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4 Higher algebra II: The cotangent complex

4.1 Kähler differential

References:

[Quillen, On the (co)homology of commutative rings, 1970].

[Illusie, Complexe Cotangent et Deformations I, 1971].

[Lurie, Higher Algebra].

[Lurie, Spectral Algebraic Geometry].

[Stacks Project]

We begin with a review of the classical theory. Historically, this is motivated by
the following kind of questions.

Question 1.
1. Given a point x : Spec(C)→ X in a complex variety, when can we extend it to

a smooth curve C → X through x? What about the analytic germ of a smooth
curve Spec(C[[t]])→ X? Or infinitesimal curves

Spec(C[t]/(tn))→ X?

How unique are such extensions?
2. Given an affine complex varietyX = Spec(A), a closed subvariety Z = Spec(A/I)

and a flat quasi-coherent sheaf F on Z, when can we find a flat quasi-coherent
sheaf F ′ on X extending F? What about on a formal neighbourhood X∧Z :=
Spec(lim←−nA/I

n) of Z? Or an an infinitesimal neighbourhood

in : Zn = Spec(A/In) ⊆ X; Fn on Zn s.t. Fn|Z ∼= F?

How unique are such extensions?
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The definition of Kähler differentials appearing in most textbooks is the following.

Definition 2. Let A→ B be a morphism of (classical) rings and M ∈ B-mod. An
A-derivation of B into M is a morphism of A-modules d : B → M satisfying the
Leibniz rule:

d(xy) = xd(y) + yd(x) for all x, y ∈ B.

The set of all A-derivations from B into M is denoted DerA(B,M).

Exercise 3. Show that DerA(B,M) is equipped with a natural B-module structure.

Definition 4. The B-module of Kähler differentials is the universal A-derivation.
That is, Kähler differentials are an A-derivation d : B → ΩB/A such that for any
B-module composition induces an isomorphism

homB-mod(ΩB/A,M) ∼= DerA(B,M); φ 7→ φ ◦ d (1)

Exercise 5. Using universal properties, show that

ΩA[x1,...,xn]/A
∼=

n⊕
i=1

A[x1, . . . , xn]dxi.

(Here the symbols dxi represent the image of xi under d).
Using the axioms and induction show that for any

∑m
i=0 anx

n ∈ A[x] we have
d(
∑m

n=0 anx
n) =

∑m−1
n=0 nanx

n−1dx.

Remark 6. The above exercise shows that Kähler differentials ΩA[x1,...,xn]/A of the
ring of functions on an affine space can be identified with the cotangent bundle
(relative to Spec(A)), and d : A → ΩA[x1,...,xn]/A identified with the derivative of a
function.

Exercise 7. Textbooks usually construct ΩB/A using generators and relations but
here is a more categorical, but essentially equivalent way to construct it.

1. Show that for any colimit of A-algebras

DerA

(
lim−→
λ∈Λ

Bλ,M

)
= lim←−

λ∈Λ

DerA(Bλ,M).

2. Show that if Ωlim−→Bλ/A exists, then

Ωlim−→Bλ/A = lim−→ΩBλ/A.

3. Show that every A-algebra can be written as a colimit of polynomial A-algebras

B = lim−→
Iλ,λ∈Λ

A[xi : i ∈ Iλ].

4. Using Exercise 5 deduce that ΩB/A always exists.
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Example 8.
1. Consider the nodal curve A = C[x,y]

〈y2−x2(x−1)〉 . The A-module ΩA is free of rank
1 if we invert y. That is, it is a line bundle away from the singular point of
Spec(A). If m ⊆ A is the maximal ideal corresponding to the singular point,
then ΩA ⊗A A/m is a dimension 2 vector space over A/m.

2. If K is a field f(x) ∈ K[x] a monic, and L = K[x]/〈f〉, then ΩL/K = 0 if and
only if L is a finite product of separable field extensions of K.

