$ towards an invertible A-module L assuch that: For each d the morphism induced by $I \rightarrow A \otimes_{R} I \rightarrow L$ factors as ${ }^{1}$

$$
\operatorname{Sym}_{R}^{d}(I) \longrightarrow I^{d-\longrightarrow} \operatorname{Sym}_{A}^{d}(L)
$$

As with \mathbb{P}^{n}, one declares two surjections to be equivalent if there exists an isomorphism $L \xrightarrow{\sim} L^{\prime}$ of A-modules making a commutative triangle

Proposition 2. For any set of generators $I=\left\langle r_{\lambda}\right\rangle_{\lambda \in \Lambda}$ there is a closed immersion $B l_{R} I \hookrightarrow \mathbb{P}_{R}^{\Lambda}$. Consequently, the presheaf $B l_{R} I$ is a scheme.

Proof. Let $R^{\oplus \Lambda} \rightarrow I$ be the surjection of R-modules induced by the generators r_{λ}. Then for each $R \rightarrow A$, the pullback $A^{\oplus \Lambda} \rightarrow A \otimes_{R} I$ is surjective, and sending $\left[A \otimes_{R} I \rightarrow L\right]$ to $\left[A^{\oplus \Lambda} \rightarrow A \otimes_{R} I \rightarrow L\right]$ defines a morphism of presheaves

$$
B l_{R} I \rightarrow \mathbb{P}_{R}^{\Lambda}
$$

[^0]where the colimit is over elements in the symmetric group Σ_{d}, which acts by permuting the factors of $M^{\otimes_{A} d}$.

We claim that this is a closed immersion. First note that it is a monomorphism, since the outer triangle below is commutative if and only if the inner one is by surjectivity of $(*)$.

Let $j \operatorname{Spec}(A) \rightarrow \mathbb{P}^{\Lambda}$ be any morphism from an affine, with corresponding epimorphism $\left[A^{\oplus \Lambda} \rightarrow L\right]$. We wish to find an isomorphism $\operatorname{Spec}(A / J) \xrightarrow{\sim} B l_{R} I \times_{\mathbb{P}^{\Lambda}} \operatorname{Spec}(A)$ for some ideal J. Since L is an invertible module, it is projective, so there exists an isomorphism $L \oplus L^{\prime} \cong A^{\oplus M}$ for some A-module L^{\prime} and set M. On the other hand, choose a surjection from a free module to the kernel of $R^{\oplus \Lambda} \rightarrow I$ so we get an exact sequence

$$
R^{\oplus \Lambda^{\prime}} \rightarrow R^{\oplus \Lambda} \rightarrow I \rightarrow 0 .
$$

Finally, consider the composition $\Phi: A^{\oplus \Lambda^{\prime}} \rightarrow A^{\oplus \Lambda} \rightarrow L \hookrightarrow A^{\oplus M}$. The A-module morphism Φ is represented by a matrix $[\Phi]$. Let $J \subseteq A$ be the ideal generated by the coefficients of $[\Phi]$. Since $(A / J) \otimes_{A} \Phi=0$ (by definition of J) we get a factorisation

The surjection $(A / J) \otimes_{A} I \rightarrow(A / J) \otimes_{A} L$ corresponds to a morphism $\operatorname{Spec}(A / J) \rightarrow$ $B l_{R} I$. Moreover, the fact that the composition $(A / J)^{\oplus \Lambda} \rightarrow(A / J) \otimes_{A} I \rightarrow(A / J) \otimes_{A} L$ is the pullback of the original $A^{\oplus \Lambda} \rightarrow L$ corresponds to the following square being commutative.

