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We use as motivation for the course the fact that algebraic K-theory has excision
for general blowup squares, only if we work with derived schemes.

1 Smooth manifolds

Definition 1 ([BT82, pg.20]). An d-dimensional smooth manifold is a topological
space X equipped with open subsets Uλ ⊆ X, and homeomorphisms φλ : Rd ∼→ Uλ

such that ∪Uλ = X and for each λ, µ, the induced homeomorphisms

φ−1
λ (Uλ ∩ Uµ)󰁿 󰁾󰁽 󰂀

⊆Rd

∼→ φ−1
µ (Uλ ∩ Uµ)󰁿 󰁾󰁽 󰂀

⊆Rd

are defined by C∞-functions.

Example 2.
1. Rd with the identity id : Rd ∼→ Rd.
2. The spheres Sd := {(x0, . . . , xd) ∈ Rd+1 |

󰁓
x2
i = 1} with the charts φi :

Rd → Sd; (t1, . . . , td) 󰀁→ 1√
1+

󰁓
t2i
(t1, . . . , ti, 1, ti+1, . . . , td) and −φi : Rd → Sd

for i = 1, . . . , d.

3. Projective space RPd. As a set, this is the set of lines L ⊆ Rd+1 containing the
origin. The standard charts φi : Rd → RPd are t 󰀁→ 〈(t1, . . . , ti, 1, ti+1, . . . , td)〉
where 〈x〉 = {λx | λ ∈ R} and i = 0, . . . , n.

4. The set BlRd{0} of pairs (x, L) ∈ Rn × RPn−1 such that x ∈ L. The standard
charts Rd → BlRd{0} are t 󰀁→ (ti(t1, . . . , ti−1, 1, ti+1, td), 〈(t1, . . . , ti−1, 1, ti+1, . . . , td)〉).
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Exercise 3. Describe the subsets φ−1
i (Ui∩Uj) ⊆ Rd in the case of RPd and BlRd{0}.

Describe the transition functions φ−1
i (Ui ∩ Uj) → φ−1

j (Ui ∩ Uj) in these two cases.

Exercise 4 (Harder). Equip the set Gr(n, k) of k-dimensional subspaces of Rn with
the structure of a manifold. Hint. Consider determinants of submatricies.

Example 5. Blowups are often used to desingularise things which are not smooth
manifolds. For example, consider the image of the map R → R2; t 󰀁→ (t2 − 1, t3 − t)
this cannot be a smooth manifold because close to the origin it looks like the axes.
However, it has a canonical lift through the blowup R → BlR2{0} → R2 and the
image in BlR2{0} is a smooth manifold.

−−−− picture−−−−

2 Vector bundles

The map
BlRd{0} π→ RPd

(x, L) 󰀁→ L

has the special property that each fibre π−1L has a structure of vector space, and
these vary smoothly as L varies.

Definition 6. A vector bundle of rank r over a manifold X is map π : E → X
together with a structure vector space on each fibre π−1{x}, such that there exists
an open covering {Uλ ⊆ X}λ∈Λ and commutative triangles

π−1Uλ

󰈗󰈗❋
❋❋

❋❋
❋❋

❋❋
󰈣󰈣 Uλ × Rr

󰉮󰉮✈✈
✈✈
✈✈
✈✈
✈✈

Uλ

which are vector space isomorphisms on each fibre.
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Classifying vector bundles is a major question in various areas of mathematics.

Question 7. Given a smooth manifold X, classify the set of isomorphism classes of
vector bundles.

Example 8.
1. For any r we always have the trivial bundle X ×Rr which we sometimes write

just as Rr.
2. The tangent space TX → X to any smooth manifold X is a vector bundle.
3. For any two vector bundles π : M → X, π′ : M ′ → X of ranks r, r′, the space

M ×X M ′ = {(m,m′) ∈ M ×M ′ | π(m) = π′(m′)}
has a canonical structure of vector bundle of rank r + r′ it is written

M ⊕M ′.

4. All vector bundles over S1 = {(x, y) ∈ R2 | x2 + y2 = 1} are of the form
R⊕ · · ·⊕R⊕M where M is the Möbius bundle Bl{0}R2 → RP1 ∼= S1. Notice
that M ⊕M ∼= R2.

5. For a rather complete answer to the classification problem, see [BT82, Prop.23.14].

3 Affine algebraic geometry

In complex geometry and algebraic geometry one allows more general charts.

Definition 9. An affine C-variety is a subset V ⊆ Cn of the form

V = {z ∈ Cn | f1(z) = 0, . . . , fc(z) = 0}
for some polynomials f1, . . . , fc ∈ C[x1, . . . , xn]. A morphism of varieties V1 → V2 is
a map z 󰀁→ (g1(z), . . . , gn2(z)) defined by polynomials g1, . . . , gn2 ∈ C[x1, . . . , xn1 ].