3. If A → B is a ring homomorphism correspond to a morphism f : Y → X of
smooth complex algebraic varieties, then ΩB/A = 0 if and only if Y → X is
an analytic homeomorphism. That is, in the topology on X, Y induced from
CN ∼= R2N , for every point y ∈ Y there is an open neighbourhod y ∈ U such
that U → f(U) is a homeomorphism.

Kähler differentials are also closely related to square zero extensions.

Definition 9. Let A be a ring and B an A-algebra. A square zero extension of B
is a surjection B′ → B of A-algebras such that I2 = 0 where I = ker(B′ → B). We
will write

ExalA(B, I)

for the set of isomorphism classes1 of square zero extensions B′ such that ker(B′ → B)
is identified2 with I ∈ B-mod.

Exercise 10. For any B-module I define a ring structure on the A-module B′ :=
B ⊕ I by

(b1,m1)(b2,m2) = (b1b2, b1m2 + b2m1).

Show that this defines a square zero extension of B. This is called the trivial square
zero extension.

Exercise 11. Let Õ = the ring of differentiable functions f : R2 → R, (x, y) →
f(x, y) define an equivalence relation on Õ by f ∼ g if f(x, 0) = g(x, 0) and
(∂yf)(x, 0) = (∂yg)(x, 0) for all x ∈ R. Let O be the ring of differentiable func-
tions f : R→ R; x→ f(x). Show that the canonical morphism Õ/ ∼→ O induced
by the inclusion R = R× {0} ⊆ R2 is a square zero extension.

Example 12. If P := A[x1, . . . , xn]→ B is any surjection of A-algebras with kernel
J , then P/J2 → B is a square zero extension of B by I = J/J2.

Remark 13. Geometrically, square zero extensions can be thought of as a com-
bination of the ring of functions on some variety X = Spec(B), together with the
OX-module I = Γ(X,NX/Y ) of sections of the normal bundle for some closed embed-
ding X ↪→ Y . Of course, if the embedding X ↪→ Y is not regular, then Γ(X,NX/Y )
is not a vector bundle, just a quasi-coherent sheaf.

1The category (which is actually a groupoid) is written ExalA(B, I) but we won’t use this.
2So, part of the structure is a choice of isomorphism I ∼= ker(B′ → B) but this makes the

notation cumbersome, so we implicitly assume it is given.
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Exercise 14. Given morphisms A
f→ B

g→ C ∈ Ring, I ∈ C-mod, d ∈ DerA(B, I),
define a morphism B → C ⊕ I by φd : b 7→ (gb, db). Show that this fits into a
commutative diagram of ring homorphisms

B

φd
��

g

))A

f 55

σ ))
C

C ⊕ I π

55

where σ(a) = (f(a), 0) and π(c,m) = c. Show that any morphism φ fitting into
such a diagram is of the form φd for some d ∈ DerA(B, I). Writing RingA//C for the
category of rings B equipped with ring homomorphisms A→ B → C, show that

homRingA//C (B,C ⊕ I) ∼= DerA(B, I). (2)

Remark 15 ([Quillen, pg.72]). Combining Eq.1 and Eq.2 (and the canonical iso-
morphism homB-mod(M,N |B) ∼= homC-mod(M⊗BC,N)) we obtain functorial isomor-
phisms:

homRingA//C (B,C ⊕ I) ∼= homC-mod(ΩB/A ⊗B C, I).

That is, we have an adjunction

Ω(−)/A ⊗(−) C : RingA//C � C-mod : C ⊕ (−). (3)

In fact, this adjunction can be identified with the free/forgetful adjunction between
RingA//C and abelian group objects3 in the category RingA//C .

The following proposition can be proved “by hand”.

Proposition 16. Suppose that A → B → C is a sequence of ring homomorphisms
and J ∈ C-mod. Note that we can also regard J as a B-module. Then there is a
long exact sequence

0→DerB(C, J)→DerA(C, J)→DerA(B, J) (4)

→ExalB(C, J)→ExalA(C, J)→ExalA(B, J).

This sequence is functorial in J .

Exercise 17. (Long). Prove the above proposition.

