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4 Higher algebra I: Stable ∞-categories

The goal in this lecture is define the ∞-category D(R) for a simplicial ring R. We
begin with a closer look at ChR for R a classical ring.

4.1 The derived category

Definition 1. Suppose R is a classical ring. The derived category of R is the ∞-
category

D(R) := N(ChR)cf

associated to the combinatorial simplicial model category of chain complexes ChR.

Example 2.
Products. Suppose that {Xλ}λ∈Λ is a collection of chain complexes in ChR. Since

every chain complex is fibrant, the product
∏

λ∈Λ Xλ in ChR is quasi-isomorphic
to the product of the images in D(R). That is, ChR → D(R) sends products to
products.

Coproducts. To calculate the coproduct, we take cofibrant replacements QXλ →
Xλ of each Xλ. Then

∐
QXλ is quasi-isomorphic to a coproduct in D(R) (in fact,

since
∐
QXλ will be fibrant-cofibrant, it is a coproduct in D(R)).

Biproducts. In the special case that Λ is finite (e.g. empty)
∐
QXλ →

∐
Xλ is a

quasi-isomorphism since homology commutes with finite sums. That is, ChR → D(R)
sends finite products (resp. finite sums) to finite products (resp. finite sums).

Zero object. A special case of this is that 0 is both an initial and a final object of
D(R).

Example 3. Let us calculate the pullback of a diagram of the form 0 → C
g← B.

Since every complex is fibrant, every such diagram is projectively fibrant, so we can
always use the weighted pullback, for example associated to the cofibrantly projective
diagram W : Λ2

2 → Set∆; W = ([0]→ ∆1 ← [1]). We have

NR∆0 = (· · · → 0→ R→ 0→ · · · )

concentrated in degree zero and

NR∆1 = (· · · → R
d→ R⊕R→ 0→ · · · )
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concentrated in degrees zero and one where the nonzero differential d is r 7→ (r,−r).
The two inclusions NR∆0 ⇒ NR∆1 are clear. The weighted limit is

0
W
×C B = eq

(
0× C∆1 ×B ⇒ C × C

)
and doing the calculation we find that

(0
W
×C B)n = Cn+1 ⊕Bn, d(

0
W
×CB

) =

[
dC g
0 dB

]

This 0
W
×C B will always be quasi-isomorphic to a pullback of the image of 0→C←B

in N(ChR)cf (with no conditions on the objects B,C or morphism B → C).

Exercise 4.

1. Show that (A⊗∆1)n = An ⊕ An−1 ⊕ An with differential

 d 0 0
id d − id
0 0 d

.

2. Show that (C∆1
)n = Cn ⊕ Cn+1 ⊕ Cn with differential

 d id 0
0 d 0
0 − id d

.

(You may end up with different signs. This is fine).

Before the next example, we record the following consequence of the Snake Lemma
and the Five Lemma:

Lemma 5. Suppose
0 // A //

a
��

B //

b
��

C //

c
��

0

0 // A′ // B′ // C ′ // 0

is a diagram in ChR whose rows are short exact sequences. Then if two of a, b, c are
quasi-isomorphisms, so is the third.

Exercise 6. Prove the above lemma using the Snake Lemma and the Five Lemma.

Example 7. Now consider a diagram of the form 0 ← A
f→ B. If A and B are

cofibrant then the weighted colimit will be quasi-isomorphic to a pushout of the
image in the ∞-category D(R). Using the same W as above, we have

0
W
tA B = coeq

(
A⊕ A⇒ 0⊕ (A⊗∆1)⊕B

)
and doing the calculation we find that

(0
W
tA B)n = An−1 ⊕Bn, d(

0
W
tAB

) =

[
dA 0
f dB

]
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Note that there is a canonical short exact sequence

0→ B → 0
W
tA B → A[1]→ 0.

where A[1]n = An−1. Using Lemma 5 applied to this short exact sequence, one

sees that if Q0
Q0← QA

Qf→ QB is an injectively cofibrant replacement of the original

0 ← A → B, then the induced morphism Q0
W
tQA QB → 0

W
tA B is always a

quasi-isomorphsim (with no conditions on A or B).

Hopefully you noticed that 0
W
tA B looks very similar to 0

W
×C B. Certainly, we

always have a commutative diagram of the form:

A

��

f // B // 0
W
tA B

��

// A[1]

��

(0
W
×C B) // B g

// C // (0
W
×C B)[1]

and by the short exact sequences

0→ B → 0
W
tA B → A[1]→ 0

0→ C[−1]→ 0
W
×C B → B → 0

our commutative diagram gives rise to a morphism of long exact sequences

. . . // Hn(A) //

��

Hn(B) // Hn(0
W
tA B) //

��

Hn−1(A)

��

// . . .

