Derived Algebraic Geometry Shane Kelly, UTokyo Autumn Semester 2022-2023

When (not if) you find mistakes in these notes, please email me: shanekelly64[at]gmail[dot]com.

This file compiled January 19, 2023

We do everything in the classical case in this lecture but the derived case works verbatim. Replace \mathcal{R} ing with \mathcal{SCR} and \mathcal{S} et with $\mathcal{S} = N\mathcal{G}pd_{\infty}$.

13 Quasi-coherent sheaves

Reference: [SAG, Appendix D]

13.1 Zariski sheaves

Recall that the Zariski topology on \mathcal{R} ing has covering families those $\{A \to B_{\lambda}\}_{\lambda \in \Lambda}$ such that each $A \to B_{\lambda}$ is an open immersion (i.e., $B_{\lambda} \cong A[f_{\lambda}^{-1}]$ for some f_{λ}) and for every field Ω , the morphism $\hom(B_{\lambda}, \Omega) \to \hom(A, \Omega)$ is surjective.

We did not do it, but we have the following nice criterion for when a presheaf is a Zariski sheaf.

Proposition 1. A presheaf $F \in PSh(\operatorname{Ring}^{op})$ is a Zariski sheaf if and only if it satisfies the following two conditions:

1. It sends the zero ring to the one point set.

$$F(0) = \{*\}$$

2. If $\{A \to B, A \to C\}$ is a two element Zariski covering, then the square

$$F(A) \longrightarrow F(B)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(C) \longrightarrow F(B \otimes_A C)$$

is a cartesian square.

13.2 Quasi-coherent sheaves

Definition 2. Suppose that $X \in PSh(\mathcal{R}ing^{op})$ is a presheaf. The Zariski site X_{Zar} of X is the over category category $\mathcal{R}ing_{/X}$ equipped with the induced topology from $\mathcal{R}ing$.

Explicitly, objects are morphisms of presheaves $\operatorname{Spec}(A) \xrightarrow{s} X$, morphisms are commutative triangles $\operatorname{Spec}(B) \to \operatorname{Spec}(A) \to X$, and a family of morphisms

$$\left\{ \begin{array}{c} \operatorname{Spec}(B_{\lambda}) \to \operatorname{Spec}(A) \\ \searrow & \swarrow \\ & \chi \end{array} \right\}$$

is a covering if and only if $\{A \to B_{\lambda}\}$ is a Zariski covering in \mathcal{R} ing.

Example 3. If $X = \operatorname{Spec}(R)$ is representable, then X_{Zar} is equivalent to the undercategory $\operatorname{Ring}_{R/}$ of *R*-algebras. In particular, $\operatorname{Spec}(\mathbb{Z})_{\operatorname{Zar}} \cong \operatorname{Ring}$.

Example 4. The structure sheaf \mathcal{O}_X sends $\operatorname{Spec}(A) \xrightarrow{s} X$ to A considered as an abelian group.

Exercise 5. Show that \mathcal{O}_X is a sheaf.

Definition 6. A presheaf of \mathcal{O}_X -modules is a presheaf on $\mathcal{R}ing_{/X}$ such that each $F(\operatorname{Spec}(A) \xrightarrow{s} X)$ is equipped with a structure of an A-module, and given a ring homomorphism $A \to B$ the group homomorphism

$$F(\operatorname{Spec}(A) \xrightarrow{s} X) \to F(\operatorname{Spec}(B) \xrightarrow{t} X)$$

is A-linear where the target is given the A-module structure induced by $A \rightarrow B$.

A morphism of \mathcal{O}_X -modules is a morphism of presheaves $F \to G$ such that each

 $F(\operatorname{Spec}(A) \xrightarrow{s} X) \to G(\operatorname{Spec}(A) \xrightarrow{s} X)$

is A-linear.

A presheaf of \mathcal{O}_X -modules is *quasi-coherent* if the induced morphisms

 $B \otimes_A F(\operatorname{Spec}(A) \xrightarrow{s} X) \to F(\operatorname{Spec}(B) \xrightarrow{t} X)$

are isomorphisms. We will write

 QC_X

for the category of quasi-coherent sheaves on a presheaf $X \in PSh(\mathcal{R}ing^{op})$.

