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11 Higher topoi

11.1 The classical version

Suppose that X is a topological space, and {Uλ → X}λ∈Λ is an open covering. Then
giving a continuous morphism

f : X → R

is the same thing as giving a collection of continuous morphisms fi : Uλ → R that
agree on the intersections. That is, such that for every µ, λ we have

fλ|Uλ∩Uµ = fµ|Uλ∩Uµ .

Said another way the collection of fλ is in the equaliser of the two canonical restriction
maps ∏

λ∈Λ

homcont.(Uλ,R) ⇒
∏
λ,µ∈Λ

homcont.(Uλ ∩ Uµ,R).

As we mentioned last week, we can also do this with local homeomorphisms.
If p : Y → X is a continuous morphism of topological spaces such that for every
y ∈ Y there is an open neighbourhood y ∈ V ⊆ Y such that p(V ) ⊆ X is open and
V → p(V ) is a homeomorphism, then to give a continuous morphism f : X → R
is the same thing as giving a continuous morphism g : Y → R that is constant on
fibres. That is, such that

π(y1) = π(y2)⇒ g(y1) = g(y2).

Said another way, g is in the equaliser of the two maps

homcont.(Y,R) ⇒ homcont.(Y ×X Y,R)

induced by the two projections pri : Y ×X Y → Y ; (y1, y2) 7→ yi where i = 1 or 2.
We could also have done this discussion in other settings. Instead of R, we

could have used any topological space. We could also have assumed Y,X were
differential manifolds, or complex analytic varieties with the appropriate notion of
local homeomorphism, and used some other F (−) instead of homcont.(−,R).

Grothendieck topologies are an abstraction and generalisation of these.
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Definition 1 ([]). Suppose that C is a classical category. A topology1 T on C is
a collection of families {Uλ → X}λ∈Λ of morphisms, called coverings satisfying the
following conditions.

1. Every singleton
{Y ∼→ X}

containing an isomorphism is a covering.2

2. If {Uλ → X}λ∈Λ is a covering and Y → X is a morphism, then the pullbacks
Y ×X Uλ exist3 in C and

{Y ×X Uλ → Uλ}λ∈Λ

is a covering.
3. If {Uλ → X}λ∈Λ is a covering and for each λ we have a covering {Vλµ →
Uλ}µ∈Mλ

, the the family of compositions

{Vλµ → Uλ → X}λ∈Λ,µ∈Mλ

is a covering.

Exercise 2. Show that the following are topologies.
1. C is the category of topological spaces and T is the collection of families {pλ :
Uλ → X}λ∈Λ such that each Uλ → X is an open immersion and tλ∈Λpλ(Uλ)→
X is surjective.

2. C is the category of topological spaces and T is the collection of families
{pλ : Uλ → X}λ∈Λ such that each Uλ → X is a local homeomorphism and
tλ∈Λpλ(Uλ)→ X is surjective.

3. C is the opposite of the category of rings, and T is the collection of families
{pλ : Bλ ← A}λ∈Λ such that each Bλ ← A is a étale and

∏
λ∈Λ hom(Bλ,Ω)→

hom(A,Ω) is surjective for every separably closed field Ω.

Definition 3. Let C be a category equipped with a topology T . A presheaf is a
functor F : Cop → Set. A presheaf is a sheaf if for every covering {Uλ → X}λ∈Λ we
have

F (X) = eq

(∏
λ∈Λ

F (Uλ) ⇒
∏
λ,µ

F (Uλ ×X Uµ)

)
.

Example 4.
1. For any topological space E, the presheaf homcont.(−, E) on the category of

topological spaces with the canonical topology is a sheaf.

1We actually give the definition of a pretopology. But since pretopologies have a canonically
associated topology which gives rise to the same category of sheaves, people often call pretopologies
topologies.

2By the next axiom, only assuming that identities are coverings gives the same notion, since
pullbacks are only defined up to isomorphism.

