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4 Higher (co)limits

4.1 Recollections from last time

Last time we defined initial (resp. final) objects in ∞-categories. We defined the
under (resp. over) categories Cp/ (resp. C/p) associated to a morphism p : I → C,
and then defined colimits (resp. limits) as the initial (resp. finial) objects in Cp/
(resp. C/p).

At the end, we defined the notion of adjunctions in the ∞-categorical setting,
and saw that if an ∞-category C admits all limits indexed by some I ∈ Cat∞, the
constant diagram functor admits a right adjoint, which gives lim←−(p) when evaluated
on p : I → C.

const. : C � Fun(I, C) : lim←−
In this lecture we will give two ways to calculate limits when the infinity category

is of the form C = NMcf for some combinatorial simplicial model category M. In
light of the identification N Fun(I,M)cf ∼= Fun(NI,NMcf), it suffices to construct
an adjunction

NMcf � N Fun(I,M)cf .

4.2 Calculating limits I: Derived functors

To begin with we recall the injective and projective model structures on Fun(I,M).

Definition 1 (cf. [HTT, Def.A.2.8.1]). SupposeM is a model category. A morphism
α : F → G in Fun(I,M) is called:

1. a weak equivalence if α(i) : F (i)→ G(i) is a weak equivalence for each i ∈ I,
2. an injective cofibration if α(i) : F (i)→ G(i) is a cofibration for each i ∈ I,
3. an injective fibration if it has the right lifting property1 with respect to all γ

which are both a weak equivalence and injective cofibration,
4. a projective fibration if α(i) : F (i)→ G(i) is a fibration for each i ∈ I.
5. an projective cofibration if it has the left lifting property2 with respect to all γ

which are both weak equivalence and projective fibration.

1α has the right lifting property with respect to β if for every commutative square γ ↓→→↓ α
there exists a diagonal morphism ↗ making two commutative triangles.

2α has the left lifting property with respect to β if for every commutative square α ↓→→↓ β there
exists a diagonal morphism ↗ making two commutative triangles.
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Proposition 2 ([HTT, A.3.3.2]). LetM be a combinatorial simplicial model category
and I a small simplicial category. Then:

1. The weak equivalences, projective cofibrations, and projective fibrations give
Fun(I,M) a structure of model category.

2. The weak equivalences, injective cofibrations, and injective fibrations give Fun(I,M)
a structure of model category.

Clearly, in general, the cofibrant-fibrant objects3 in Fun(I,M) will be difficult to
describe, but in some nice cases we can give a complete characterisation.

Example 3. Consider the case I=Λ2
2 and M=(Set∆)Quillen, so NMcf=NGpd∞=S.

An object
Z
��

X // Y

in Fun(Λ2
2,Set∆) is:

1. always injectively cofibrant,
2. injectively fibrant if Y ∈ Gpd∞ and both morphisms are Kan fibrations.
3. projectively cofibrant if X t Z → Y is a monomorphism.
4. projectively fibrant if X, Y, Z ∈ Gpd∞.

inj.cof. no conditions
inj.fib. X→Y

Z→Y Kan fibrations, Y Kan complex
proj.cof. X t Z→Y monomorphism
proj.fib. X, Y, Z Kan complexes

Consider the adjunction

const. : Set∆ � Fun(Λ2
2,Set∆) : lim←−

Note that in the injective model structure, the left adjoint preserves cofibrant objects,
and the right adjoint preserves fibrant objects. Note also that this fails for the
projective model structure.

Exercise 4. Let M (resp M′) be a model category with classes of cofibrations,
fibrations, and weak equivalences C,F ,W (resp. C ′, F ′, W ′), and suppose

f :M�M′ : g

is an adjunction. Using the characterisation of the classes C, C ∩ W ,W ∩ F ,F via
lifting properties, show that the following are equivalent.

1. f sends morphisms in C (resp. C ∩W) to morphisms in C ′ (resp. C ′ ∩W ′).
2. f sends morphisms in W ′ ∩ F ′ (resp. F ′) to morphisms in W ∩F (resp. F).