Example 10.
1. Cusp = {(x, y) ∈ C2 | y2 − x3 = 0}
2. Node = {(x, y) ∈ C2 | y2 − x2(x+ 1) = 0}
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Associated to any affine C-variety V as above we have the ring of polynomial
functions

O(V ) =
C[x1, . . . , xn]

〈f1, . . . , fc〉
.

Moreover, the points of V are in canonical bijection withhomomorphisms of C-
algebras O(V ) → C, and more generally, there is a bijection

homVar/C(V1, V2) ∼= homRing/C(O(V2),O(V1))

So the modern point of view is to just treat every ring as an affine scheme.

Definition 11. The category of affine schemes is the opposite of the category of
rings.

Aff := Ringop.

The affine scheme associated to a ring R ∈ Ringop is denoted Spec(R) ∈ Aff.

One can show that a morphism V1 → V2 of C-varieties is an open immersion (for
the topology induced from the usual topology on Cn ∼= R2n) if and only if there exists
f ∈ C[x1, . . . , xn] such that V1

∼= {x ∈ V2 | f(x) ∕= 0}. Equivalently, if O(V1) ∼=
O(V2)[f

−1] for some f ∈ O(V1). Similarly, a family {Uλ → V }λ∈Λ of such open
immersions satisfies V = ∪Uλ if and only if 〈fλ〉 = O(V ) where O(Uλ) ∼= O(V )[f−1

λ ].
That is, if there exist g1, . . . , gm ∈ O(V ) and λi such that 1 = fλ1g1 + · · · + fλmgm,
cf. the partitions of unity from [BT82, pg.21].

Example 12. The subset U = {x ∈ C | x ∕= 0} ⊆ C is the image of the canonical
projection {(x, y) ∈ C2 | xy − 1 = 0} → C; (x, y) 󰀁→ x.

Note that O(U) = C[x, y]/〈xy − 1〉 ∼= C[x, x−1].

Definition 13. Amorphism Spec(A) → Spec(B) of affine schemes is an open immer-
sion if A ∼= B[f−1] for some f ∈ B. A family of open immersions {Spec(B[f−1

λ ]) →
Spec(B)}λ∈Λ is a covering family if B = 〈fλ〉. That is, if the fλ generate the unit
ideal.

It is equivalent, and often easier to work with projective modules.
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Definition 14. A projective module of rank r over a ring R is an R-module M
such that there exists a covering {Spec(R[f−1

λ ]) → Spec(R)}λ∈Λ and isomorphisms
M [f−1

λ ] ∼= R[f−1
λ ]⊕r of R[f−1

λ ]-modules for each λ.

Exercise 15. Let P be a projective module of rank r over a ring R. Let A =
Sym(P ) := ⊕∞

n=0 Sym
n
R P be the free R-algebra generated by P . So Symn

R P is the
quotient of P ⊗R · · · ⊗R P by the action of the symmetric group p1 ⊗ · · · ⊗ pn ∼
pσ1 ⊗ · · ·⊗ pσn. Show that:
(∗) There exists an open covering {Spec(R[f−1

λ ])} and isomorphisms φλ : A[f−1
λ ]

∼→
R[f−1

λ ][x1, . . . , xr], such that for each λ, µ, the induced isomorphisms

φλµ = φµ ◦ φ−1
λ : R[f−1

λ ][f−1
µ ][x1, . . . , xr]

∼→ R[f−1
µ ][f−1

λ ][x1, . . . , xr]

are linear, in the sense that for each λ, µ we have φλµ(xi) = a1x1 + · · · + arxr

for some ai ∈ R[f−1
µ ][f−1

λ ].

Exercise 16 (Harder). Given an R-algebra A satisfying (∗) from Exercise 15, show
that there exists a projective module P and an isomorphism A ∼= ⊕∞

n=0 Sym
n
R P .

Hint. Find a sub-R-module P ⊆ A of “homogeneous elements of degree one”. Use
the facts that:

1. Any morphism of R-modules M → A induces a unique R-algebra homomor-
phism Sym(M) → A.

2. A morphism of R-algebras A1 → A2 is an isomorphism if and only if it induces
isomorphisms A1[f

−1
λ ] ∼= A2[f

−1
λ ] over all R[f−1

λ ] in some open covering.

Example 17.
1. For any local ring (e.g., a field) every projective module is free, i.e., of the form

R⊕r.
2. If R is a Noetherian ring of Krull dimension one, then every projective module

is of the form R⊕(r−1) ⊕ L for some projective module L of rank one.
3. If R = C[x, y]/〈y2 − x2(x + 1)〉 is the ring associated to the node, then iso-

morphism classes of rank one projective modules are in bijection with units
C∗.