Exercise 7. Suppose $X \in PSh(\mathcal{R}ing^{op})$ is a presheaf and $\mathcal{F} \in QC_X$ a quasi-coherent presheaf of \mathcal{O}_X -modules. Show that \mathcal{F} is a sheaf.

Exercise 8. Suppose $X = \operatorname{Spec}(R)$ is a representable presheaf. Show that the assignment Ω : $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ to $\Omega_{A/R}$ has a canonical structure of quasi-coherent sheaf of \mathcal{O}_X -modules.

Exercise 9. Suppose X = Spec(R) is a representable presheaf. Show that there is a canonical equivalence of categories

$$\operatorname{QC}_{\operatorname{Spec}(R)} \cong R\operatorname{-mod}.$$

Exercise 10. Let $X \in PSh(\mathcal{R}ing^{op})$ be a presheaf and suppose that $\{\mathcal{F}_{\lambda}\}_{\lambda \in \Lambda}$ is a family of sheaves of \mathcal{O}_X -modules. Show that the assignment sending $Spec(A) \xrightarrow{s} X$ to $\bigoplus_{\lambda \in \Lambda} \mathcal{F}_{\lambda}(s)$ has a structure of quasi-coherent sheaf of \mathcal{O}_X -modules.

Exercise 11. Let $X \in PSh(\mathcal{R}ing^{op})$ be a presheaf and suppose that $\mathcal{F} \to \mathcal{G}$ is a morphism of quasi-coherent sheaves of \mathcal{O}_X -modules. Show that the assignment sending $Spec(A) \xrightarrow{s} X$ to $coker(\mathcal{F}(s) \to \mathcal{G}(s))$ has a structure of quasi-coherent sheaf of \mathcal{O}_X -modules.

Remark 12. In general, a category of sheaves Shv(C) considered as a subcategory of PSh(C) is closed under limits but no colimits. The above exercises show that QC_X is special.

13.3 Glueing modules

Definition 13. Let $\{A \to B, A \to C\}$ be a two element Zariski covering in \mathcal{R} ing. Define DD to be the category whose objects are triples (M_B, M_C, ϕ) where

- 1. M_B is a *B*-module,
- 2. M_C is a C-module, and
- 3. ϕ is an isomorphism $M_B \otimes_B (B \otimes_A C) \xrightarrow{\sim} M_C \otimes_C (C \otimes_A B)$.

A morphism $(M_B, M_C, \phi) \to (N_B, N_C, \psi)$ of DD is a pair (f_B, f_C) where

- 1. f_B is a morphism of *B*-modules,
- 2. f_C is a morphism of C-modules, and
- 3. the induced square

is commutative.

Note that there are canonical functors

A-mod $\rightarrow DD;$ $M \mapsto (M \otimes_A B, M \otimes_A C, \phi)$

where ϕ is the canonical isomorphism

$$M \otimes_A B \otimes_B (B \otimes_A C) \xrightarrow{\sim} M \otimes_A C \otimes_C (C \otimes_A B)$$

and

$$DD \to A\text{-mod}; \qquad (M_B, M_C, \phi) \mapsto M_B \times_{M_C \otimes_C (C \otimes_A B)} M_C$$

where the morphism $M_B \to M_C \otimes_C (C \otimes_A B)$ is induced by ϕ .

Exercise 14. Show that the two functors defined in Def.?? are inverse equivalences of categories. Hint.¹ Hint.² Hint.³

¹Note that $0 \to M \to M \otimes_A B \times M \otimes_A C \to M \otimes_A B \otimes_A C$ is an exact sequence for any A-module M.

²Note that since $A \to B$ is an open immersion $-\otimes_A B$ preserves finite limits and finite colimits. The same is true for $-\otimes_A C$.

³Note that since $A \to B$, $A \to C$ are open immersions, we have $B \otimes_A B \cong B$ and $C \otimes_A C \cong C$.

Remark 15. One can show that the category DD is actually a model for the fibre product

 $B\operatorname{-mod} \times^{L}_{B\otimes_{A}C\operatorname{-mod}} C\operatorname{-mod}$

in the ∞ -category of ∞ -categories. So the Exercise 14 essentially says that the "presheaf" $A \mapsto A$ -mod of categories is a Zariski sheaf. We put "presheaf" in quotes because this assignment is only functorial up to the canonical isomorphisms $C \otimes_B B \otimes_A - \cong C \otimes_A -$. We will come back to this problem later.

