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12 Derived Schemes

12.1 Discussion

Recall that one can define1 an n-dimensional manifold as a topological space which
locally looks like Rn in the sense that it is equipped with an open covering {Uλ →
X}λ∈Λ and homeomorphisms φλ : Uλ

∼→ Vλ to some open Vλ ⊆ Rn. An equiva-
lent definition is that an n-dimensional manifold is a coequaliser in the category of
topological spaces of the form

coeq

(∐
µ

V1,µ ⇒
∐
λ

V0,λ

)

where the V1µ, V0λ are open subsets of a copy some Rn, and the induced V1µ → V0λ

are (isomorphic to) open immersions.
In classical algebraic geometry, instead of open subsets of Rn, one would like

to work with things that locally look like affine varieties. That is, sets of the
form V (f) = {(z1, . . . , zn) ∈ Cn | fj(z) = 0, j = 1, . . . , c} for some f1, . . . , fc ∈
C[z1, . . . , zn]. As we mentioned in the first lecture, in order to keep track of multi-
plicities, it is useful to use the quotient ring A = C[z1, . . . , zn]/〈f1, . . . , fc〉 instead of
the set V (f).2

It turns out we would also like to perform various commutative algebraic op-
erations (e.g., completion), and modern algebraic geometry ends up allowing any
commutative ring as a local neighbourhood.

So. In order to define schemes we want a category which fully faithfully contains
Ringop the opposite of category of rings, and which admits colimits. Historically the
two choices are: the category of locally ringed topological spaces, and the category
of sheaves on Ringop.

Using locally ringed topological spaces is useful for results such as Serre’s GAGA
since complex analytic spaces also have a natural structure of locally ringed topo-
logical space. On the other hand, for applications in the representation theory of

1Cf. [Lang, Fundamentals of Differential Geometry].
2The set V (f) can be recovered as the set of ring homomorphisms A→ C.
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algebraic groups or moduli spaces, it can be more natural to consider sheaves on
Ringop, since moduli questions are more naturally stated in terms of functors.

Both approaches exist in derived geometry, for example Lurie mostly uses the
former and Gaitsgory, Rozenblyum mostly use the latter. We will develop the latter,
that is, a derived scheme will be a sheaf on SCRop equipped with a covering by affine
schemes. Doing this derived schemes, derived algebraic spaces, and derived stacks
all exist in the same category. Incidentally, Shv(SCRop) also contains ind-schemes
and in particular, completions.

12.2 Representable morphisms

To begin with we want to define what it means for a morphism of presheaves to be
an open immersion / étale / flat, etc.

Recall that a presheaf F ∈ PSh(C) is called representable if it is of the form
Map(−, X) for some X ∈ C. We need a relative version of this.

Definition 1. Let C be an ∞-category and f : F → G ∈ PSh(C) a morphism
of presheaves. We say that f is representable if for every morphism of the form
Map(−, T ) → G, the fibre product F ×G Map(−, T ) is of the form Map(−, T ′) for
some T ′ ∈ C.

Remark 2. One way of thinking about this definition is as follows. A morphism
hom(−, T ) → G is a T -point of G. For example (all this will be explained below),
if X is an algebraic variety defined by polynomials f1, . . . , fc ∈ Z[x1, . . . , xn] then
a morphism Spec(k) → X with k a field is the same as a point in the algebraic
k-variety {(a1, . . . , an) ∈ kn | f1(a) = 0, . . . , fc(a) = 0}. So asking that all fibres
F ×G Map(−, T ) are representable is asking that G → F is somehow “fibred in
representables”.

Exercise 3. Suppose C is an ∞-category with finite limits. Show the following.
1. Any morphism Map(−, X)→ Map(−, Y ) between representable presheaves is

a representable morphism.
2. A morphism F → ∗ towards the terminal presheaf is a representable morphism

if and only if F is a representable presheaf.
3. For any presheaf F and T ∈ C the projection F ×Map(−, T ) → F is repre-

sentable.
4. If F → G is a representable morphism of presheaves and H → G any morphism

of presheaves then F ×G H → H is representable.
5. If F → G and G → H are representable morphisms of presheaves then the

composition F → H is representable.