So we have found a morphism

$$
\operatorname{Spec}(A / J) \rightarrow B l_{R} I \times_{\mathbb{P}_{R}^{\Lambda}} \operatorname{Spec}(A)
$$

We claim it is an isomorphism. It is clearly injective since $\operatorname{Spec}(A / J) \rightarrow \operatorname{Spec}(A)$ is injective, so it suffices to show that it is surjective. But this is almost by design. Suppose

$$
s: \operatorname{Spec}(B) \rightarrow B l_{R} I \times_{\mathbb{P}^{\wedge}} \operatorname{Spec}(A)
$$

is any morphism. Since $\operatorname{Spec}(A / J) \rightarrow B l_{R} I \times_{\mathbb{P}^{\wedge}} \operatorname{Spec}(A) \rightarrow \operatorname{Spec}(A)$ are both monomorphisms, to show that s factors through $\operatorname{Spec}(A / J)$, it suffices to show that
$\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ factors through $\operatorname{Spec}(A / J)$. I.e., that the corresponding $A \rightarrow B$ sends all elements of J to zero. The original s corresponds to a commutative square

The existence of such a square implies there is a factorisation $B^{\oplus \Lambda} \rightarrow B \otimes_{R} I \rightarrow$ $B \otimes_{A} L$. This implies $B^{\oplus \Lambda^{\prime}} \rightarrow B^{\oplus M}$ is zero (cf. the diagram Eq.(1)), which implies all coefficients of $[\Phi]$ are zero, which implies all elements of J are sent to zero in B.

Example 3.

1. Suppose that the canonical morphism $A \otimes_{R} I \rightarrow A$ is an isomorphism (e.g., $A=R\left[r^{-1}\right]$) for some $\left.r \in I\right)$. In this case we are considering surjections $A \rightarrow L$. But any surjection of invertible modules is an isomorphism ${ }^{2}$ so in this case $B l_{R} I(A)$ consists of a single element $\left[A \otimes_{R} I \xrightarrow{\sim} A\right]$. In particular, every $r \in I$, induces an isomorphism

$$
U \times_{X} B l_{R} I \xrightarrow{\sim} U
$$

where $U \rightarrow X$ is the open immersion $j \operatorname{Spec}\left(R\left[r^{-1}\right]\right) \rightarrow j \operatorname{Spec}(R)$. In other words, $B l_{R} I \rightarrow j \operatorname{Spec}(R)$ is an isomorphism outside of the closed subscheme $j \operatorname{Spec}(R / I) \subseteq j \operatorname{Spec}(R)$.
2. Next, consider the case $A=R / I$. In this case $A \otimes_{R} I \cong I / I^{2}$. If furthermore there are $t_{1}, \ldots, t_{c} \in I$ that induce an isomorphism $I / I^{2} \cong(R / I)^{\oplus c}$, then $B l_{R} I(R / I)$ is the set of equivalence classes of quotients of $A \otimes_{R} I \cong I / I^{2} \cong$ $(R / I)^{\oplus c}$. That is,

$$
B l_{R} I(R / I) \cong \mathbb{P}^{c-1}(R / I)
$$

It follows that, in this case, there is an isomorphism

$$
Z \times_{X} B l_{R} I \xrightarrow{\sim} Z \times \mathbb{P}^{c-1}
$$

where $Z=j \operatorname{Spec}(R / I)$.
The geometric interpretation is as follows. The R / I-module I / I^{2} is the module of functions on $\operatorname{Spec}(R)$ which vanish on R / I, module the relation: $f \sim g$ if their if their "linear terms" agree. This is called the conormal module. Then a point x of $B l_{R} I$ over a point z in Z is a "normal direction" to Z at z up to scalar.

[^1]3. Suppose that $I=\langle 0\rangle$ is the zero ideal, but R is not the zero ring. Then there are no surjections $A \otimes_{R} I \rightarrow L$ unless A is the zero ring. So in this case $B l_{R} I \cong \varnothing$ is the empty sheaf.

2 Strict transform

Definition 4. Let $R \rightarrow R^{\prime}$ be a ring homomorphism, $I \subseteq R$ an ideal and set $I^{\prime}:=I R^{\prime}$. Then there is a canonical morphism

$$
B l_{R^{\prime}} I^{\prime} \rightarrow B l_{R} I
$$

which sends a given $R^{\prime} \rightarrow A$ and $\left[A \otimes_{R^{\prime}} I^{\prime} \rightarrow L\right]$ to the compositions $R \rightarrow R^{\prime} \rightarrow A$ and $\left[A \otimes_{R} I \cong A \otimes_{R}^{\prime} R^{\prime} \otimes_{R} I \rightarrow A \otimes_{R^{\prime}} I^{\prime} \rightarrow L\right]$.