13.4 Glueing presheaves

Suppose that $f: Y \to X \in PSh(\mathcal{R}ing^{op})$ is a representable morphism of presheaves. By definition, for every $Spec(A) \to X$ the pullback $Y \times_X Spec(A)$ is representable, so we obtain a functor $X_{Zar} \to Y_{Zar}$. As such we obtain an adjunction

$$f^* : \operatorname{PSh}(X_{\operatorname{Zar}}) \rightleftharpoons \operatorname{PSh}(Y_{\operatorname{Zar}}) : f_*$$

Since $X_{\text{Zar}} \to Y_{\text{Zar}}$ has the left adjoint sending $\text{Spec}(B) \to Y$ to the composition $\text{Spec}(B) \to Y \to X$, this adjunction is particularly easy to describe.

1. f_* is composition with pullback $X_{\text{Zar}} \to Y_{\text{Zar}}$ (this is always true).

2. f^* is composition with "composition" $Y_{\text{Zar}} \to X_{\text{Zar}}$.

It is not too hard to show that both pullback $X_{\text{Zar}} \to Y_{\text{Zar}}$ and composition $Y_{\text{Zar}} \to X_{\text{Zar}}$ send Zariski coverings to Zariski coverings, and so both f^* and f_* preserve Zariski sheaves. That is, the induced adjunction

$$f^* : \operatorname{Shv}(X_{\operatorname{Zar}}) \rightleftharpoons \operatorname{Shv}(Y_{\operatorname{Zar}}) : f_*$$

has the same description as above.

Exercise 16. Show that the functor $X_{\text{Zar}} \to Y_{\text{Zar}}$ sends covering families to covering families.

Exercise 17. Show that f^* and f_* send quasi-coherent sheaves to quasi-coherent sheaves.

Now we upgrade the above descent theorem to the presheaf setting.

Definition 18. Let $\{U \to X, V \to X\}$ is a pair of representable open immersions of presheaves such that for every field Ω the map $U(\Omega) \sqcup V(\Omega) \to X(\Omega)$ is surjective. We will use the Cartesian square

$$\begin{array}{c|c} W & \stackrel{\iota}{\longrightarrow} V \\ & \downarrow & & \downarrow \\ & & \downarrow \\ V & \stackrel{\iota}{\longrightarrow} X \end{array}$$

Define DD to be the category whose objects are triples $(\mathcal{F}_U, \mathcal{F}_V, \phi)$ where

- 1. \mathcal{F}_U is a sheaf on U_{Zar} ,
- 2. \mathcal{F}_V is a sheaf on V_{Zar} , and
- 3. ϕ is an isomorphism $\kappa^* \mathcal{F}_U \xrightarrow{\sim} \iota^* \mathcal{F}_V$.
- A morphism $(\mathcal{F}_U, \mathcal{F}_V, \phi) \to (\mathcal{G}_U, \mathcal{G}_V, \psi)$ of DD is a pair (f_U, f_V) where
 - 1. f_U is a morphism of sheaves on U_{Zar} ,
 - 2. f_V is a morphism of sheaves on V_{Zar} , and
 - 3. the induced square

$$\kappa^* \mathcal{F}_U \longrightarrow \iota^* \mathcal{F}_V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\kappa^* \mathcal{G}_U \longrightarrow \iota^* \mathcal{G}_V$$

is commutative.

Note that there are canonical functors

$$\operatorname{Shv}(X_{\operatorname{Zar}}) \to DD; \qquad \mathcal{F} \mapsto (i^* \mathcal{F}, k^* \mathcal{G}, \phi)$$

where ϕ is the canonical isomorphism

$$\kappa^* \iota^* \xrightarrow{\sim} \iota^* k^*$$

and

$$DD \to \text{Shv}(X_{\text{Zar}}); \qquad (\mathcal{F}_U, \mathcal{F}_V, \phi) \mapsto i_* \mathcal{F}_U \times_{k_* \iota_* \iota^* \mathcal{F}_V} k_* \mathcal{F}_V$$

where the morphism $i_*\mathcal{F}_U \to k_*\iota_*\iota^*\mathcal{F}_V$ is the morphism

$$i_*\mathcal{F}_U \to i_*\kappa_*\kappa^*\mathcal{F}_U = k_*\iota_*\kappa^*\mathcal{F}_U \xrightarrow{\phi} k_*\iota_*\iota^*\mathcal{F}_V.$$