Remark 18. One (not necessarily immediate)4 consequence of the first part of the
first part of (4) is that there is an exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0 (5)

of C-modules. In particular, ΩB/A is covariantly functorial in both A and B, or said
another way, it is functorial in the morphism A→B ∈ Fun(∆1,Ring).

3An abelian group object in a category C admitting finite products is an object M equipped
with morphisms η : ∗ →M and µ : M ×M →M satisfying the axioms of an abelian group.

4Going from Eq.5 to Eq.4 is straight-forward, just apply homC-mod(−, J). To go the other way,
use functoriality of J to get an exact sequence of functors from C-mod to Ab, and then note that
since these functors are representable we get an exact sequence of the objects that represent them.
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4.2 The cotangent complex

Let A be a simplicial ring, and recall the following combinatorial simplicial model
categories.

1. (Ring∆)A/ is the category of morphisms A → B in Ring∆. A morphism
B → B′ in (Ring∆)A/ is a weak equivalence (resp. fibration), if the underlying
morphism of simplicial abelian groups UB → UB′ is a weak equivalence (resp.
fibration, i.e., term-wise surjection). Cofibrations are determined by the left
lifting property.
An A-algebra B is cofibrant-fibrant if it is a retract of a “free” A-algebra, where
free means there is sequence of sets {Kn}n∈N such that Bn is the polynomial
ring Bn = An[xk : k ∈ t[n]→→[i]Ki] with one variable for every pair of a surjection
[n] →→ [i] and a k ∈ Ki, and the degeneracy morphisms are induced by the
canonical inclusions.
The structure of simplicial category is determined by (B⊗K)n = ⊗k∈KnBn for
B ∈ (Ring∆)A/ and K ∈ Set∆.

2. A-Mod∆ is the category of simplicial A-modules. That is, simplicial abelian
groups M ∈ Ab∆ such that each Mn is an An-module, and each Mn → Mm

is a morphism of An-modules via the ring homomorphism An → Am. Weak
equivalences and fibrations are determined by the forgetful functor to A-mod→
Ab∆.
An A-module M is cofibrant-fibrant if each Mn is a projective An-module.
The structure of simplicial category is determined by (M ⊗K)n = ⊕k∈KnMn

for M ∈ (Ring∆)A/ and K ∈ Set∆.

Definition 19 ([DAG, §3.1]). Let A ∈ Ring∆: The ∞-category associated to the
combinatorial simplicial model category (Ring∆)A/ is denoted

SCRA/ := N(Ring∆)cf
A/.

The ∞-category of (connective) modules over A is

Mcn
A := N(A-Mod∆)cf .

Its stabilisation is
MA := St(Mcn

A ).

Definition 20 ([Quillen, Eq.4.4], [Ill, 1.2.5.1], [Lurie, DAG, pg.35]). Let A → B ∈
Ring∆ be a morphism of simplicial rings. The adjunction of (3) is a Quillen adjunc-
tion, and so induces an adjunction of ∞-categories.

L

(
B ⊗(·) Ω(·)/A

)
: SCRA//B �Mcn

B : R

(
B ⊕ (·)

)
The cotangent complex is left derived functor of this functor evaluated at the terminal

object A→B id→B.

LB/A := L

(
B ⊗(·) Ω(·)/A

)
(B) ∈Mcn

B .
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Remark 21. Quillen used the notation Ab is because via B ⊕ − we think of B-
modules as abelian group objects in (Ring∆)A//B, cf.Remark 15.

Remark 22. There is a purely ∞-categorical way of constructing the above ad-
junction used in [HA] which proceeds by identifying N(B-mod)cf with the category
of connective loop space objects in N(Ring∆)cf

A//B. Then Lurie uses the adjunction

Σ∞ : SCRA//B � Sp(SCRA//B) : Ω∞. In fact he does more. Since he wants to
take care of functoriality questions in a unified way, he starts with the categorical
fibration ev1 : Fun(∆1,SCRA/)→ SCRA/, and stabilises all fibres at once, and uses
the notion of relative adjunction.