3Recall that an object X is cofibrant if the canonical morphism ∅ → X from the initial object
is a cofibration and fibrant if the canonical morphism X → ∗ to the terminal object is a fibration.
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Definition 5. An adjunction f :M �M′ : g between model categories satisfying
the equivalent conditions of Exer.4 is called a Quillen adjunction.

Proposition 6 ([HTT, Prop.5.2.4.6]). Suppose

f :M�M′ : g

is a simplicial adjunction between simplicial model categories. Then there is an
induced adjunction of ∞-categories

Lf : NMcf � N(M′)cf : Rg.

In fact, there are commutative squares of ∞-categories

NMcof
0

loc
��

f // N(M′
0)cof

loc
��

NMfib
0

loc
��

N(M′
0)fib

loc
��

goo

NMcf
Lf
// N(M′)cf NMcf N(M′)cf .

Rg
oo

where loc is induced by fibrant-cofibrant replacement, and (−)cof , (−)fib means the full
subcategory of cofibrant, fibrant objects, respectively.

Now suppose thatM is a combinatorial simplicial model category and I is a small
simplicial category. Equipping Fun(I,M) with the injective model structure (so
weak equivalences and cofibrations are determined objectwise, [HTT, Def.A.3.3.1])
we obtain a Quillen adjunction

const. :M� Fun(I,M)inj : lim←− .

Using the identifications N Fun(I,M)cf ∼= Fun(NI,NMcf) we obtain an adjunction
of ∞-categories

const. : NMcf � Fun(NI,NMcf) : R lim←−
where the left adjoint is given by the constant diagram functor. By uniqueness of
adjoints, we deduce that the right adjoint must be the ∞-category theoretic lim←−.

Proposition 7. Suppose that M is a combinatorial simplicial model category and I
a small simplicial category. There is a commutative square of ∞-categories

NM0

loc
��

N(Fun(I,M)0)fib
inj

lim←−oo

loc
��

NMcf Fun(NI,NMcf)
lim←−
oo

3



Example 8. In the case I = Λ2
2 and M = (Set∆)Quillen our square looks like:

N(Set∆)0

loc

��

N(Fun(I,Set∆)0)fib
inj

(−)×(−)(−)
oo

loc
��

S Fun(Λ2
2,S)

(−)×(−)(−)
oo

Consequently, if X→Y←Z is a pair of Kan fibrations between Kan complexes, then
the pullback X ×Y Z in the 1-category Set∆ is identified with the pullback in the
∞-category S = NGpd∞ under the functor loc. Note X ×Y Z will automatically
already be a Kan complex, because Kan fibrations are preserved by pullback and
composition.

For more examples, see the appendix.

4.3 Calculating limits II: Weighted limits

Above we saw that if p : I →M is nice enough, then lim←−(p) is equivalent to R lim←−(p)

in the∞-category NMcf . Specifically, this works if p is injectively fibrant. However,
there is no known reasonable description of injectively fibrant diagrams for a general
I (even the case of finite posets starts to be complicated, cf. the examples section
below). Projectively fibrant diagrams are much easier to recognise: they are those
diagrams for which each p(i) is fibrant. But the adjunction (const.a lim←−) is not a
Quillen adjunction for the projective structure. Weighted limits provide a way to
modify lim←− slightly so that it does become a right Quillen adjoint.

Definition 9. Suppose that C is a simplicial category satisfying:
(M0) The underlying classical category C0 admits all small limits and small colimits.
(M6) For every X, Y ∈ Ob C and K ∈ Set∆ there are objects X ⊗K and Y K and

isomorphisms

MapC(X ⊗K,Y ) ∼= MapSet∆
(K,Map(X, Y )) ∼= MapC(X, Y

K)

which are functorial in X, Y,K.
Suppose p : I → C0 is a functor from a small classical category and W : I → Set∆ is
any functor. The weighted limit (with respect to W ) is defined as

lim←−
W (p) = eq

 ∏
i∈Ob I

p(i)W (i) ⇒
∏
i
u→j

∈Arr I

p(j)W (i)


where the two morphisms are induced by p

W (i)
u : p

W (i)
i →pW (i)

i and p
W (u)
i : p

W (j)
i →pW (i)

i .
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Exercise 10. Show that if W is the constant functor with value ∗ ∈ Set∆ then
lim←−

W = lim←−. That is, in this case the weighted limit is the same as the usual classical
limit in the 1-category C0.

