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13 Quasi-coherent sheaves

Reference: [SAG, Appendix D]

13.1 Zariski sheaves

Recall that the Zariski topology on Ring has covering families those {A → Bλ}λ∈Λ

such that each A → Bλ is an open immersion (i.e., Bλ
∼= A[f−1

λ ] for some fλ) and
for every field Ω, the morphism hom(Bλ,Ω)→ hom(A,Ω) is surjective.

We did not do it, but we have the following nice criterion for when a presheaf is
a Zariski sheaf.

Proposition 1. A presheaf F ∈ PSh(Ringop) is a Zariski sheaf if and only if it
satisfies the following two conditions:

1. It sends the zero ring to the one point set.

F (0) = {∗}

2. If {A→ B,A→ C} is a two element Zariski covering, then the square

F (A) //

��

F (B)

��
F (C) // F (B ⊗A C)

is a cartesian square.

13.2 Quasi-coherent sheaves

Definition 2. Suppose that X ∈ PSh(Ringop) is a presheaf. The Zariski site XZar

of X is the over category category Ring/X equipped with the induced topology from
Ring.
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Explicitly, objects are morphisms of presheaves Spec(A)
s→ X, morphisms are

commutative triangles Spec(B)→ Spec(A)→ X, and a family of morphisms{
Spec(Bλ)

↘
→

X

Spec(A)

↙
}

is a covering if and only if {A→ Bλ} is a Zariski covering in Ring.

Example 3. If X = Spec(R) is representable, then XZar is equivalent to the under-
category RingR/ of R-algebras. In particular, Spec(Z)Zar

∼= Ring.

Example 4. The structure sheaf OX sends Spec(A)
s→ X to A considered as an

abelian group.

Exercise 5. Show that OX is a sheaf.

Definition 6. A presheaf of OX-modules is a presheaf on Ring/X such that each

F (Spec(A)
s→X) is equipped with a structure of an A-module, and given a ring

homomorphism A→ B the group homomorphism

F (Spec(A)
s→X)→ F (Spec(B)

t→X)

is A-linear where the target is given the A-module structure induced by A→ B.
A morphism of OX-modules is a morphism of presheaves F → G such that each

F (Spec(A)
s→X)→ G(Spec(A)

s→X)

is A-linear.
A presheaf of OX-modules is quasi-coherent if the induced morphisms

B ⊗A F (Spec(A)
s→X)→ F (Spec(B)

t→X)

are isomorphisms. We will write
QCX

for the category of quasi-coherent sheaves on a presheaf X ∈ PSh(Ringop).

Exercise 7. Suppose X ∈ PSh(Ringop) is a presheaf and F ∈ QCX a quasi-coherent
presheaf of OX-modules. Show that F is a sheaf.

Exercise 8. Suppose X = Spec(R) is a representable presheaf. Show that the
assignment Ω : Spec(A) → Spec(R) to ΩA/R has a canonical structure of quasi-
coherent sheaf of OX-modules.

Exercise 9. Suppose X = Spec(R) is a representable presheaf. Show that there is
a canonical equivalence of categories

QCSpec(R)
∼= R-mod.
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Exercise 10. Let X ∈ PSh(Ringop) be a presheaf and suppose that {Fλ}λ∈Λ is a
family of sheaves of OX-modules. Show that the assignment sending Spec(A)

s→X to⊕
λ∈ΛFλ(s) has a structure of quasi-coherent sheaf of OX-modules.

Exercise 11. Let X ∈ PSh(Ringop) be a presheaf and suppose that F → G is
a morphism of quasi-coherent sheaves of OX-modules. Show that the assignment
sending Spec(A)

s→X to coker(F(s)→ G(s)) has a structure of quasi-coherent sheaf
of OX-modules.

Remark 12. In general, a category of sheaves Shv(C) considered as a subcategory
of PSh(C) is closed under limits but no colimits. The above exercises show that
QCX is special.

13.3 Glueing modules

Definition 13. Let {A → B,A → C} be a two element Zariski covering in Ring.
Define DD to be the category whose objects are triples (MB,MC , φ) where

1. MB is a B-module,
2. MC is a C-module, and
3. φ is an isomorphism MB ⊗B (B ⊗A C)

∼→MC ⊗C (C ⊗A B).
A morphism (MB,MC , φ)→ (NB, NC , ψ) of DD is a pair (fB, fC) where

1. fB is a morphism of B-modules,
2. fC is a morphism of C-modules, and
3. the induced square

MB ⊗A C //

��

MC ⊗A B

��
NB ⊗A C // NC ⊗A B

is commutative.
Note that there are canonical functors

A-mod→ DD; M 7→ (M ⊗A B,M ⊗A C, φ)

where φ is the canonical isomorphism

M ⊗A B ⊗B (B ⊗A C)
∼→M ⊗A C ⊗C (C ⊗A B)

and
DD → A-mod; (MB,MC , φ) 7→MB ×MC⊗C(C⊗AB) MC

where the morphism MB →MC ⊗C (C ⊗A B) is induced by φ.

Exercise 14. Show that the two functors defined in Def.?? are inverse equivalences
of categories. Hint.1 Hint.2 Hint.3

1Note that 0→M →M⊗AB×M⊗AC →M⊗AB⊗AC is an exact sequence for any A-module
M .

2Note that since A→ B is an open immersion −⊗A B preserves finite limits and finite colimits.
The same is true for −⊗A C.

3Note that since A→ B, A→ C are open immersions, we have B ⊗A B ∼= B and C ⊗A C ∼= C.
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Remark 15. One can show that the category DD is actually a model for the fibre
product

B-mod×LB⊗AC-mod C-mod

in the ∞-category of ∞-categories. So the Exericse 14 essentially says that the
“presheaf” A 7→ A-mod of categories is a Zariski sheaf. We put “presheaf” in
quotes because this assignment is only functorial up to the canonical isomorphisms
C ⊗B B ⊗A − ∼= C ⊗A −. We will come back to this problem later.