Definition 4. Suppose C is a category admitting fibre products. Let f : F → G ∈
PSh(C) be a representable morphism of presheaves and P a property of morphisms
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in C. We say that f is has property P if for every cartesian square

F ×G Map(−, X) ∼= Map(−, Y )

��

//
hom(−,g)

Map(−, X)

��
F // G

the morphism g : Y → X has property P .

Exercise 5. Let C be an ∞-category admitting fibre products, f : Y → X a
morphism in C, and suppose P is property of morphisms in C stable under pullback.
Show that the representable morphism of presheaves hom(−, f) : hom(−, Y ) →
hom(−, X) ∈ PSh(C) has property P if and only if f has property P .

We did not prove it but it’s a fact that for any A → B → C ∈ Ring, if A → B
and A → C are open immersions resp. étale morphisms, then so is B → C. This
fact passes to presheaves.

Exercise 6. Suppose that F
f→ G

g→ H ∈ PSh(Ringop) are representable morphisms
such that g and gf are representable open immersions resp. étale morphism. Show
that f is also a representable open immersion, resp. étale morphism.

12.3 Classical schemes

For reference we begin with a classical definition of schemes. Affine schemes are easy.

Definition 7. An affine scheme is a representable presheaf on Ring. That is, it is
a presheaf of the form homRing(A,−) : Ring → Set for some ring A ∈ Ring. It is
customary to use Spec for the coYoneda functor

Spec : Ring→ PSh(Ringop),

that is,
Spec(A) = homRing(A,−).

Exercise 8.
1. The functor which sends a ring to the underlying set of the n-fold product

An : A 7→ An ∈ Set.

is called n-dimensional affine space. Show that this is an affine scheme.
2. The functor which sends a ring to its set of units is denoted

Gm : A 7→ A∗ ∈ Set.

Show that this is an affine scheme.
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3. Suppose we have f1, . . . , fc ∈ Z[x1, . . . , xn]. For any field k there is a unique
ring homomorphism Z → k, and therefore a canonical way of considering the
fi as elements in k[x1, . . . , xn]. Consider the functor which sends a field k to
the algebraic variety over k

V (f)(k) = {(a1, . . . , an) ∈ kn | f1(a) = 0, . . . , fc(a) = 0}.

In fact, there is no need to assume k is a field. The set V (f) is well-defined for
any ring A. Show that A 7→ V (f)(A) is an affine scheme.

4. If X : Λ → PSh(Ringop) is a diagram such that each Xλ is an affine scheme,
show that lim←−Xλ is also an affine scheme.

We restrict our attention to separated schemes so that we don’t have to talk
about open subfunctors.

Definition 9 ([Jantzen, §1.9]). A separated scheme is a Zariski sheaf X : Ring →
Set for which there exists a collection of affine schemes Uλ and representable open
immersions Uλ → X such that for every field Ω the map∐

λ∈Λ

Uλ(Ω)→ X(Ω)

is surjective. Such a family {Uλ → X}λ∈Λ is called an open affine covering.