Exercise 11. Show that there is an adjunction

−⊗W (−) : C0 � Fun(I, C0) : lim←−
W

where the left adjoint sends an object X to the functor i 7→ X ⊗W (i).

Exercise 12 ([Hirschorn, Model categories and their localisations, Prop.9.3.7]).
Suppose that M is a simplicial model category. Show that the corner axiom:
(M7) If i : A→ B is in C and p : X → Y is in F , then

MapM(B,X)→ MapM(A,X)×MapM(A,Y ) MapM(B, Y )

is in F . If either i or p are in W then so is the above map.
is equivalent to:

(M7’) If i : A→ B is in C and j : L→ K is a monomorphism of simplicial sets, then
then

A⊗K
∐
A⊗L

B ⊗ L→ B ⊗K

is in C. If either i or j are in W then so is the above map.

Suppose we have a cofibrantly projective diagram W : I → Set∆. Using Exer-
cise 12 one can show that − ⊗ W (−) : C0 → Fun(I, C0) is a left Quillen functor.
Consequently, by Exercise 11 and Exercise 4 the functor lim←−

W is a right Quillen
functor. If moreover, W is weakly equivalent to the constant diagram ∗ : I → Set∆,
then the induced derived functor NMcf → Fun(NI,NMcf) will be equivalent to the
constant diagram functor. Now by uniqueness of adjoints, it follows that the right
adjoint Rlim←−

W : Fun(NI,NMcf)→ NMcf is equivalent to the∞-category theoretic
limit.

Proposition 13. Suppose that M is a combinatorial simplicial model category, I a
small simplicial category, and W : I → Set∆ a projectively cofibrant diagram which
is weakly equivalent to the constant diagram W ∼ ∗. Then there is a commutative
square of ∞-categories

NM0

loc
��

N(Fun(I,M)0)fib
proj

lim←−
W

oo

loc
��

NMcf Fun(NI,NMcf)
lim←−
oo
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Example 14. Suppose that I = Λ2
2 and M = (Set∆)Quillen. Consider the diagram

I → Set∆ given by ({0}→∆1←{1}). We claim this is projectively cofibrant (certainly
it is weakly equivalent to the constant diagram ∗). Indeed, consider the evaluation
functors evi : Fun(I,Set∆)proj→Set∆; X 7→ Xi. By definition of the projective model
structure, these are right Quillen functors. Hence, their left adjoints

γ0(X) = (X=X←∅)

γ1(X) = (∅→X=X)

γ2(X) = (∅→X←∅)

are left Quillen functors. Hence, the two diagrams ({0}={0}←∅) and (∅→{1}={1})
and their disjoint unionK0 := ({0}→∂∆1←{1}) are projectively cofibrant. Similarly,
γ2(∂∆1 → ∆1) is a projective cofibration. Consequently, the pushout

γ2(∂∆1) = (∅→∂∆1←∅) //

��

({0}→∂∆1←{1})

��

= K0

γ2(∆1) = (∅→∆1←∅) // ({0}→∆1←{1})

is projectively cofibrant.
It follows that for any diagram X : Λ2

2 → Gpd∞ of Kan complexes, the simplicial
set

X0 ×X2 Fun(∆1, X2)×X2 X1

is a fibre product for (X0→X2←X1) in the ∞-category S of spaces.

See below for more examples.

4.4 Main properties of (co)limits in ∞-categories

We now summarise the main properties of (co)limits. All proofs are omitted but we
give references to [HTT] for the interested reader.