13.4 Glueing presheaves

Suppose that f : Y → X ∈ PSh(Ringop) is a representable morphism of presheaves.
By definition, for every Spec(A) → X the pullback Y ×X Spec(A) is representable,
so we obtain a functor XZar → YZar. As such we obtain an adjunction

f ∗ : PSh(XZar) � PSh(YZar) : f∗.

Since XZar → YZar has the left adjoint sending Spec(B) → Y to the composition
Spec(B)→ Y → X, this adjunction is particularly easy to describe.

1. f∗ is composition with pullback XZar → YZar (this is always true).
2. f ∗ is composition with “composition” YZar → XZar.
It is not too hard to show that both pullback XZar → YZar and composition

YZar → XZar send Zariski coverings to Zariski coverings, and so both f ∗ and f∗
preserve Zariski sheaves. That is, the induced adjunction

f ∗ : Shv(XZar) � Shv(YZar) : f∗

has the same description as above.

Exercise 16. Show that the functor XZar → YZar sends covering families to covering
families.

Exercise 17. Show that f ∗ and f∗ send quasi-coherent sheaves to quasi-coherent
sheaves.

Now we upgrade the above descent theorem to the presheaf setting.

Definition 18. Let {U → X, V → X} is a pair of representable open immersions of
presheaves such that for every field Ω the map U(Ω) t V (Ω) → X(Ω) is surjective.
We will use the Cartesian square

W ι //

κ
��

V

k
��

U
i
// X

Define DD to be the category whose objects are triples (FU ,FV , φ) where
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1. FU is a sheaf on UZar,
2. FV is a sheaf on VZar, and
3. φ is an isomorphism κ∗FU

∼→ ι∗FV .
A morphism (FU ,FV , φ)→ (GU ,GV , ψ) of DD is a pair (fU , fV ) where

1. fU is a morphism of sheaves on UZar,
2. fV is a morphism of sheaves on VZar, and
3. the induced square

κ∗FU //

��

ι∗FV

��
κ∗GU // ι∗GV

is commutative.
Note that there are canonical functors

Shv(XZar)→ DD; F 7→ (i∗F , k∗G, φ)

where φ is the canonical isomorphism

κ∗ι∗
∼→ ι∗k∗

and
DD → Shv(XZar); (FU ,FV , φ) 7→ i∗FU ×k∗ι∗ι∗FV k∗FV

where the morphism i∗FU → k∗ι∗ι
∗FV is the morphism

i∗FU → i∗κ∗κ
∗FU = k∗ι∗κ

∗FU
φ→ k∗ι∗ι

∗FV .

13.5 Cotangent sheaf

Definition 19 ([DAG, pg.35]). Let X ∈ PSh(Ringop) be a functor, and Spec(A)
s→

X a morphism of presheaves. Consider the functor that sends an A-module M to
the set of factorisations

ΩX(s,−) : A-mod→ Set; M 7→


Spec(A) s //

π

��

X

Spec(A⊕M)

;;


where π : A⊕M → A is the canonical projection. If this functor is corepresentable
by an A-module, we will write ΩX(s) for this A-module. That is,

homA-mod(ΩX(s),M) = {Spec(A⊕M)
t→ X | t ◦ π = s}

functorially in M .

Exercise 20. Suppose that X = Spec(R) is an affine scheme. Show that all ΩX(s,−)
are representable.
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Exercise 21. Suppose that X ∈ PSh(Ringop) is a functor for which all ΩX(s,−)
are representable. Show that the assignment

ΩX : Spec(A)
s→X 7→ ΩX(s)

has a canonical structure of presheaf of OX-modules. That is, show that every com-
mutative triangle t : Spec(B) → Spec(A)

s→ X of presheaves induces a morphism
B⊗A ΩX(s)→ ΩX(t) of B-modules, and this assignment is compatible with compo-
sition and identities. Hint.4 Hint.5

Definition 22. Suppose X ∈ PSh(Ringop) is a functor. We say X admits a cotan-
gent sheaf if all ΩX(s,−) are representable, and ΩX is a quasi-coherent sheaf. That
is, if all comparison morphisms

B ⊗A ΩX(s)→ ΩX(t)

are isomorphisms.

Exercise 23. Suppose that X = Spec(R) is an affine scheme. Show that Spec(A)
admits a cotangent sheaf.

Definition 24. Recall that a separated scheme is a presheaf X ∈ PSh(Ringop) that
admits an open affine covering {Uλ → X}λ∈Λ. If X admits an open affine covering
where Λ is finite, then we say that X is quasi-compact.

Proposition 25. Suppose that X is a quasi-compact separated scheme. Then X
admits a cotangent sheaf.

Proof. We work by induction on the size of open affine covering that X admits.
If X admits an open affine covering of size one, then it is representable, and the
result is Exercise 23. Suppose all schemes admitting open affine coverings of size n
admit cotangent sheaves, and let X be a scheme admitting an open affine covering
of size n + 1, say {Ui → X}ni=0. Define V to be the Zariski sheafification of the
presheaf union V = ∪ni=1Ui. Note that U ×X V admits the open affine covering
{U ×X Ui → U ×X V }ni=1. Since U , V and U ∩ V admit cotangent sheaves, by the
glueing we explained above, it follows that X admits a cotangent sheaf.

4Consider the functors B-mod→ Set that B ⊗A ΩX(s) and ΩX(t) corepresent.
5Note there is a commutative square of rings

B Aoo

B ⊕M

OO

A⊕M |Aoo

OO
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