3One can easily avoid assuming that these pullbacks exists, but it is standard to assume their
existence, and all our examples will satisfy this, so we do.
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2. For any ring A, the presheaf hom(A,−) on the opposite of the category of rings
is a sheaf for the étale topology.

Definition 5. A topos is a category of the form Shv(C) for some category C equipped
with some topology T .

Remark 6. For any category equipped with a topology, the canonical inclusion
Shv(C) ⊆ PSh(C) admits a left adjoint, called sheafification. There are a number of
explicit descriptions of this adjoint. Here is one. Given a presheaf F , define F+(X) =
lim−→ eq(

∏
λ∈Λ F (Uλ) →

∏
λ,µ F (Uλ ×X Uµ)) where the colimit is over coverings. This

is functorial in X, as well as F , so defines a functor PSh(C) → PSh(C). Then it
turns out that applying this twice gives the left adjoint to inclusion. That is, for
any presheaf F and sheaf G, the presheaf F++ is a sheaf, and we have hom(F,G) =
hom(F++, G).

11.2 Higher topoi

The notion of topology on an∞-category is the same as that on a classical category.

Definition 7 ([]). Suppose that C is an ∞-category. A topology4 T on C is a
collection of families {Uλ → X}λ∈Λ of morphisms, called coverings satisfying the
following conditions.

1. Every singleton
{Y ∼→ X}

containing an equivalence is a covering.5

2. If {Uλ → X}λ∈Λ is a covering and Y → X is a morphism, then the pullbacks
Y ×X Uλ exist6 in C and

{Y ×X Uλ → Uλ}λ∈Λ

is a covering.
3. If {Uλ → X}λ∈Λ is a covering and for each λ we have a covering {Vλµ →
Uλ}µ∈Mλ

, the the family of compositions

{Vλµ → Uλ → X}λ∈Λ,µ∈Mλ

is a covering.

Example 8.

4We actually give the definition of a pretopology. But since pretopologies have a canonically
associated topology which gives rise to the same category of sheaves, people often call pretopologies
topologies.

5By the next axiom, only assuming that identities are coverings gives the same notion, since
pullbacks are only defined up to isomorphism.

6One can easily avoid assuming that these pullbacks exists, but it is standard to assume their
existence, and all our examples will satisfy this, so we do.
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1. The coverings of the étale topology on the opposite category SCRop are fam-
ilies of morphisms {A → Bλ}λ∈Λ such that each A → Bλ is étale and for
every separably closed field Ω the morphism

∏
λ∈Λ hom(Bλ,Ω) → hom(A,Ω)

is surjective.
2. The coverings for the fppf topology on the opposite category SCRop are families

of morphisms {A→ Bλ}λ∈Λ such that each A→ Bλ is flat, of finite presenta-
tion, and for every algebraically closed field Ω the morphism

∏
λ∈Λ hom(Bλ,Ω)→

hom(A,Ω) is surjective.

For the Zariski topology we need a notion of open immersion.

Definition 9. A morphism A→ B ∈ Ring∆ of simplicial rings is an open immersion
if it is flat, of finite presentation, and the diagonal B ⊗A B → B is an equivalence.

Exercise 10.
1. For any simplicial ring A and any morphism Z[x] → A the morphsim A →
A⊗Z[x] Z[x, x−1] is an open immersion.

2. Show that if A → B is an open immersion and B → C is an open immersion
then A→ C is an open immersion.

3. Show that if A → B is an open immersion and A → D any morphism then
D → D ⊗A B is an open immersion.

Example 11. The coverings for the Zariski topology on the opposite category SCRop

are families of morphisms {A→ Bλ}λ∈Λ such that each A→ Bλ is an open immersion
and for every field Ω the morphism

∏
λ∈Λ hom(Bλ,Ω)→ hom(A,Ω) is surjective.

The notion of sheaf is more subtle. To see why, let’s go back to a classical site.