. . . // Hn+1(0
W
×C B) // Hn(B) // Hn(C) // Hn(0

W
×C B) // . . .

Exercise 8. Show that the boundary morphism Hn(A)→ Hn(B) associated to the

short exact sequence 0 → B → 0
W
tA B → A[1] → 0 is actually the morphism

induced by f : A→ B.

Consequently, by the Five Lemma, we obtain:

Proposition 9. Suppose that A
f→ B

g→ C are two morphisms in ChR with gf = 0
so that we get induced morphisms

1. 0
W
tA B → C.

2. A→ 0
W
×C B.
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If one of these is a quasi-isomorphism, then so is the other. Consequently, the image
of the square

A //

��

B

��
0 // C

in the ∞-category D(R) is a pullback square if and only if it is a pushout square.

By the equivalence Map(∆1 ×∆1, N(ChR)cf)) ∼= N(Fun(∆1 ×∆1,ChR))cf , every
commutative square in D(R) is equivalent to one in the image of ChR.

4.2 Stable ∞-categories

Definition 10 ([HA, Def.1.1.1.1, Def.1.1.1.9]). An∞-category C is said to be pointed
if it satisfies:

1. C has an object 0 which is both an initial object and a final object.

0 := ∅ ∼= ∗.

Such an object is called a zero object.
An ∞-category C is said to be stable if it is pointed and satisifes:

2. A commutative square of the form

X
f //

��

Y

g
��

0 // Z

is cartesian if and only if it is cocartesian.
3. Every morphism f (resp. g) fits into a cocartesian (resp. cartesian) square of

the above form. The corner in such a square is called the cofibre (resp. fibre).

X
f //

�� p

Y

��

fib(g) //

��

y

Y

g

��
0 // cof(f) 0 // Z

Example 11. Examples of pointed categories are easy to find. For any ∞-category
C and any object c ∈ C, the over-under category Cc//c ⊆ Fun(∆2

1, C) has zero object
c. In particular, if C has a terminal object ∗ ∈ C, then the under category C∗/ is
pointed. Specifically, the category of pointed ∞-groupoids S∗/ = (NGpd∞)∗/ is a
pointed ∞-category.

Categories satisfying the second condition are rarer, but not uncommon. Later
we will see a procedure for turning any ∞-category into a stable ∞-category.

Example 12.
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1. The ∞-category D(R) is stable, as we saw above.
2. The subcategory D(R)≥0 of complexes K with HnK = 0 for all n < 0 is also

not stable. In D(R)≥0 we have 0 tX 0 ∼= X[1], but 0×X 0 ∼= τ≥0X[−1] where

τ≥0X[−1] = (· · · → X3 → X2 → ker(d)→ 0→ . . . ).

In particular if X is concentrated in degree zero, then 0×X 0 ∼= 0 in D(R)≥0.
3. The ∞-category S∗ = (NGpd∞)∗/ of pointed ∞-groupoids has a zero object,

but is not stable. In the category of pointed spaces S∗ = (NGpd∞)∗/ we have
∗t∂∆1 ∗ ∼= S1 but ∗×S1 ∗ ∼= Z where Z is considered as a discrete space pointed
at zero.

Definition 13 ([HA, Pg.23]). Let C be a stable ∞-category. For X ∈ C define

ΣX := 0 tX 0, ΩX := 0×X 0.

These are called respectively the suspension and loop functors.
One rigorous way of making this functorial is as follows. Consider the full sub-

∞-category E ⊆ Fun(∆1 ×∆1, C) consisting of those bicartesian squares

X //

��

0′

��
0 // Y

such that 0 and 0′ are both zero objects.1 By [HTT.4.3.2.15], the evaluation at
(0, 0) ∈ ∆1×∆1 functor e00 is a trivial fibration, and therefore there exists a section
s00 : C → E. Composition with the evaluation at (1, 1) ∈ ∆1 × ∆1 functor e11

determines an endomorphism

Σ : C
s00→ E

e11→ C.

Dually, if we choose a section s11 to e11 we obtain an endomorphism

Ω : C
s11→ E

e00→ C.

Remark 14. By functoriality of pushouts / pullbacks, there are natural transfor-
mations idE → s11e11 and s00e00 → idE inducing natural transformations

ΣΩ→ idC and idC → ΩΣ.

Since any two choices of pullback / pushout are equivalent via any of the canonical
comparison morphisms, these two natural transformations are equivalences.