Exercise 5. Check that this is well defined and functorial. That is, check that:

1. if $\operatorname{Sym}_{R^{\prime}}^{n} I^{\prime} \rightarrow L$ factors through $\left(I^{\prime}\right)^{n}$, then $\operatorname{Sym}_{R}^{n} I \rightarrow L$ factors through I^{n},
2. given $R^{\prime} \rightarrow A \rightarrow B$, the square

commutes.
Exercise 6. Suppose that $R \rightarrow R^{\prime}$ is a flat ring homomorphism. I.e., the functor $M \mapsto R^{\prime} \otimes_{R} M$ preserves monomorphisms. Let $I \subseteq R$ be an ideal, and set $I^{\prime}:=I R^{\prime}$. Show that the canonical morphism

$$
B l_{R^{\prime}} I^{\prime} \rightarrow \operatorname{Spec}\left(R^{\prime}\right) \times_{\operatorname{Spec}(R)} B l_{R} I
$$

is an isomorphism.
Example 7. The morphism

$$
B l_{R^{\prime}} I^{\prime} \rightarrow \operatorname{Spec}\left(R^{\prime}\right) \times_{\operatorname{Spec}(R)} B l_{R} I
$$

is not always an isomorphism. For example, if $R=\mathbb{Z}[x, y], I=\langle x, y\rangle$, and $R^{\prime}=\mathbb{Z}$ (with R-algebra structure $x, y \mapsto 0$) then $I^{\prime}=\langle 0\rangle$ so $B l_{R^{\prime}} I^{\prime}=\varnothing$. However, since $I / I^{2} \cong \mathbb{Z} \oplus \mathbb{Z}$ is free, the pullback along $\operatorname{Spec}(\mathbb{Z}) \rightarrow \operatorname{Spec}(\mathbb{Z}[x, y])$ is \mathbb{P}^{1}, as discussed at the beginning of the lecture.

3 Descent for schemes

We want to define blowups along closed immersions of schemes. We will do this by a descent argument. We will use the following easy fact.

Exercise 8. Suppose that X is a sheaf and $\left\{U_{\lambda} \rightarrow X\right\}_{\lambda \in \Lambda}$ is a family of open immersions such that each U_{λ} is a scheme and $\sqcup U_{\lambda} \rightarrow X$ is an epimorphism of sheaves. Show that X is a scheme.

Theorem 9. Write $\mathrm{Sch}_{R}=\mathrm{Sch}_{/ \operatorname{Spec}(R)}$ for the comma category. The assignment $R \mapsto \mathrm{Sch}_{R}$ is a 2-functor satisfying excision. That is, for every Zariski covering in $\mathcal{A} f f$ of the form $\{U \rightarrow X, V \rightarrow X\}$, the canonical functor

$$
\begin{equation*}
\Phi: \mathrm{Sch}_{/ X} \rightarrow 2-\lim \left(\mathrm{Sch}_{/ U} \times \mathrm{Sch}_{/ V} \rightrightarrows \mathrm{Sch}_{/ W}\right) \tag{2}
\end{equation*}
$$

is an equivalence of categories. Here $W=U \times_{X} V$.
Proof. To begin with we construct a left adjoint to (2). Suppose that we have morphisms of schemes $Y_{U} \rightarrow U, Y_{V} \rightarrow V, Y_{W} \rightarrow W$ and an isomorphisms of W schemes $Y_{U} \times_{U} W \stackrel{a}{\cong} Y_{W} \stackrel{b}{\cong} Y_{V} \times_{V} W$. Define Y via the pushout of sheaves

$$
\Psi\left(Y_{V}, Y_{W}, Y_{U}, a, b\right):=Y:=Y_{V} \sqcup_{Y_{W}} Y_{U}
$$

This is clearly functorial in Y_{\bullet}. Since $X=V \sqcup_{W} V$ it is equipped with a canonical morphism $Y \rightarrow X$. We show that Y is a scheme.