Example 10. Last week we claimed without proof that every representable functor
on Ringop is an fppf-sheaf, and therefore a Zariski sheaf. Consequently, every affine
scheme is a separated scheme. So we have the following fully faithful inclusions.{

affine
schemes

}
⊆
{

separated
schemes

}
⊆ Shv(Ringop) ⊆ PSh(Ringop)

Example 11 (cf.[Jantzen, pg.15]). The easiest example of a non-affine separated
scheme is Pn for n > 0. One way of defining Pn is as the functor sending a ring A to
the set of equivalence classes

Pn(A) =


surjections of A-modules

A⊕n+1 →→ L
such that L is locally free of rank one

 / ∼

Here, locally free of rank one means there exists an open Zariski covering {A→Bλ}λ∈Λ

and isomorphisms of Bλ-modules L ⊗A Bλ
∼= Bλ. Two surjections A⊕n+1→→L and

A⊕n+1→→L′ are equivalent if there exists an isomorphism L ∼= L′ making a commu-
tative triangle. Given a ring homomorphism A→ B the morphism Pn(A)→ Pn(B)
sends A⊕n+1→→L to B⊕n+1∼=B ⊗A A⊕n+1→→B ⊗A L.

Exercise 12. For each i = 0, . . . , n define Ui ⊆ Pn to be the subfunctor

Ui(A) = {A⊕n+1 →→ L | A ιi→ A⊕n+1 →→ L is an isomorphism }
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where ιi is the inclusion of the ith component. Define an isomorphism of functors

Ui ∼= An

and show that {Ui → Pn}ni=0 is an open affine covering.

Exercise 13. (Harder). Suppose f ∈ Z[x0, . . . , xn] is a homogeneous polynomial of
degree d. That is, an element of the free Z-module Symd(Zx0 ⊕ · · · ⊕ Zxn) of rank(
n+d
d

)
. Given any ring A the canonical morphism Z → A induces an element f |A of

Symd(A⊕n+1), and if we also have a morphism A⊕n+1 → L to some other A-module
L, we get an element f |Symd(L) of Symd(L). Now consider the subfunctor Z ⊆ Pn
which sends a ring A to the set

Z(A) = {A⊕n+1→→L | f |Symd(L) = 0} ⊆ Pn(A).

1. Show that Z is a functor, that is, the morphism Pn(A)→ Pn(B) associated to
a ring homomorphism A→ B sends Z(A) into Z(B).

2. Let An ∼= Ui ⊆ Pn+1 be a standard chart as in the Exercise 12. Describe
An ×Pn Z ⊆ An

Exercise 14.
1. Show that if {Xλ}λ∈Λ is a family of separated schemes, then the product∏

λ∈Λ Xλ (taken in PSh(Ringop)) is a separated scheme.
2. Show that if Y → X is a morphism of separated schemes and {Uλ → X}λ∈Λ

is an open affine covering, then there exists an open affine covering {Vλµ →
Y }λ∈Λ,µ∈M and commutative squares

Vλµ

��

// Y

��
Uλ // X

3. (Harder). Show that if Y → X, Z → X are two morphisms of separated
schemes then the fibre product Y ×X Z (taken in PSh(Ringop)) is a separated
scheme. Hint.3 Hint.4 Hint.5 Hint.6

4. Using the above parts, show that the subcategory {separated schemes} ⊆
PSh(Ringop) is closed under all small limits.

3Using the previous part choose compatible open affine coverings
{Uλ→X}, {Vλµ→Y }, {Wλν→Z}.

4Show that the morphisms Vλµ→Y (resp. Wλν→Z) factor via representable open immersions
Vλµ→Y ×X Uλ (resp. Wλν→Uλ ×X Z).

5Show that the morphisms Vλµ ×Uλ
Wλν → Y ×X Z are representable open immersions by

factoring them as V ×U W → (Y ×X U)×U W = Y ×X W → Y ×X (U ×X Z)→ Y ×X X ×X Z =
Y ×X Z

6Show that {Vλµ ×Uλ
Wλν → Y ×X Z} is an open affine covering.
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12.4 Derived schemes

The definition of derived schemes is a straight-forward generalisation.