Remark 15. If C is a pointed ∞-category admitting pushouts and pullbacks, then
the above natural transformations make (Σ,Ω) a pair of adjoints, even if they are
not equivalences [HA, Rem.1.1.2.8].

1For example, in D(R) this means they are chain complexes K, not necessarily zero, but such
that HnK = 0 for all n.
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Definition 16. Let C be a stable ∞-category. By abuse of notation we write

−[n] : C → C

for any composition Σi1Ωj1Σi2Ωj2 . . .ΣinΩjn such that
∑
ik−
∑
jk = n. Such functors

are called shift functors.

Exercise 17. Using the pushout and pullback calculations above show for X• ∈ ChR
and n ∈ Z, an object X•[n] in D(R) is quasi-isomorphic to the complex X• with the
indices shifted by n.

Lemma 18 ([HA, pg.24]). Suppose that C is a stable ∞-category. Then for any
two objects X, Y the hom set homhC(X, Y ) in the homotopy category hC is naturally
equipped with an abelian group structure, compatible with composition.

Proof. Since C is stable, there exists Z such that Y ∼= ΩΩZ. Then we have
MapC(X, Y ) ∼= MapC(X,ΩΩZ) ∼= ΩΩ MapC(X,Z) where MapC(X,Z) ∈ (NGpd∞)∗/
is pointed by a morphism X → 0 → Z factoring through a zero object. Hence,
π0 MapC(X, Y ) ∼= π2 MapC(X,Z).

Definition 19 ([HA, Def.1.1.2.11]). Suppose that C is a stable ∞-category. A
diagram

X
f→ Y

g→ Z
h→ X[1]

in the homotopy category is called a distinguished triangle if there exists a diagram
∆1 ×∆2 → C

X
f̃ //

��

Y

g̃
��

// 0

��
0′ // Z

h̃ //W

such that 0, 0′ are zero objects, both squares are cocartesian, the morphisms f̃ ,

g̃ represent f, g respectively, and h̃ represents h up to an equivalence W
∼=→ X[1]

determined by the outer cocartesian square.

Example 20.
1. In the derived category D(Q) of Q-vector spaces, a diagram

X
f→ Y

g→ Z
h→ X[1]

is a distinguished triangle if and only if

Hn(Y ) ∼= coker

(
Hn+1Z→HnX

)
⊕ ker

(
HnZ→Hn−1X

)
for all n, and similar for X and Z.
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2. In the derived category of abelian groups D(Z), for any short exact sequence
of abelian groups 0→A→B→C→0 there is an induced distinguished triangle

A→ B → C
h→ A[1].

Moreover, there is a canonical identification2 homhD(Ab))(C,A[1]) ∼= Ext1(C,A)
under which the morphism h corresponds to the extension B.

Lemma 21 ([HA, pg.28]). Suppose that C is a stable ∞-category and X
f→ Y

g→
Z

h→ X[1] is a distinguished triangle. Then

Y
g→ Z

h→ X[1]
−f [1]→ Y [1]

and

Z[−1]
−h[−1]→ X

f→ Y
g→ Z

are distinguished triangles.

Proof.
X //

��

Y

��

// 0

��
0′ // Z //

��

W

��
0′′ // V

Lemma 22. Suppose that C is a stable ∞-category and X
f→ Y

g→ Z
h→ X[1] is a

distinguished triangle. Then for any other object A there are long exact sequences of
abelian groups

· · · → homhC(A,X)→ homhC(A, Y )→ homhC(A,Z)→ homhC(A,X[1])→ . . .

and

· · · → homhC(X[1], A)→ homhC(Z,A)→ homhC(Y,A)→ homhC(X,A)→ . . .

Proof. By Lemma 21 and duality it suffices to show exactness at homhC(A, Y ). But
this follows from the fact that

Map(A,X) //

��

Map(A, Y )

��
∗ //Map(A,Z)

is a cartesian in the category (Gpd∞)∗/ pointed ∞-groupoids.

2Ever abelian group C admits a presentation 0→F1
d→F0→C→0 where F0, F1 are free

abelian groups (possibly of infinite rank). Then homhD(Ab))(C,A[1]) can be calculated as

coker

(
hom(F0, A)

d→ hom(F1, A)

)
. The extension corresponding to a morphism h ∈

homhD(Ab))(C,A[1]) is then B := F0 tF1
A = coker(F1

(d,h)→ F0 ⊕A).
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Before there was a widely accepted notion of stable ∞-category, triangulated
categories were a popular choice. The following theorem says that the homotopy
category of any stable ∞-category is a triangulated category. Note that by (TR3),

the cofibre of X
f→ Y in (TR1)(a) is unique up to isomorphism, but a priori, this iso-

morphism is highly non-unique. This is one of the major advantages of∞-categories:

being able to choose cof(X
f→ Y ) in an appropriately functorial way.