Since Y_{V} and Y_{U} are schemes, it suffices to show that $Y_{V}, Y_{U} \rightarrow Y$ are open immersions and $Y_{V} \sqcup Y_{U} \rightarrow Y$ is an epimorphism, see Exercise 8. Since $Y=Y_{V} \sqcup_{Y_{W}}$ Y_{U}, the morphism $Y_{V} \sqcup Y_{U} \rightarrow Y$ is automatically an epimorphism. For the open immersions, it suffices to show that the two squares

are cartesian. We have

$$
\begin{equation*}
V \times_{X} Y_{W} \cong V \times_{X} W \times_{W} Y_{W} \cong W \times_{W} Y_{W} \cong Y_{W} \tag{3}
\end{equation*}
$$

and similarly, $V \times_{X} Y_{U} \cong Y_{W}$ and $V \times_{X} Y_{V} \cong Y_{V}$ so

$$
V \times_{X}\left(Y_{V} \sqcup_{Y_{W}} Y_{U}\right) \cong\left(V \times_{X} Y_{V} \sqcup_{V \times_{X} Y_{W}} V \times_{X} Y_{U}\right) \cong\left(Y_{V} \sqcup_{Y_{W}} Y_{W}\right) \cong Y_{V}
$$

So we have a functor Ψ. To conclude it suffices to show that the canonical natural transformations $\Psi \Phi \rightarrow \mathrm{id}$ and id $\rightarrow \Phi \Psi$ are ismorphisms. That is, we want to show that for $\left(Y_{V}, Y_{U}, Y_{W}, a, b\right)$ as above, and $T \rightarrow X$ in Sch $_{/ X}$ the canonical morphisms

$$
T \times_{X} U \sqcup_{T \times_{X} W} T \times_{X} V \rightarrow T
$$

and

$$
\begin{aligned}
Y_{U} & \rightarrow Y \times_{X} U \\
Y_{V} & \rightarrow Y \times_{X} V \\
Y_{W} & \rightarrow Y \times_{X} W
\end{aligned}
$$

are isomorphisms. The first one is true because colimits are universal, and the second set of three is the same as Eq.(3).

4 Blowups of schemes

Corollary 10. Let $Z \rightarrow X$ be a closed immersion of schemes. Then there exists an X-scheme

$$
B l_{X} Z
$$

unique up to unique isomorphism, such that for open immersion $U:=\operatorname{Spec}(A) \rightarrow X$ we have an isomorphism

$$
U \times_{X} B l_{X} Z \cong B l_{A} I
$$

where $\operatorname{Spec}(A) \times_{X} Z=\operatorname{Spec}(A / I)$, and for every open immersion $V=\operatorname{Spec}(B) \rightarrow$ $\operatorname{Spec}(A)=U$ we have a commutative square

where $(*)$ is the canonical morphism from Definition 4.
Proof. Since $X=\operatorname{colim}_{\mathcal{A} f{ }_{/ X}^{\text {open }}} j \operatorname{Spec}(A)$, by Theorem 9 (and the 2-category version of the excision theorem from last week) we have

$$
\operatorname{Sch}_{X} \xrightarrow[\rightarrow]{\sim} \underset{\substack{\text { Spec(A) } \\ \text { open }}}{2-\lim _{X}} \operatorname{Sch}_{A}
$$

Above we have constructed:

1. For every A an A-scheme $B l_{A} I$,
2. For every open immersion $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ an isomorphism $B l_{B} I B \xrightarrow{\sim}$ $\operatorname{Spec}(B) \times_{\operatorname{Spec}(A)} B l_{A} I$.
So to finish defining an object of 2-lim Sch_{A} we have to show that for open immersions $W \rightarrow V \rightarrow U \rightarrow X$ with W, V, U affine, the square (below) of isomorphisms is commutative. Here we write Z_{U}, Z_{V}, Z_{W} for the respective pullbacks of $Z \rightarrow X$ to U, V, W. For this it suffices to check that the triangle on the right is commutative.