13.5 Cotangent sheaf

Definition 19 ([DAG, pg.35]). Let $X \in PSh(\mathcal{R}ing^{op})$ be a functor, and $Spec(A) \xrightarrow{s} X$ a morphism of presheaves. Consider the functor that sends an A-module M to the set of factorisations

$$\Omega_X(s,-): A \operatorname{-mod} \to \mathcal{S}et; \qquad M \mapsto \left\{ \begin{array}{c} \operatorname{Spec}(A) \xrightarrow{s} X \\ \pi \\ \\ \operatorname{Spec}(A \oplus M) \end{array} \right\}$$

where $\pi : A \oplus M \to A$ is the canonical projection. If this functor is corepresentable by an A-module, we will write $\Omega_X(s)$ for this A-module. That is,

$$\hom_{A\operatorname{-mod}}(\Omega_X(s), M) = \{\operatorname{Spec}(A \oplus M) \xrightarrow{\iota} X \mid t \circ \pi = s\}$$

functorially in M.

Exercise 20. Suppose that X = Spec(R) is an affine scheme. Show that all $\Omega_X(s, -)$ are representable.

Exercise 21. Suppose that $X \in PSh(\mathcal{R}ing^{op})$ is a functor for which all $\Omega_X(s, -)$ are representable. Show that the assignment

$$\Omega_X : \operatorname{Spec}(A) \xrightarrow{s} X \mapsto \Omega_X(s)$$

has a canonical structure of presheaf of \mathcal{O}_X -modules. That is, show that every commutative triangle $t : \operatorname{Spec}(B) \to \operatorname{Spec}(A) \xrightarrow{s} X$ of presheaves induces a morphism $B \otimes_A \Omega_X(s) \to \Omega_X(t)$ of *B*-modules, and this assignment is compatible with composition and identities. Hint.⁴ Hint.⁵

Definition 22. Suppose $X \in PSh(\mathcal{R}ing^{op})$ is a functor. We say X admits a cotangent sheaf if all $\Omega_X(s, -)$ are representable, and Ω_X is a quasi-coherent sheaf. That is, if all comparison morphisms

$$B \otimes_A \Omega_X(s) \to \Omega_X(t)$$

are isomorphisms.

Exercise 23. Suppose that X = Spec(R) is an affine scheme. Show that Spec(A) admits a cotangent sheaf.

Definition 24. Recall that a separated scheme is a presheaf $X \in PSh(\mathcal{R}ing^{op})$ that admits an open affine covering $\{U_{\lambda} \to X\}_{\lambda \in \Lambda}$. If X admits an open affine covering where Λ is finite, then we say that X is *quasi-compact*.

Proposition 25. Suppose that X is a quasi-compact separated scheme. Then X admits a cotangent sheaf.

Proof. We work by induction on the size of open affine covering that X admits. If X admits an open affine covering of size one, then it is representable, and the result is Exercise 23. Suppose all schemes admitting open affine coverings of size n admit cotangent sheaves, and let X be a scheme admitting an open affine covering of size n + 1, say $\{U_i \to X\}_{i=0}^n$. Define V to be the Zariski sheafification of the presheaf union $V = \bigcup_{i=1}^n U_i$. Note that $U \times_X V$ admits the open affine covering $\{U \times_X U_i \to U \times_X V\}_{i=1}^n$. Since U, V and $U \cap V$ admit cotangent sheaves, by the glueing we explained above, it follows that X admits a cotangent sheaf.

$$\begin{array}{c} B \longleftarrow A \\ \uparrow & & \uparrow \\ B \oplus M \longleftarrow A \oplus M|_A \end{array}$$

⁴Consider the functors B-mod $\rightarrow S$ et that $B \otimes_A \Omega_X(s)$ and $\Omega_X(t)$ corepresent. ⁵Note there is a commutative square of rings