Theorem 23 ([HA, Thm.1.1.2.14]). Suppose that C is a stable ∞-category.
(TR0)

1. The homotopy category hC is an additive category:
(a) For every pair of objects X, Y the set homhC(X, Y ) has a canonical struc-

ture of abelian group, compatible with composition.
(b) For any pair of objects X, Y the canonical morphism X t Y → X × Y is

an equivalence. That is, finite products and finite coproducts agree. [HA,
Rmk.1.1.3.5]

2. The canonical morphisms X[−1][1] → X → X[1][−1] are equivalences. That
is, the functor X 7→ X[1] is an equivalence of categories.

(TR1) (a) Every morphism X
f→ Y of hC can be completed to a distinguished trian-

gle.
(b) The collection of distinguished triangles is stable under isomorphsim.
(c) For every object X the diagram

X
idX→ X → 0→ X[1]

is a distinguished triangle.
(TR2) A diagram

X
f→ Y

g→ Z
h→ X[1]

is a distinguished triangle if and only if the rotated diagrm

Y
g→ Z

h→ X[1]
−f [1]→ Y [1]

is a distinguished triangle.
(TR3) Given a commutative diagram

X //

f

��

Y //

��

Z //

��

X[1]

f [1]

��
X ′ // Y ′ // Z ′ // X ′[1]

in which both horizontal rows are distinguished triangles, there exists a dotted
arrow rendering the entire diagram commutative.

(TR4) Suppose given three distinguished triangles

X
f→ Y

u→ Y/X
d→ X[1]
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Y
g→ Z

v→ Z/Y
d′→ Y [1]

X
g◦f→ Z

w→ Z/X
d′′→ X[1]

in hC. Then there exists a fourth distinguished triangle

Y/X
φ→ Z/X

γ→ Z/Y
η→ Y/X[1]

such that the diagram

X
gf //

f

��

Z v //

w

##

Z/Y
η //

""

Y/X[1]

Y

g

==

u

!!

Z/X

γ
;;

d′′

##

Y [1]

u[1]
::

Y/X d //

φ
;;

X[1]

f [1]
<<

commutes

Remark 24. We have already proven some of this theorem above. Much of it is
more or less straight forward. The trickiest part is (TR4). This is proven using a
diagram of the form

X //

��

Y //

��

Z //

��

0

��
0 // Y/X //

��

Z/X //

��

X ′ //

��

0

��
0 // Z/Y // Y ′ // (Y/X)′

Proposition 25 ([HA, Prop.1.1.3.4]). Let C be a stable∞-category. Then C admits
all finite limits and finite colimits.

Proof. By duality it suffices to show that C admits all finite limits. For this it
suffices to show that it admits pairwise products and equalisers. For products, use
the diagram

Z //

��

Y

��
X //

��

0′

��
0 // X[1]

The lower and outside cartesian squares exists by the axioms of a stable∞-category.
It follows that the upper square is cartesian, i.e., that Z ∼= X × Y since 0′ is a final
object.
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For equalisers, the idea is to show that there is a distinguished triangle of the
form

eq(X
f

⇒
g
Y ) //

��

X

f−g

��
0 // Y

4.3 Stabilisation

The approach to stabilisation we will take is the following. We want to turn the
endomorphism Ω : C → C into an equivalence of categories. In the land of ∞-
categories there is a simple way to do this: just take the inverse limit3 of the iterated
loop functor.

Definition 26 ([Def.1.4.2.8, Prop.1.4.2.21]). Suppose C is an∞-category with finite
limits. The category of spectra is the inverse limit

lim←−(. . .
Ω→ C

Ω→ C
Ω→ C). (1)

Here are the main properties of the stabilisation.

Proposition 27 ([HA, Cor.1.4.2.17]). Let C be an ∞-category which admits finite
limits. Then the ∞-category Sp(C) of spectrum objects is stable.

Definition 28. The functor Sp(C) = lim←−(. . .
Ω→ C

Ω→ C
Ω→ C) → C projecting to

the last copy of C is denoted

Ω∞ : Sp(C)→ C.

Proposition 29 ([HA, Prop.1.4.2.21]). Let C be an ∞-category which admits finite
limits. Then C is stable if and only if Ω∞ : Sp(C) → C is an equivalence of ∞-
categories.