Pic(R) ∼= C∗

The module associated to λ ∈ C∗ can be described as {f(t) ∈ C[t] | f(1) =
λf(−1)} ⊆ C[t] where the R-module structure is via the ring homomorphism
map R → C[t]; x 󰀁→ t2 − 1, y 󰀁→ t(t2 − 1). Geometrically, we are taking the
trivial bundle on the affine line, and glueing the fibre at -1 to the fibre at 1
using λ.

4. If R = C[x, y]/〈y2 − x3〉 is the ring associated to the cusp, then isomorphism
classes of rank one projective modules are in bijection with elements of C.

C ∼= Pic(R).

The module associated to λ ∈ C can be described as {
󰁓

ait
i ∈ C[t] | a1 =

λa0} ⊆ C[t] where the R-module structure is via the ring homomorphism map
R → C[t]; x 󰀁→ t2, y 󰀁→ t3.
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Question 18. Given a ring R classify the projective modules over R.

As in the case of smooth manifolds, the direct sum of two projective modules
is projective. This makes the set of isomorphism classes of projective modules into
an abelian monoid. It is often nicer to work with a group so one takes the group
completion.

Definition 19. The group K0(R) is the quotient

K0(R) :=
Z{ projective modules of finite rank }

〈[P ⊕ P ′] = [P ] + [P ′]〉

of the free abelian group generated by isomorphism classes of vector bundles, modulo
the relation [P ⊕ P ′] = [P ] + [P ′].

Theorem 20 (Quillen (i > 0), Bass (i < 0)). There exist functors Ki : Ring → Ab
for i ∈ Z such that for every ring R and open covering of the form {Spec(R[f−1]), Spec(R[g−1])}
there is a long exact sequence

· · · → Ki(R) → Ki(R[f−1])⊕Ki(R[g−1]) → Ki(R[(fg)−1]) → Ki−1(R) → . . .

4 Schemes

Just as smooth manifolds a built by gluing together copies of Rn along open im-
mersions, general schemes are built by gluing together affine schemes along open
immersions. We will explain a precise way of doing this in a later lecture, but for
now, we just note that there exist algebraic versions Rn, RPn, and BlRn{0} for a
general ring R, written An, Pn, and BlAn{0}. Later we will also see a definition
of vector bundle for schemes. One can also upgrade K-theory to schemes. Using
the property in Theorem 20 one can show that there is a unique1 functor on (qcqs)
schemes such that for any open covering of the form {U ⊆ X, V ⊆ X} there is a
long exact sequence

· · · → Ki(X) → Ki(U)⊕Ki(V ) → Ki(U ∩ V ) → Ki−1(X) → . . .

In addition to the Mayer-Vietoris long exact sequence, K-theory has a number
of other long exact sequences. For example, blowups give rise to one.

Theorem 21 (Thomason). For any ring R there exists a long exact sequence.

· · · → Ki(An) → Ki(BlAn{0})⊕Ki({0}) → Ki(Pn) → Ki−1(An) → . . .

1Actually, for uniqueness, one probably needs to work with the spectrum K rather than just the
homotopy groups Ki = πiK.
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More generally, suppose that f1, . . . , fc ∈ R is a regular sequence2 in a Noetherian
ring and f : Spec(R) = X → Ac the corresponding morphism. Let

E

󰈃󰈃

󰈣󰈣 Y

󰈃󰈃
Z 󰈣󰈣 X

be the pullback of the blowup square along X → Ac. Then there is a long exact
sequence

· · · → Ki(X) → Ki(Y )⊕Ki(Z) → Ki(E) → Ki−1(X) → . . .

The above sequence fails in general if the sequence f1, . . . , fc is not a regular
sequence. However, we can recover it if we use derived schemes.

Theorem 22 (Kerz, Strunk, Tamme). If one takes the pullback in the sense of
derived schemes, then there is a long exact sequence

· · · → Ki(X) → Ki(Y )⊕Ki(Z) → Ki(E) → Ki−1(X) → . . .

for any morphism X → Ac.

5 Outline

1. Classical algebraic geometry (∼ 4 lectures)
(a) affine schemes, Kähler differentials, open and closed immersions, schemes,

fibre products of schemes, quasi-coherent sheaves, blow-ups, formal com-
pletions

2. ∞-category foundations (∼ 4 lectures)
(a) homotopy types (simplicial sets, topological spaces)
(b) ∞-categories (quasi-categories, simplicial categories, model categories)
(c) (co)limits in ∞-categories

3. Derived algebraic geometry (∼ 4 lectures)
(a) affine derived schemes
(b) cotangent complex
(c) derived schemes, quasi-coherent sheaves
(d) derived blowups
(e) derived formal completion
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