This follows from the definition, Def.4.

5 Deformation to the normal cone

Suppose that $\operatorname{Spec}(B)=\operatorname{Spec}(A / I)=Z \rightarrow X=\operatorname{Spec}(A)$ is a closed immersion of affine schemes. Suppose furthermore, that $I / I^{2} \cong B^{\oplus c}$ for some c. if $U=$ $i m\left(\sqcup_{a \in I} \operatorname{Spec}\left(A\left[a^{-1}\right]\right) \rightarrow \operatorname{Spec}(A)\right.$ is the open complement to Z, as discussed in Example 3, we obtain the following cartesian squares

Now we consider $X \times \mathbb{A}^{1}=\operatorname{Spec}(A[t])$ with closed subscheme $Z \times\{0\}=\operatorname{Spec}(A[t] / J)$ where $J=I A[t]+t A[t]$. One can check that we have $J / J^{2} \cong\left(I / I^{2}\right) \oplus B$. So this leads to the cartesian square

Moreover, we have the zero section $s_{0}: X \rightarrow X \times \mathbb{A}^{1}$ and it's induced square

This square is not cartesian, but the horizontal morphisms are none-the-less closed immersions. We want to consider the open complement

$$
\mathscr{D}_{X, Z}:=B l_{X \times \mathbb{A}^{1}} Z \times\{0\} \backslash B l_{X} Z
$$

with it's canonical morphism

$$
\pi: \mathscr{D}_{X, Z} \rightarrow \mathbb{A}^{1}
$$

More precisely, $\mathscr{D}_{X, Z}$ is the union of all open immersions $V \subseteq B l_{X \times \mathbb{A}^{1}} Z \times\{0\}$ whose intersection with $B l_{X} Z$ is empty.

This comes equipped with the following closed immersion $Z \times \mathbb{A}^{1} \rightarrow \mathscr{D}_{X, Z}$. Since the ideal $t B[t] \subseteq B[t]$ of $Z \times\{0\} \rightarrow Z \times \mathbb{A}^{1}$ is generated by a single non-zero divisor, there is an isomorphism $t B[t] \cong B[t]$, so $B l_{Z \times \mathbb{A}^{1}} Z \times\{0\} \cong Z \times \mathbb{A}^{1}$ and we get a canonical morphism

$$
Z \times \mathbb{A}^{1} \cong B l_{Z \times \mathbb{A}^{1}} Z \times\{0\} \rightarrow B l_{X \times \mathbb{A}^{1}} Z \times\{0\}
$$

One can check that this doesn't intersection $Z \times \mathbb{P}^{c-1} \subseteq Z \times \mathbb{P}^{c}$ so it factors as

$$
\iota: Z \times \mathbb{A}^{1} \rightarrow \mathscr{D}_{X, Z}
$$

By construction, away from $\{0\} \subseteq \mathbb{A}^{1}$ the maps $\mathscr{D}_{X, Z} \rightarrow B l_{X \times \mathbb{A}^{1}} Z \times\{0\} \rightarrow X$ are isomorphisms. That is, if we pullback ι along $\mathbb{A}^{1} \backslash\{0\}$ we get the closed immersion $Z \times\left(\mathbb{A}^{1} \backslash\{0\}\right) \rightarrow X \times\left(\mathbb{A}^{1} \backslash\{0\}\right)$. On the other hand, by construction, over $\{0\}$ we have a closed immersion of the form $Z \rightarrow Z \times \mathbb{A}^{c}$ and one can check that this is the zero section. So we have the following cartesian squares.

That is, we have "deformed" the closed immersion $Z \rightarrow X$ into the zero section $Z \rightarrow Z \times \mathbb{A}^{c}$ of a vector bundle. In fact, all of this works with the weaker assumption that I / I^{2} is finite rank projective, but not necessarily free, in which case we get the vector bundle $\operatorname{Spec}\left(\oplus \operatorname{Sym}_{B}^{d} I / I^{2}\right)$ over $Z=\operatorname{Spec}(B)$.

