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We use as motivation for the course the fact that algebraic K-theory has excision
for general blowup squares, only if we work with derived schemes.

1 Smooth manifolds

Definition 1 ([BT82, pg.20]). An d-dimensional smooth manifold is a topological
space X equipped with open subsets Uy C X, and homeomorphisms ¢, : R¢ 5 U,
such that UU, = X and for each A, i, the induced homeomorphisms

o (UhNU,) = 6, (UnNT,)
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are defined by C*°-functions.

Example 2.
1. R? with the identity id : R¢ = R4,
2. The spheres S? := {(xg,...,24) € R | S22 = 1} with the charts ¢; :
R — S9 (t1,...,t9) = ———(t1,...,ts5, 1, tit1, ..., tq) and —¢; : RT — S¢

I+ 2
fori=1,...,d.
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3. Projective space RP?. As a set, this is the set of lines L C R%*! containing the
origin. The standard charts ¢; : R — RP? are t — ((t1,...,t;, 1, tii1, ..., tq))
where () ={Az | A€ R} and i =0,...,n.

4. The set Blga{0} of pairs (z, L) € R" x RP"! such that z € L. The standard
charts RY — Ble{O} aret — (tz(th ey tion, 1, tz‘+17td), <(t1, ey tio, 1, tivly .- -

s td)))-



® <(-0,1)>=<(1,0)>
SR
\ —_ <(0,1)>
‘p Bl — RP’
“ <(A\,1)>
“ [}{&2
* ® <(«,1)>=<(1,0)>

Exercise 3. Describe the subsets ¢; ' (U;NU;) C R? in the case of RP? and Blga{0}.
Describe the transition functions ¢; '(U; N U;) — qﬁj_l(Ui N Uj;) in these two cases.

Exercise 4 (Harder). Equip the set Gr(n, k) of k-dimensional subspaces of R with
the structure of a manifold. Hint. Consider determinants of submatricies.

Example 5. Blowups are often used to desingularise things which are not smooth
manifolds. For example, consider the image of the map R — R?; ¢ — (12 — 1,3 —t)
this cannot be a smooth manifold because close to the origin it looks like the axes.
However, it has a canonical lift through the blowup R — Blg2{0} — R? and the
image in Blg2{0} is a smooth manifold.

— — — —picture — — — —

2 Vector bundles
The map
Blga{0} 5 RP*
(x,L) — L

has the special property that each fibre 7=!L has a structure of vector space, and
these vary smoothly as L varies.

Definition 6. A wvector bundle of rank r over a manifold X is map 7 : £ — X
together with a structure vector space on each fibre 7=*{x}, such that there exists
an open covering {U, C X} cp and commutative triangles

7T_1U)\ U, xR"

~N 7

Ux

which are vector space isomorphisms on each fibre.
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Classifying vector bundles is a major question in various areas of mathematics.

Question 7. Given a smooth manifold X, classify the set of isomorphism classes of
vector bundles.

Example 8.

1. For any r we always have the trivial bundle X x R" which we sometimes write
just as R".

2. The tangent space TX — X to any smooth manifold X is a vector bundle.

3. For any two vector bundles 7 : M — X, n’ : M’ — X of ranks r, 7/, the space

M xx M ={(m,m')ye M x M' | m#(m) = «'(m')}
has a canonical structure of vector bundle of rank r 4+ 7/ it is written
M@ M.

4. All vector bundles over S' = {(z,y) € R? | 2% + y* = 1} are of the form
R® - @R ® M where M is the Mobius bundle Blj R? — RP! = S'. Notice
that M & M =~ R2.

5. For a rather complete answer to the classification problem, see [BT82, Prop.23.14].

3 Affine algebraic geometry

In complex geometry and algebraic geometry one allows more general charts.
Definition 9. An affine C-variety is a subset V' C C" of the form
V={ze€C"| filz) =0,..., f(z) =0}

for some polynomials fi,..., f. € Clxy,...,z,]. A morphism of varieties Vi — V5 is
amap 2z +— (g1(2),...,gny(2)) defined by polynomials g1, ..., gn, € Clzy,..., 25,]

Example 10.
1. Cusp = {(z,y) € C* | y* — 2* = 0}
2. Node = {(z,y) € C* | y* — 2*(x + 1) = 0}

Cusp Node



Associated to any affine C-variety V' as above we have the ring of polynomial
functions

Clzy, ...,z
<f17---7fc> .