Proposition 15 ([HTT, Lem.4.4.2.1] 2-out-of-3 for Cartesian squares). Let C ∈
Cat∞ and X : ∆2 ×∆1 → C a diagram:

X00
//

��

X10
//

��

X20

��
X01

// X11
// X21

Suppose that the right square is a pullback in C. Then the left square is a pullback if
and only if the outer square is a pullback.

Definition 16. We say a diagram p : K → C is finite or ℵ0-small if the simpli-
cial set K has finitely many non-degenerate4 simplicies. More generally, if κ is an
uncountable regular cardinal5 a diagram is called κ-small if each Kn is in Set<κ.

4Recall a simplex σ ∈ Kn is non-degenerate if it is not in the image of any Kn−1 → Kn.
5A cardinal κ is regular if I ∈ Set<κ and {Ki}i∈I ⊆ Set<κ implies lim−→i∈I Ki ∈ Set<κ where

Set<κ is the category of sets of size < κ.
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Proposition 17 ([HTT, Prop.4.4.3.2] Limits = products + equalisers). A∞-category
C ∈ Cat∞ has all finite limits if and only if it has equalisers and all finite products.
More generally, C has all κ-small limits if and only if it has equalisers and all κ-small
products.

Exercise 18. Prove the classical version of the above proposition in the category of
sets. That is, show that every limit can be written as an equaliser of products.

Proposition 19 ([HTT, Prop.4.4.2.6] Limits = products + pullbacks). The ∞-
category C has all finite limits if and only if it has pullbacks and all finite products.
More generally, C has all κ-small limits if and only if it has pullbacks and all κ-small
products.

Exercise 20. Show that in the category of sets every equaliser can be written as a
fibre product, and conversely, every fibre product can be written as an equaliser.

Proposition 21 ([HTT, Cor.5.1.2.3] Limits of presheaves are calculated object wise).
Let K,S ∈ Set∆ and suppose C ∈ Cat∞ admits K-indexed limits. Then

1. The ∞-category Fun(S,C) admits K-indexed limits.
2. A map K/ → Fun(S,C) is a limit diagram if and only if for each vertex s ∈ S,

the induced map K/ → C is a limit diagram.
That is, for F : K → Fun(S,C) and s ∈ S0 we have

(lim←−
K

Fk)(s) = lim←−
K

(Fk(s)).

Proposition 22 ([HTT, 5.1.3.2], Yoneda preserves limits). Let C ∈ Cat∞ be a small
∞-category and j : C → Fun(Cop,S) the Yoneda embedding. Then j preserves all
small limits which exists in C.

Proposition 23 ([HTT, Lem.5.1.5.3], Every presheaf is the colimit of its sections).
Suppose C ∈ Set∆, let j : C → PSh(C) = Fun(Cop,S) denote the Yoneda embedding,
and take F ∈ PSh(C). Consider the slice category C/F=C×PSh(C) (PSh(C)/F ) whose
objects are the morphisms j(c)→ F for c ∈ C. The canonical cocone C.

/F → PSh(C)
exhibits F as a colimit over C/F :

F = lim−→
c∈C/F

j(c).

Proposition 24 ([HTT, Prop.5.2.3.5]). Let f : C → D ∈ Cat∞ be a functor which
admits a right adjoint g : D → C. Then f preserves all colimits which exist in C
and g preserves all limits which exists in D.

Proposition 25 ([HTT, Prop.5.3.3.3] Filtered colimits commute with finite limits).
Suppose that I is an ∞-category. Then the following are equivalent.

1. K is cofiltered. That is, every finite diagram D → K admits a (not necessarily
limit) cone D/ → K.
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2. The limit functor lim←− : Fun(K,S)→ S preserves finite colimits.

lim−→
D

lim←−
K

p = lim←−
K

lim−→
D

p.

Proposition 26 ([HTT, Lem.5.5.2.3] Limits commute with limits). Let K,L be
simplicial sets, let p : (K/)× (L/)→ C be a diagram. Suppose that:

1. For every vertex k ∈ K/, the associated map pk : L/ → C is a limit diagram.
2. For every vertex l ∈ L, the associated map pl : K/ → C is a limit diagram.