6 Further exercises

Exercise 11 ((Harder) The standard open affine covering). Consider the closed immersion $B l_{R} I \rightarrow \mathbb{P}_{R}^{\Lambda}$ from Proposition 2. Recall from the Schemes lecture that for each $\lambda \in \Lambda$ we get an open immersion $\mathbb{A}_{R}^{\Lambda \backslash\{\lambda\}} \rightarrow \mathbb{P}_{R}^{\Lambda}$, and these form an open affine covering of \mathbb{P}_{R}^{Λ}. This induces an open affine covering

$$
\sqcup_{\lambda \in \Lambda} B l_{R} I \times_{\mathbb{P}_{R}^{\Lambda}} \mathbb{A}_{R}^{\Lambda \backslash\{\lambda\}} \rightarrow B l_{R} I .
$$

Show that $B l_{R} I \times_{\mathbb{P}_{R}^{\Lambda}} \mathbb{A}_{R}^{\Lambda \backslash\{\lambda\}}$ is the affine scheme associated to the ring

$$
S_{r_{\lambda}}:=\operatorname{colim}\left(R \xrightarrow{r_{\lambda}} I \xrightarrow{r_{\lambda}} I^{2} \xrightarrow{r_{\lambda}} \ldots\right)
$$

where the transition morphisms are multiplication by r_{λ}. Note that $S_{r_{\lambda}}$ can be considered as the subring

$$
\left\{\left.\frac{m}{r_{\lambda}^{n}} \in R\left[r_{\lambda}^{-1}\right] \right\rvert\, m \in I^{n}\right\}
$$

by assembling the morphisms $I^{n} \rightarrow R\left[r_{\lambda}^{-1}\right] ; m \mapsto \frac{m}{r_{\lambda}^{n}}$.
Definition 12. As with \mathbb{P}^{n}, the assignment

$$
\mathcal{O}(1):\left[A \otimes_{R} I \rightarrow L\right] \mapsto L
$$

(where we make a choice in each equivalence class) defines an invertible module on the presheaf $B l_{R} I$.

Exercise 13 (The invertible module $\mathcal{O}(1)$). Consider the assignment

$$
\mathcal{O}(1):\left[A \otimes_{R} I \rightarrow L\right] \mapsto L
$$

(where we make a choice in each equivalence class).
Show that $\mathcal{O}(1)$ actually is a quasi-coherent module. That is, show that one can choose an isomorphism $\phi_{s, f}: B \otimes_{A} \mathcal{O}(1)(s) \xrightarrow{\sim} \mathcal{O}(1)(s f)$ for every pair of morphisms $f: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ and $s \in B l_{R} I(A) \cong \operatorname{hom}\left(\operatorname{Spec}(A), B l_{R} I\right)$, such that given a third morphism $g: \operatorname{Spec}(C) \rightarrow \operatorname{Spec}(B)$ the square

commutes.
Example 14. Show that $B l_{\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ admits an open affine covering by the schemes Spec $\mathbb{Z}\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, x_{i}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right] \cong \mathbb{A}^{n}$.

[^0]: ${ }^{1}$ Given an A-module M, one defines

 $$
 \operatorname{Sym}_{A}^{d} M:=\operatorname{colim}_{\sigma \in \Sigma_{d}} \underbrace{M \otimes_{A} \cdots \otimes_{A} M}_{d \text { factors }}
 $$

[^1]: ${ }^{2}$ A homomorphism $A \rightarrow L$ is an isomorphism if $A\left[f^{-1}\right] \rightarrow L\left[f^{-1}\right]$ is an isomorphism for all elements $A\left[f^{-1}\right]$ of a covering family. Choose one which trivialises L. Then we are reduced to showing that every epimorphism of A-modules $A \rightarrow A$ is an isomorphism. Morphisms of A modules $\phi: A \rightarrow A$ are all of the form $a \mapsto a b$ for some b, namely, $b=\phi(1)$. Such a ϕ is surjective if and only if 1 is in the image, i.e., if and only if $a b=1$ for some a, i.e., if and only if b is a unit. But in this case ϕ is invertible with inverse $a \mapsto a b^{-1}$.