Example 12. Consider a topological space X equipped with an open covering
U0, U1, U2 such that all of Uλ, Uλ ∩ Uµ and Uλ ∩ Uµ ∩ Uν are contractible for dis-
tinct λ, µ, ν.

©©©
Consider the sheaf of complexes of abelian groups concentrated in degree zero F :
U 7→ hom(U,R) where R is given the discrete topology. Let’s try and imitate Def.3
for the covering U0, U1, U2. In the ∞-category CplxR, the equaliser

eq

( ∏
i=0,1,2

F (Ui) ⇒
∏

i,j=0,1,2

F (Ui ∩ Uj)

)

is the complex concentrated in homological degrees 0 and -1[ ∏
i=0,1,2

R→
∏

i,j=0,1,2

R

]
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with morphism (a0, a1, a2) 7→

 0 a1 − a0 a2 − a0

a0 − a1 0 a2 − a1

a0 − a2 a1 − a2 0

. The H0 of this complex

is {(a, a, a)} ∼= R, agreeing wth the H0 of F (X), but the H−1 is R3 ⊕ R ⊕ R 6= 0.
The first factor R3 is the missing diagonal, the second factor R is the symmetry
between the upper left and lower right triangles. But there is a remaining factor of
R corresponding to the fact that the diagram

U01

����
U0 U1

U02
//

??

U2 U12
oo

__

is essentially an unfilled circle. To remove the unwanted factor we need to also take
into account the triple intersection U0 ∩U1 ∩U2. Note that if this triple intersection
was empty, we would want this extra factor in H−1, since our X would be homotopic
to a circle.

©
©
©

A related example is the de Rham complex on R2 or on R2 \ {0}. By Poincaré’s
Lemma on contractible opens U ⊆ R2 the de Rham complex is quasi-isomorphic
to R concentrated in degree zero R ∼= Ω•(U). On the other hand, Ω•(R2 \ {0}) is

quasi-isomorphic to [R 0→ R]. That is, this is essentially the same as the example
above.

Definition 13. Let C be an ∞-category equipped with a topology T and E an
∞-category admitting limits (the canonical choice is E = S the category of spaces).
A presheaf with values in E is a functor F : Cop → E. A presheaf is a sheaf if for
every covering {Uλ → X}λ∈Λ we have

F (X) = lim←−
n∈∆

∏
(λ0,...,λn)∈Λn+1

F (Uλ0 ×X · · · ×X Uλn).

The category of sheaves is the full subcategory

Shv(C,E) ⊆ PSh(C,E)

consisting of those presheaves which are sheaves.

Remark 14. It follows directly from the definition that if we have two topologies
T1, T2 on an ∞-category, and all T1 coverings are T2 coverings, then any T2-sheaf is
a T1-sheaf. In particular, any fppf sheaf is an étale sheaf, and any étale sheaf is a
Zariski sheaf.
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Example 15.
1. For any simplicial ring A, the presheaf Map(A,−) : SCR → S is an fppf sheaf

(and therefore also an étale sheaf and a Zariski sheaf).
2. The presheaf which sends a simplicial ring A to MA is an fppf sheaf, [DAG,

Exam.4.2.5].
3. Fixing a simplicial ring A ∈ Ring∆, the presheaf SCRA/ →Mcn

A ; B 7→ LB/A|A
is an étale sheaf.

4. For a simplicial ring R let Pic(R) ⊆Mcn
R denote the non-full subcategory whose

objects are locally free of rank 1, and morphisms are weak equivalences (and

containing all higher morphisms). Given A → B ∈ Ring∆, let P̃ icB/A denote

the presheaf SCRA/ → S; A′ 7→ Pic(A′ ⊗A B). Then P̃ icB/A is an étale sheaf
[DAG, Thm.8.2.2].