Moreover, the points of V' are in canonical bijection withhomomorphisms of C-
algebras O(V) — C, and more generally, there is a bijection

OW) =

homyar,o (Vi, V2) & homging  (O(V2), O(VA))
So the modern point of view is to just treat every ring as an affine scheme.

Definition 11. The category of affine schemes is the opposite of the category of
rings.

Aff := Ring®P.
The affine scheme associated to a ring R € Ring® is denoted Spec(R) € Aff.

One can show that a morphism V; — V5 of C-varieties is an open immersion (for
the topology induced from the usual topology on C" = R?") if and only if there exists
f € Clxy, ...,z such that Vi = {& € Vo | f(z) # 0}. Equivalently, if O(V;) =
OV)[f7Y] for some f € O(Vy). Similarly, a family {Uy — V}jea of such open
immersions satisfies V' = UUj, if and only if (f\) = O(V) where O(Uy) = O(V)[f; ]
That is, if there exist gi,...,gm € O(V) and \; such that 1 = fy\,g1 + -+ + fa,, 9m,
cf. the partitions of unity from [BT82, pg.21].

Example 12. The subset U = {z € C | z # 0} C C is the image of the canonical
projection {(z,y) € C* | zy — 1 =0} — C; (z,y) — .

]
-

Note that O(U) = Clz, y]/{zy — 1) = Clz,z7'].

Definition 13. A morphism Spec(A) — Spec(B) of affine schemes is an open immer-
sion if A = B[f~!] for some f € B. A family of open immersions {Spec(B[f;']) —
Spec(B)}aea is a covering family if B = (fy). That is, if the f, generate the unit
ideal.

It is equivalent, and often easier to work with projective modules.



Definition 14. A projective module of rank r over a ring R is an R-module M
such that there exists a covering {Spec(R[f;']) — Spec(R)}rea and isomorphisms
M[f'] = RIf 1% of R[fy']-modules for each .

Exercise 15. Let P be a projective module of rank r over a ring R. Let A =
Sym(P) := &2, Symp P be the free R-algebra generated by P. So Sym}, P is the
quotient of P ®pg --- ®r P by the action of the symmetric group p1 ® -+ ® p, ~
Po1 @+ @ Pon. Show that:
(*) There exists an open covering {Spec(R[f; '])} and isomorphisms ¢, : A[f; '] =
R[f\ Y@, - - ., 7], such that for each A, i, the induced isomorphisms

S =duo by RIS e, 2] = RIS [, 2]

are linear, in the sense that for each A,y we have ¢y, (2;) = a2y + -+ - + a,,
for some a; € R[f,"][f].

Exercise 16 (Harder). Given an R-algebra A satisfying (*) from Exercise 15, show
that there exists a projective module P and an isomorphism A = @9°,Sym}p, P.
Hint. Find a sub-R-module P C A of “homogeneous elements of degree one”. Use
the facts that:
1. Any morphism of R-modules M — A induces a unique R-algebra homomor-
phism Sym(M) — A.
2. A morphism of R-algebras A; — A, is an isomorphism if and only if it induces
isomorphisms A;[f; '] & Ay[fy '] over all R[f; '] in some open covering.

Example 17.

1. For any local ring (e.g., a field) every projective module is free, i.e., of the form
R®".

2. If R is a Noetherian ring of Krull dimension one, then every projective module
is of the form R®"~Y @ L for some projective module L of rank one.

3. If R = Clx,y]/{y* — 2*(x + 1)) is the ring associated to the node, then iso-
morphism classes of rank one projective modules are in bijection with units
C*.