Remark 23. A canonical model for LB/A is constructed in [Ill, (1.2.5.1)] as follows.
Cf.also[Stacks Project, 08PM]. For each classical ring A, the free/forgetful adjunction

F : Set � A-alg : U

induces an endomorphism P = FU : A-alg → A-alg sending an A-algebra C to the
polynomial ring P (C)0 := A[C] := A[xc : c ∈ C] with one variable for each element
of C. Notice that we have a counit ring homomorphism A[C] → C; xc 7→ c and a
unit morphism of sets C → A[C]; c 7→ xc. This unit induces a ring homomorphism
P (C)0 = A[C]→ A[A[C]] =: P (C)1. Iterating these, we obtain a simplicial ring with
P (C)n = A[A[. . . A[C] . . . ]] and face and degeneracy morphisms defined using the
unit and counit of the adjunction (F,U). Now given a morphism of simplicial rings
A→ B, the simplicial ring with nth term P (Bn)n gives a factorisation A→ P → B,
which in fact is a cofibrant replacement in (Ring∆)A//B. Then LB/A can be defined
as the B-module with nth term (ΩP (Bn)n/An)⊗P (Bn)n Bn.

Remark 24 (Functoriality. [Qui, pg.73], [Ill, 1.2.3]). Given a (not necessarily co-
cartesian) commutative square of simplicial rings

A //

��

B

��
A′ // B′

We have a commutative square of Quillen adjunctions (it is easiest to show that the
right adjoints commute and are right Quillen functors).

P
_

��

B′ ×B P (Ring∆)A//B

��

// B-mod

��

oo M
_

��

M ′|B

A′ ⊗A P P ′
_

OO

(Ring∆)A′//B′
//

OO

B′-modoo

OO

B′ ⊗B M M ′
_

OO

It follows that we have canonical morphism5 in Mcn
B′ .

B′ ⊗LB LB/A → LB′/A′ (6)

5This morphism can be constructed explicitly the canonical resolutions described in Rem.23.
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and by adjunction, a canonical morphism in Mcn
B .

LB/A → LB′/A′ |B. (7)

Moreover, since the above square is a commutative square of Quillen adjunctions one
sees that if the square is cartesian in the sense that B′ = A′⊗LAB then the morphism
(7) is an equivalence.

Exercise 25. Show that the functor P ′ 7→ P ′ ×B′ B sends morphisms in F (resp.
W ∩F to morphisms in F (resp. W ∩F). Hint.6

Remark 26. It follows directly from the definition that

MapSCRA//B(B,B ⊕M) ∼= MapMcn
B

(LB/A,M)

Proposition 27 (cf.[Quillen, pg.73]). Suppose that A ∈ Ring∆ is a simplicial ring
and B : I → (Ring∆)/A is a diagram of A-algebras. Then there is a canonical
equivalence

lim−→
i∈I

(ΩBi/A ⊗Bi B) ∼= ΩB

in Mcn
B where B = lim−→Bi. Relatedly, there is a canonical equivalence

lim−→
i∈I

(
ΩBi/A|A

)
∼= ΩB|A

in Mcn
A .

Proof. They corepresent the same functors. For example:

MapMcn
B

(lim−→
i∈I

(LBi/A ⊗Bi B),M) ∼= lim←−MapMcn
B

(LBi/A ⊗Bi B,M)

∼= lim←−MapMcn
Bi

(LBi/A,M |Bi)
∼= lim←−MapSCRA//Bi

(Bi, Bi ⊕M |Bi)
∼= lim←−MapSCRA//B(Bi, B ⊕M)

∼= MapSCRA//B(B,B ⊕M)

∼= MapMcn
B

(LB/A,M)

Theorem 28 (Transitivity, [Quillen, Thm.5.1], [Ill, Prop.II.2.1.2]). Suppose that
A → B → C ∈ Ring∆ are two composable morphisms. Then there is a canonical
pushout square in C-mod of the form

C ⊗B LB/A //

��

LC/A

��
0 // LC/B

6ForW∩F use the characterisation in terms of the right lifting property and the fact that limits
commute with the forgetful functor Ring→ Set.
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Finally, we note that the long exact sequence from the first section is obtained
naturally from the cotangent complex.