Definition 15 (cf.[GR, I.2.3.1.1, I.2.3.1.2, I.2.3.1.3]). An affine derived scheme is a
representable functor Map(A,−) : SCR → S = N(Gpd∞). As in the classical case,
we write

Spec : SCR → PSh(SCRop)

for the coYoneda functor.
A separated derived scheme is a Zariski sheaf X : SCR → S for which there

exists a collection of affine schemes Uλ and representable open immersions Uλ → X
such that ∐

λ∈Λ

Uλ(Ω)→ X(Ω)

is surjective for every field Ω.

Example 16. As in the classical case, every affine derived scheme is a separated
derived scheme. In the derived setting the affine space An = Spec(Z[t1, . . . , tn])
sends a simplicial ring R to the n-fold product of its underlying homotopy type

An : A 7→ An ∈ S.

Exercise 17 (cf.[DAG, Prop.4.6.3]). Do Exercise 14 for separated derived schemes.

Every derived scheme has a corresponding classical scheme and just as SCR
contains Ring fully faithfully as the subcategory of 0-truncated rings, the category
of derived schemes contains the category of classical schemes fully faithfully. More
generally, we can promote the notion of n-truncated derived ring to n-truncated
derived scheme.

Let
ι≤n : SCR≤n ⊆ SCR

denote the full subcategory of those simplicial commutative rings A such that πiA = 0
for i > n. The inclusion admits ι≤n admits a left adjoint π≤n. In fact, we want to
consider the opposite functor

≤nγ = ιop≤n : SCRop
≤n ⊆ SCRop.

As discussed in the lecture on topoi, ≤nγ induces an adjunction of presheaf categories

≤nγ∗ : PSh(SCRop
≤n) � PSh(SCRop) : ≤nγ∗

where ≤nγ∗ is composition with ≤nγ and the left adjoint ≤nγ∗ is compatible with
Yoneda in the sense that

≤nγ∗Map(A,−) ∼= Map(≤nγA,−).
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Remark 18. Apart from knowing that ≤nγ∗ preserves representables and colimits,
it’s not easy to say much more about it.

Definition 19. The truncation functor is the composition

τ≤n = ≤nγ∗≤nγ∗ : PSh(SCRop)→ PSh(SCRop).

Note that it comes equipped with a natural transformation

τ≤n → idPSh(SCRop) .

and since ≤nγ is fully faithful, the unit id→ ≤nγ∗
≤nγ∗ of adjunction is an equivalence,

and therefore τ≤nτ≤n ∼= τ≤n. In fact, since for any m ≤ n the inclusions factor
SCR≤m ⊆ SCR≤n ⊆ SCR one can check that we have τ≤mτ≤n ∼= τ≤m and from this
we obtain a tower of natural transformations

τ≤0 → τ≤1 → τ≤2 → · · · → id

Exercise 20. Using the adjunction (π≤n, ι≤n) and the fact that left Kan extensions
(e.g., γ∗) send representables to representables, show that if Spec(A) is an affine
derived scheme. Then

τ≤n Spec(A) = Spec(τ≤nA)

where τ≤n = ι≤nπ≤n. In particular, τ≤n Spec(A) is again affine.

12.5 Convergence

Recall from the lecture on the cotangent complex that for any morphism of simplicial
rings A → B ∈ Ring∆, the A-algebra B can be built from its truncation π0B and
various linear information encoded in cotangent complexes. In particular, we claimed
that

B = lim←− τ≤nB.
We can upgrade this to schemes.

Definition 21 (cf.[GR, I.2.1.4.1], cf.[DAG, Def.3.4.1]). ] A presheaf F ∈ PSh(SCRop)
is called convergent [DG] or nilcomplete [DAG] if for every A ∈ SCR the canonical
map

F (A)→ lim←−
n

F (τ≤nA)

is an equivalence.

Exercise 22. Using the fact that for any simplicial ring A we have A ∼= lim←−n τ≤nA
in SCR, show that every affine derived scheme is convergent.

The above is also true of schemes.

Proposition 23 ([GR, I.2.3.4.2]). Every separated derived scheme is convergent (as
an object of PSh(SCRop)).
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