Corollary 30 ([Cor.1.4.2.23]). Let C be an ∞-category which admits finite limits,
and T a stable ∞-category. Then composition with the functor Ω∞ : Sp(C) → C
induces an equivalence of ∞-categories

FunLex(T, Sp(C))→ FunLex(T,C)

where FunLex means the full subcategory of functors sending finite limits to finite
limits.4

Example 31. Suppose R is a classical ring. Then ChR ∼= Sp((ChR)≥0).

3One could also consider the colimit lim−→(C
Σ→ C

Σ→ C
Σ→ . . . ) but this does not behave well with

respect to “large” objects such as infinite sums.
4Such functors are called left exact.
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4.4 Dold-Kan

Definition 32 ([HA, Def.1.2.3.9.]). Let R be a classical ring. Given a simplicial
R-module M ∈ R-Mod∆, one defines the normalised chain complex as

NMn :=
n⋂
i=1

(
Mn

di→Mn−1

)
(and NM0 = M0). The face maps d0 : Mn → Mn−1 define a structure of chain
complex on these modules.

Example 33. We have

(NR∆n)m =
m+1∧

(R⊕n+1)) ∼= R⊕(n+1
m+1)

the (m+ 1)th exterior power with differential acting on the canonical basis by ej0 ∧
· · · ∧ ejm 7→

∑m
k=0(−1)ej0 ∧ . . . êjk · · · ∧ ejm where êjk means omit the kth element.5

Exercise 34.
1. Show that the face maps d0 send NMn into NMn−1.
2. Show that d0 ◦ d0 = 0.
3. Deduce that N defines a functor

N : R-Mod∆ → ChR .

Definition 35. Given a chain complex M ∈ ChR, one defines a simplicial object by
setting

KMn = homChR
(NR∆n,M).

This defines a functor
R-Mod∆ ← ChR : K

Theorem 36 ([HA, Thm.1.2.3.7 (Dold-Kan Correspondence)]). Let R be a classical
ring. Then the functors

N : R-Mod∆ � (ChR)≥0 : K

are inverse equivalences of (classical) categories. Moreover, homotopy groups (at
0) on the left correspond to homology groups on the right, and hence, the model
structures are the same on both sides. Consequently, we obtain inverse equivalences
of ∞-categories

N(R-Mod∆)cf ∼= N((ChR)≥0)cf .

5This can be proven using [HA, 1.2.3.17]. Let Kos denote the complex made from the exterior
algebra. Sending ej0 ∧ · · · ∧ ejm (where j0 < · · · < jm) to the element of (R∆n)m corresponding to
[m] ↪→ [n]; j 7→ jm. Defines a map of chain complexes Kos→ CR∆n which one composes with the
projection CR∆n → NR∆n.
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Warning 37. The above equivalence is not monoidal! The category R-Mod∆ has a
canonical monoidal structure given by term-wise tensor product (M ⊗N)n = Mn ⊗
Nn. On the other hand, the category (ChR)≥0 also has a canonical monoidal structure
given by (M ⊗N)n = ⊕i+j=nMi ⊗Mj. There are canonical natural transformations

∇ : N(A)⊗N(B)→ N(A⊗B)

and
∆ : N(A⊗B)→ N(A)⊗N(B)

called respectively, the Eilenberg-Zilber map and the Alexander-Whitney map. The
composition ∆ ◦ ∇ is the identity, but ∇ ◦ ∆ is just a chain homotopy equivalence
in general.

A consequence of this is the the categories of commutative monoid objects in
R-Mod∆ and (ChR)≥0, i.e., the categories of simplicial R-algebras, and commutative
differential graded R-algebras, are not equivalent (unless Q ⊆ R).

Let R ∈ Ring∆ be a simplicial ring considered as a ring object in the category of
presheaves Fun(∆op,Set). An R-module is an R-module in the category of presheaves
Fun(∆op,Set). In other words, an R-module is a simplicial abelian group M such
that for each n, the group Mn has a structure of Rn-module, and for every [n]→ [m]
the maps Mm →Mn are morphisms of Rm-modules, where the Rm-module structure
on Mn is via the corresponding map Rm → Rn.

Example 38. Every simplicial set X ∈ Set∆ determines a simplicial R-module RX
which is the free Rn-module R⊕Xn

n in degree n.

As in the classical case, the category of R-modules is equipped with a simplicial
model structure where fibrations and weak equivalences are detected by the forgetful
functor U : R-mod → Ab∆, and the simplicial structure is defined using the R∆n

from the above example. As in the classical case, the cofibrant-fibrant objects are
those simplicial R-modules M such that each Mn is a projective Rn-module.

Definition 39. Let R ∈ Ring∆ be a simplicial ring. The derived category D(R) is
the stabilisation of the ∞-category associated to simplicial R-modules

D(R) := Sp(N(R-mod)cf).
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