Proposition 29 ([Quillen, Eq.4.3, Eq.4.5]). Suppose A → B is a morphism of
classical rings and M is a B-module. Then there are canonical identifications

homhMcn
B

(LB/A,M) ∼= DerA(B,M)

homhMcn
B

(LB/A,M [1]) ∼= ExalA(B,M)

Combined with the long exact sequence associated to Thm.28 we recover the long
exact sequence of Prop.16.

4.3 Finiteness conditions

Consider the following classes of objects in D(R)≥0 for R a classical ring.
1. Chain complexes of the form

(· · · → 0→ 0→ R⊕ni → · · · → R⊕n1 → R⊕n0) (8)

where R⊕n0 is in degree zero. Starting with R = (. . .→0→R) concentrated
in degree zero, and repeatedly applying finite sum and cofibre (i.e., repeatedly
taking finite colimits in the derived category), we can construct any chain
complex quasi-isomorphic to one of the form (8).

2. Chain complex of the form

P = (· · · → 0→ 0→ Pi → · · · → P1 → P0) (9)

where P0 is in degree zero, and there is a finite set of elements f1, . . . , fn ∈ R
such that {Spec(R[f−1

i ]) → Spec(R)}i∈I is a Zariski covering and each local-
isation P ⊗R R[f−1

i ] ∈ D(R[f−1
i ]) is of the form (8). In other words, each Pi

is a projective R-module of finite rank [Stacks Project, 00NX]. Note, for any
complex of the form (9) there exists a complex C of the form (8) such that
C = P ⊕Q for some Q. That is, we can build any P using finite colimits, and
direct summands starting from R = (. . .→0→R).

3. Chain complexes C that we can approximate by ones of the form (9). Con-
cretely, C such that for all n there is P of the form (9) and an equivalence
τ≤nC ∼= τ≤nP . That is, chain complexes quasi-isomorphic to one of the form

P = (· · · → Pi+1 → Pi → Pi−1 → · · · → P1 → P0) (10)

where each Pi is a projective R-module of finite rank.

Exercise 30. Prove the above claims that M ∈ D(R)≥0 is in the smallest sub-
category containing R and closed under finite colimits, if and only if M is quasi-
isomorphic to a complex of the form (8). (Note a subcategory of D(R)≥0 is closed
under finite colimits if and only if it is closed under cofibres and finite sums).
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These three classes all have their uses. The second two are related to compact
objects in the following way.

Recall that an ∞-category K is filtered if every finite diagram D → K admits a
(not necessarily colimit) cone D. → K. An object c in an ∞-category C is compact
if Map(c,−) commutes with filtered colimits. That is, for every filtered category K
and diagram X : K → C admitting a colimit, we have

Map(c, lim−→Xk) ∼= lim−→Map(c,Xk).

Exercise 31.
1. (Easy) Show that a K ∈ Set is compact if and only if it is finite. Show that

every set is a filtered colimit of finite sets.
2. (Harder) Show that an R-module M ∈ R-mod (for a classical ring R) is com-

pact if and only if it is isomorphic to a finite rank projective R-module. Show
that every R-module is a filtered colimit of finite rank projective R-modules.

3. (Harder) Let I be a small classical category and consider the classical category
Fun(Iop,Set) of presheaves of sets. Show that a presheaf is compact if and
only if it is a retract of a finite colimit of representable presheaves. Show that
every presheaf is a filtered colimit of retracts of finite colimits of representable
presheaves

Proposition 32 ([DAG, pg.19], [HA, ***]). Let A ∈ Ring∆ be a simplicial ring and
M ∈ D(A) an object in the derived category. The following are equivalent.

1. M ∈ D(A) is compact.
2. M is in the smallest subcategory of D(A) which:

(a) contains A,
(b) is closed under finite colimits,
(c) is closed under direct summand, and
(d) is stable.