5. Let A → B ∈ Ring∆ be a morphism of simplicial rings. Given an A-algebra
A → A′, let HilbB/A(A′) denote the ∞-groupoid of B′ = A′ ⊗A B-algebras C
almost of finite presentation such that π0B

′ → π0C is surjective, A′ → C is flat,
and π0A

′ → π0C is finite in the classical sense. Then HilbB/A : SCRA/ → S is
an étale sheaf [DAG, Thm.8.3.3].

As in the classical case, the inclusion of sheaves into presheaves admits a left
adjoint.

Proposition 16 ([HTT, Prop.6.2.2.7]). Suppose C is an ∞-category equipped with
a topology. Then the canonical inclusion Shv(C) ⊆ PSh(C) admits a left adjoint.

Remark 17. The sheafification functor exists for abstract reasons but the adjoint
functor theorem, but one can also give a more concrete description of it similar to
Rem.6 above. One added complication is that instead of applying (−)+ twice, one
must apply it κ-many times for some ordinal κ which depends on the site, cf. the
proof of [HTT, Prop.6.2.2.7].

Corollary 18. Let C be an ∞-category equipped with a topology. The category
Shv(C) admits all small colimits and small limits. The inclusion Shv(C) ⊆ PSh(C)
preserves limits. That is, if F− : K → Shv(C); is a diagram of sheaves, then for any
X ∈ C the canonical morphism (lim←−Fλ)(X)→ lim←−(Fλ(X)) is an equivalence.

11.3 Morphisms of topoi

The following is essentially identical in the classical case and higher setting so we go
directly to the higher setting.

We begin with a proposition which should be in the lecture on limits.

Proposition 19 ([HTT, Def.4.3.2.2, Prop.4.3.2.17, Rem.5.5.3.10]). Let φ : C → C ′

be a functor between small ∞-categories. Then the functor φ∗ : PSh(C ′)→ PSh(C)
induced by composition admits both a left φ∗ and right φ! adjoint. These can be
concretely “calculated” by the formulas

φ∗F (X) = lim−→
Y ∈CX/

F (Y )
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φ!F (X) = lim←−
Y ∈C/X

F (Y )

Remark 20. Sometimes the three functors φ∗, φ∗, φ
! are denoted φ!, φ

∗, φ∗. This
basically depends on whether one is thinking in terms of categories or topoi, since
lower indicies indicate covariance and upper indicies indicate contravariance.

Remark 21. Since the inclusion ι : Shv(C) → PSh(C) is fully faithful, the counit
a ◦ ι → id of the adjunction (a, ι) is an equivalence. It follows that for any functor
φ : C → C ′, the functor Shv(C) → PSh(C) → PSh(C ′) → Shv(C ′) fits into a
commutative square

PSh(C) //

��

PSh(C ′)

��
Shv(C) // Shv(C ′).

Proposition 22. Suppose C,C ′ are∞-categories equipped with topologies T, T ′, and
φ : C → C ′ is a functor. If φ sends T -coverings to T ′-coverings, then restriction
PSh(C ′)→ PSh(C) sends sheaves to sheaves, and the induced functor is right adjoint
to the canonical functor Shv(C)→ Shv(C ′). So we obtain an adjunction

Shv(C) � Shv(C ′).

We will call such a functor φ : C → C ′ a morphism of sites.

Example 23.
1. Suppose C is an ∞-category equipped with a topology T and X ∈ C is an

object. Say a family {Uλ → Y } in C/X is a covering family if its image under
the forgetful functor C/X → C is a covering. Then C/X → C is a morphism of
sites.

2. If moreover Y → X is an morphism in C, then composition induces a functor
C/Y → C/X which is also a morphism of sites.

3. Suppose moreover that C admits pullbacks. Then pullback induces a morphism
of sites C/X → C/Y .

4. Suppose that C0 ⊆ C is a full subcategory such that every covering family of
an object in C0 is contained in C0. Equip C0 with the topology whose coverings
are those families which are coverings in C. Then C0 → C is a morphism of
sites.
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