Then the restriction p0 : K/ → C is a limit diagram, where 0 ∈ K/ is the cone point.
That is,

lim←−
k∈K

lim←−
l∈L

p(k, l) = lim←−
l∈L

lim←−
k∈K

p(k, l).

Proposition 27 ([HTT, Def.6.1.1.2, Lem.6.1.3.14], Colimits are universal in S). For
any morphism X → Y in the ∞-category of spaces S the associated pullback functor
S/Y → S/X preserves (small) colimits. That is, for any diagram p : K → S/Y , we
have

X×Y

(
lim−→
k∈K

p(k)

)
= lim−→

k∈K
(X ×Y p(k))

where the colimits are taken in S.

Remark 28. Combining Prop.27 with Prop.21 we see that for any C ∈ Cat∞ Prop.27
also holds in PSh(C,S). Moreover, if PSh(C,S) → T is any finite limit preserving
functor admitting a fully faithful right adjoint, then Prop.27 also holds in T . In fact,
Prop.27 is one of the fundamental characterising properties of higher topoi.

We have not used it but for interest, we record that the following is main tools
used to manipulate limits in the ∞-categorical context.

Proposition 29 ([HTT, Prop.4.4.1.1, Prop.4.4.2.2] Colimits over a colimit is a col-
imit). Let C ∈ Cat∞.

1. Suppose p : K → C is a diagram such that K =
∐
Kα, and suppose each

restricted diagram p|Kα has a colimit Xα. Then one may identify colimits of p
with coproducts

∐
Xα. That is,∐

lim−→
Kα

pα = lim−→∐
Kα

p.

2. Suppose p : K → C is a diagram such that K = K ′ tL′ L where L′ → L is
a monomorphism in Set∆, and suppose p|K′ (resp. p|L′, p|L) has a colimit X
(resp. Y , Z). Then one may identify colimits for p with pushouts X tY Z.
That is, lim−→

K′

(p|K′)
∐

lim−→L′
(p|L′ )

lim−→
L

(p|L)

 = lim−→
K′tL′L

p.
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4.5 Appendix I: Examples of derived limits

Example 30 (Products). Suppose I is discrete (that is, all morphisms are identity
morphisms) and M is a combinatorial simplicial model category. The projective
and injective model structures on Fun(I,M) are the same. Consequently, for any
collection {Xi}i∈I of fibrant objects in M, the product∏

i∈I

Xi

in M0 is a product in NMcf .

Example 31 (Pullbacks). Suppose I=Λ2
2 andM is a combinatorial simplicial model

category. An object
Z
��

X // Y

in Fun(Λ2
2,M) is injectively fibrant if and only if Y is fibrant and both morphisms

are fibrations. Consequently, for such objects, the fibre product X ×Y Z in M0 is
sent to a fibre product in NMcf under the localisation functor loc : NM0 → NMcf .

Remark 32. More generally, a morphism X → Y is injectively fibrant if and only
if both Xε → Yε ×Y2 X2 are fibrations.

Example 33 (Equalisers). Suppose I=(0 ⇒ 1) andM is a combinatorial simplicial
model category. An object

X ⇒ Y

in Fun(I,M) is injectively fibrant if and only if Y is fibrant and X → Y × Y is
fibration. Consequently, for such objects, the equaliser eq(X ⇒ Y ) in M0 is a sent
to an equaliser in NMcf under the localisation functor loc : NM0 → NMcf .

Example 34 (Towers). Suppose I=NNop andM is a combinatorial simplicial model
category. An object

(· · · → X2 → X1 → X0)

in Fun(I,M) is injectively fibrant if and only if X0 is fibrant and all Xn+1 → Xn are
fibrations. Consequently, for such objects, the limit lim←−(. . .→X2→X1→X0) inM0 is

a sent to an equaliser in NMcf under the localisation functor loc : NM0 → NMcf .