Pic(R) = C*
The module associated to A € C* can be described as {f(t) € C[t] | f(1) =
Af(=1)} C CJ[t] where the R-module structure is via the ring homomorphism
map R — C[t];x — t* — 1,y — t(t* — 1). Geometrically, we are taking the
trivial bundle on the affine line, and glueing the fibre at -1 to the fibre at 1
using .

4. If R = Clz,y]/{y* — x3) is the ring associated to the cusp, then isomorphism
classes of rank one projective modules are in bijection with elements of C.

C = Pic(R).

The module associated to A € C can be described as {>_a;t' € C[t] | a; =
Aag} € C[t] where the R-module structure is via the ring homomorphism map
R — Ctl;z — 2,y — 3.



Question 18. Given a ring R classify the projective modules over R.

As in the case of smooth manifolds, the direct sum of two projective modules
is projective. This makes the set of isomorphism classes of projective modules into
an abelian monoid. It is often nicer to work with a group so one takes the group
completion.

Definition 19. The group Ky(R) is the quotient

_ Z{ projective modules of finite rank }

Ko(R) := ([P® P =[P]+[P])

of the free abelian group generated by isomorphism classes of vector bundles, modulo
the relation [P & P'| = [P] + [P'].

Theorem 20 (Quillen (i > 0), Bass (i < 0)). There ezist functors K; : Ring — Ab
fori € Z such that for every ring R and open covering of the form {Spec(R[f~']), Spec(R[¢])}
there is a long exact sequence

= Ki(R) = Ki(R[f ') @ Ki(Rlg™']) = Ki(R[(f9)™']) = Kina(R) — ...

4 Schemes

Just as smooth manifolds a built by gluing together copies of R™ along open im-
mersions, general schemes are built by gluing together affine schemes along open
immersions. We will explain a precise way of doing this in a later lecture, but for
now, we just note that there exist algebraic versions R", RP", and Blg-{0} for a
general ring R, written A" P" and Bly»{0}. Later we will also see a definition
of vector bundle for schemes. One can also upgrade K-theory to schemes. Using
the property in Theorem 20 one can show that there is a unique! functor on (qcqs)
schemes such that for any open covering of the form {U C X,V C X} there is a
long exact sequence

In addition to the Mayer-Vietoris long exact sequence, K -theory has a number
of other long exact sequences. For example, blowups give rise to one.

Theorem 21 (Thomason). For any ring R there exists a long exact sequence.

cos = Ki(A™) — Ki(Blya{0}) @ K,({0}) = K;(P") — K,_(A") — ...

I Actually, for uniqueness, one probably needs to work with the spectrum K rather than just the
homotopy groups K; = m; K.



More generally, suppose that fi,...,f. € R is a reqular sequence® in a Noetherian
ring and f : Spec(R) = X — A€ the corresponding morphism. Let

F—Y

L

J—X

be the pullback of the blowup square along X — A°. Then there is a long exact
sequence

o Ki(X) > K Ki(Z) = Ki(F) = K 1(X) — ...

The above sequence fails in general if the sequence fi,..., f. is not a regular
sequence. However, we can recover it if we use derived schemes.

Theorem 22 (Kerz, Strunk, Tamme). If one takes the pullback in the sense of
derived schemes, then there is a long exact sequence

o Ki(X) > K(Y)e Ki(Z) = Ki(F) = K 1(X) — ...

for any morphism X — A°.

5 Outline

1. Classical algebraic geometry (~ 4 lectures)

(a) affine schemes, Kéhler differentials, open and closed immersions, schemes,
fibre products of schemes, quasi-coherent sheaves, blow-ups, formal com-
pletions

2. oo-category foundations (~ 4 lectures)

(a) homotopy types (simplicial sets, topological spaces)

(b) oco-categories (quasi-categories, simplicial categories, model categories)

(c) (co)limits in co-categories

3. Derived algebraic geometry (~ 4 lectures)

(a) affine derived schemes

(b) cotangent complex

(c) derived schemes, quasi-coherent sheaves
(d) derived blowups

(e) derived formal completion
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