For the third class above, we need to discuss truncation. Recall that there is a
canonical forgetful functor U : D(A)→ D(Z) = N Chcf

Z . The homology groups HnM
of M ∈ D(A) are the homology groups of UM ∈ D(Z). For every n we can consider
the ∞-category D(A)≤n ⊆ D(R) of objects M such that HiM = 0 for i > n. The
inclusion has a right adjoint τ≤n : D(A)→ D(A)≤n. In the case of a classical ring A
this functor sends (· · · →Mi → . . . ) to

(· · · → 0→ 0→ coker(d)→Mn−1 →Mn−2 → . . . ).

The sub-∞-category D(A)≤n continues to have all colimits and limits. As a right
adjunction, the inclusion commutes with limits. That is, the image of the limit of a
diagram K → D(A)≤n in D(A) is the limit of the diagram K → D(A)≤n → D(A).
The inclusion does not commute with colimits, but truncation does. That is, the
colimit of a diagram K → D(A)≤n is the image under τ≤n of the colimit of the
diagram K → D(A)≤n → D(A).
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Proposition 33 ([DAG, Prop.2.5.7]). Let A ∈ Ring∆ be a simplicial ring, M ∈
D(A) an object in the derived category, and n ∈ Z. The following are equivalent.

1. There truncation τ≤nM is a compact object of D(A)≤n.
2. There exists a compact object N ∈ D(A)≤n and an equivalence τ≤nN ∼= τ≤nM .

Definition 34 ([DAG, pg.19, pg.23]). Let R ∈ Ring∆ be a simplicial ring and
M ∈ D(A). We say that M is:

1. finitely presented if it is in the smallest subcategory of D(A) which:
(a) contains R,
(b) is closed under finite colimits,
(c) is stable.

2. perfect if it is a compact object of D(A).
3. almost perfect if every truncation τ≤nM is a compact object of D(A)≤n.

Definition 35 ([DAG, pg.32]). Let f : A→ B ∈ Ring∆ be a morphism of simplicial
rings.

1. We say that B is a finitely presented A-algebra if it lies in the smallest subcat-
egory of SCRA/ which contains A[x] and is stable under the formation of finite
colimits.

2. We say that B is locally finitely presented if it is a compact object of SCRA/.
That is, MapSCRA/(B,−) commutes with filtered colimits.

3. We say that B is almost finitely presented if it is a compact object of SCRA/.
That is, MapSCRA/(B,−) commutes with filtered colimits.

We also want to consider the analogous categories in SCR.

Definition 36 (Cf.[DAG, Prop.3.1.5]). Let f : A → B ∈ Ring∆ be a morphism of
simplicial rings. One says B is:

1. a finitely presented A-algebra if it lies in the smallest subcategory of SCRA/

which contains A[x] and is closed under finite colimits.
2. a locally finitely presented A-algebra if it is a compact object of SCRA/; in

other words, if MapA(B,−) commutes with filtered colimits.
3. almost of finite presentation if for every n there exists a finitely presented
A-algebra B′ and a morphism B′ → B of A-algebras inducing isomorphisms
πm(B′) ∼= πm(B) for m ≤ n.

Proposition 37 ([DAG, Prop.3.2.14, Prop.3.2.18]). Let f : A → B ∈ Ring∆ be a
morphism of simplicial rings. Then LB/A exists and is connective. Moreover, we
have the following equivalences.

f is of finite presentation ⇐⇒ (FP0) holds and LB/A is of finite presentation.
f is locally of finite presentation ⇐⇒ (FP0) holds and LB/A is perfect.
f is almost of finite presentation ⇐⇒ (FP0) holds and LB/A is almost perfect.

Where (FP0) means π0A→ π0B is of finite presentation in the classical sense. I.e.,
π0B = (π0A)[x1, . . . , xn]/〈f1, . . . , fc〉 for some fi ∈ π0A[x1, . . . , xn].
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