Example 35 (Finite Posets). Suppose I is a finite partially ordered set andM is a
combinatorial simplicial model category. An object

p : I →M

in Fun(I,M) is injectively fibrant if and only if for each i the canonical map p(i)→
lim←−i�j p(j) is a fibration. Consequently, for such objects, the limit lim←−(p) in M0 is a

sent to a limit in NMcf under the localisation functor loc : NM0 → NMcf .

Exercise 36. Prove one of the above fibrancy claims. Hint.6

6For the finite poset case use induction.
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4.6 Appendix II: Examples of weighted limits

Example 37 (Products). As we mentioned above, if I is discrete (that is, all mor-
phisms are identity morphisms) then the injective and projective model structures
on Fun(I,M) agree. So the constant diagram ∗ : I → Set∆ is already projectively
cofibrant. So in this case we just recover the above claim that for any collection
{Xi}i∈I of fibrant objects in M, the product∏

i∈I

Xi

in M0 is a product in NMcf .

Example 38 (Pullbacks). Suppose I=Λ2
2. We proved in Example 14 that the dia-

gram ({0}→∆1←{1}) is projective cofibrant. So for a general combinatorial simpli-
cial model category M, and diagram (X → Y ← Z), if all three X, Y, Z are fibrant
then

X ×Y Y ∆1 ×Y Z
is sent to a fibre product in NMcf under the localisation functor loc : NM0 →
NMcf .

Example 39 (Equalisers). Suppose I=(0 ⇒ 1). Then ({∗}
0

⇒
1

∆1) is projectively

cofibrant. So for a combinatorial simplicial model category M and diagram (X ⇒
Y ), if X and Y are fibrant then

X ×(Y×Y ) (Y ∆1

)

is sent to an equaliser in NMcf under the localisation functor loc : NM0 → NMcf .

Example 40 (Towers). Suppose I=NNop. Define

T = · · · t∆0 ∆1 t∆0 ∆1 t∆0 ∆1

where each 1 on the left of a t is glued to the 0 on the right. Note this is much
smaller than the simplicial set NNop. The latter has countably many non-degenerate
simplicies of dimension > 1. Let Σ : T → T denote the inclusion which sends the
nth ∆1 to the (n+ 1)th ∆1. Then

(. . .
Σ→ T

Σ→ T
Σ→ T ) : NNop → Set∆

is projectively cofibrant. So for a combinatorial simplicial model category M and
diagram (. . .→X2→X1→X0) if all Xn are fibrant then

· · · ×XT
2
XT

2 ×XT
1
XT

1 ×XT
0
XT

0 .

is sent to an equaliser in NMcf under the localisation functor loc : NM0 → NMcf .
Here, the fibre products are associated to Xn+1 → Xn on the left side and Σ : T → T
on the right side.
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Proposition 41 ([] Hirschhorn, Bousfield-Kan). For any small category I, the di-
agram W : i 7→ N(I/i) ∈ Set∆ is projectively cofibrant. So for a combinatorial
simplicial model category M and diagram p : I →M0 such that all p(i) are fibrant,
the weighted limit

lim←−
Wp; W : i 7→ N(I/i) ∈ Set∆

is sent to a limit in NMcf under the localisation functor loc : NM0 → NMcf .

Remark 42. In the pre-[HTT] literature (Hischhorn, Bousfield-Kan, Dugger, . . . )
the weighted limit in Prop.41 is called the homotopy limit. Since [HTT] perverted
the universally accepted definition of “descent” I assume it has also destroyed the
term “homotopy limit”. So I will use weighted limit instead.

Remark 43. Note that the general procedure of Prop.41 sometimes gives nice re-
sults: for discrete categories N(I/−) is the constant diagram ∗, for Λ2

2 (resp. (0 ⇒ 1))

we get ({0}→Λ2
2←{1}) (resp. ({0}

1

⇒
0

Λ2
2)) which almost what we used above. But

for I = NNop we get something much larger.
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