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4 Higher (co)limits

In these lectures we present the theory of (co)limits in co-categories. We see that for
oo-categories coming from simplicial model categories, (co)limits can be calculated
via derived (co)limits and weighted (co)limits. We list some important properties of
(co)limits in oo-categories. We finish with special cases of interest.

4.1 Discussion

Recall that we want to replace sets with homotopy types. In particular, we want to
consider any contractible spaces, such as Atlop >~ [0,1] C R! equivalent to a single

point. Now consider the following two diagrams in Top
* {1}

|

*—> % {0} — Atlop

These two diagrams are homotopy equivalent in a very strong sense, but their pull-
backs in Top are different

x X,k=x # @={0} X[0,1] {1}.

There are a couple of ways we can explain this problem.
1. (Local point of view). A classical pullback X xy Z is, by definition, an object
which functorially represents commutative squares.
Y

X—7

commutative
squares

W——>
hom(W, X xy Z) = |
Y

But in our new world, the left side is replaced with Map(W, X xy Z) and the
right hand side is also a homotopy type. Indeed, a commutative square in the
oo-category associated to Top is not a property foi = goh of morphisms, but
the datum of a homotopy f o7 ~ g o h between compositions.
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So instead of trying to build a fibre product in Top using the set
XxyZ={(zeX,z€Z)|f(z) =g(z) €Y}

we should at least start with the set

h 7 ) . gl 7(0) = f(=);
X YZ_{( € X, eZ,[O,l]—>Y)‘ V(1) = g(2) }

Exercise 1. Let X — Y <« Z be morphisms in Top®. Give X x} Z C
X X Z x homrep([0,1],Y") the subspace topology where homr,, ([0, 1], Z) has
the compact-open topologyﬂ Show that there is an isomorphism of sets

h - 7 h 7, 7(0) = f o1,
hommepes (W, X xy Z) = {(W—>X, W—=Z,00,1]=Y) ‘ ~(1)=goh }

and that these isomorphisms are functorial in W.

2. (Global point of view). The fibre product functor (if it exists) is the right
adjoint to the constant diagram functor

const. : CZ__Fun (A3,0) : lim

The fibre product we are used to in Top doesn’t preserve weak equivalenceﬂ in
general (as we saw above). We saw such a problem already in the first lecture:
the functor — @z M : Chy — Chpg doesn’t preserve quasi-isomorphisms in
general. The solution was to find some nice subcategory Chgee where —®r M
does preserve quasi-isomorphisms, and such that every chain complex is quasi-
isomorphic to one in Chgee. We could hope that the same thing happens here,
namely, that there is a nice subcategory

Fun(A2, Top)" C Fun(AZ, Top)

where lim does preserve weak equivalences, and such that every object of
Fun(A2, Top) is weakly equivalent to one in Fun(A2, Top).

Exercise 2. Suppose that

X—-yvy<? 7

N

X —Y' ~—7

g

€ Chg is a commutative diagram of chain complexes of abelian groups such that
the vertical morphisms are quasi-isomorphisms and the two morphisms g, ¢’ are

1So for any W € Top®® we have homr,y, (W, homrop([0,1],Y)) = homre, (W x [0,1],Y).
2We say that a natural transformation n : X — Y of diagrams X,Y : I — Top is a weak
equivalence if X; — Y; is a weak equivalence for all objects ¢ € I.



(termwise) surjective. Show that the induced morphism X Xy Z — X’ xy» Z’
is a quasi-isomorphism. Hint | Give an example where g, ¢’ are not surjective
and X Xy Z — X' xy+ Z' is not a quasi-isomorphism.

We will come back to these two points of view below. To begin with, we see what
the theory of (co)limits looks like inside the Catq,

4.2 (Co)limits in co-categories

Recall that for classical category theory, the notion of final (initial) objects is equiv-
alent to that of (co)limits. Namely, a final object is the limit of the empty diagram
@ — (', and a general limit 1£1 ,Xilsa final object in the category C/, of cones,
i.e., the over category of the diagram p: I — C;1+— X;.

We start with final (initial) objects. In classical category theory, an object *
is final if the sets hom (X, %) are all singleton sets. Since we are replacing sets with
homotopy types, “singleton” becomes “singleton up to homotopy”, or in other words,
“contractible”.

Definition 3 ([HTT, Prop.1.2.12.4]). Let C' be an oo-category. An object X € Cj is
final (vesp. initial) if homZ(Y, X) (resp. hom&(X,Y)) is contractible for all Y € Cj.

Remark 4 ([HTT, Prop.1.2.12.9]). Let C' be an oo-category, and C” the full sub-
category of C spanned by the final vertices of C. Then C’ is either empty, or is a
contractible Kan complex. That is, any two final objects are equivalent, and any two
equivalences are equivalent, and any two equivalences of equivalences are equivalent,
and...

Exercise 5.

1. Let C be a 1-category. Show that X € Cj is final (resp. initial) if and only if it
is final (resp. initial) in the classical sense. l.e., there exists a unique morphism
Y — X for every Y € (.

2. Recall that an exercise in Lecture 3 was to construct an isomorphism of sim-
plicial sets MapgingX(x, y) = Sing PX (z,y) associated to a topological space
X where PX(x,y) C hompp(Af,,, X) is the subspace of paths from z to y.
Using the factd" that:

(a) for any topological space Y the natural transformation |SingY| — Y is
always a weak equivalence, and
(b) a Kan complex is contractible if and only if all its homotopy groups are
trivial,
(c) there exist isomorphisms m,(PX(x,y),v) = w41 (X, z) for all n > 0,
r,y € X, v€ PX(z,y),
show that Sing X admits a final object if and only if X is weakly equivalent to
a point *, in which case every object of Sing X is final.

3Note that X xy Z = ker(X @ Z — Y) (and similar for X', Y”, Z’) and use the Snake Lemma
and the Five Lemma.
4The first two facts are theorems. The third is possible to prove directly.



Now we want to define categories over and under a diagram. Lurie first does this
using a generalisation x : Seta x Seta — Seta of the constructions A/P% and A0Y/
which appear in the definition of hom” and hom?.

Note that A is equipped with an operation

LU:AXA—=A

that sends finite linearly ordered sets I = {ip < --- < i,} and I' = {if < --- < i/, }
to TUT :={ig <+ <ip <ip<---<il,}

Definition 6 ([HTT, Def.1.2.8.1]). Let K, L be simplicial sets. For any linearly
ordered set J we define
(K«L);:== [ KrxLv

J=I1ul'

In the case I or I’ is empty, we set Ky = {*} = Ly to be a single element set. Given
a morphism p : J — J’ of linearly ordered sets and a decomposition J' = I LI I’,
there is an induced decomposition J = p~'I Up~'I’, and an induced morphism

Ky x Lp — K1y X Ly-ap.
These fit together to define morphisms

p i (K*xL)y — (K*L)y
giving K x L the structure of a simplicial set.

Exercise 7.
1. Show that K x @ = K = @ x K for any K € Seta.
2. Show that A®x A" = A+l = A" o« A More generally, show that

A1 L AT o A(H—j)—l

3. Suppose that P, Q) are partially ordered sets. Consider the coarsest partial order
on PII(Q such that P,Q) — PII(Q) are both morphisms of partially ordered sets,
and such that p < ¢ for all (p, q) € Px Q. Show that N(PUQ) = N(P)xN(Q).
Deduce that there are pushout squares in Seta

APt d1 Ar+2 AnH dnt1 A2

| | | |

Z"” A3 x A d +A”+2 A" x A2
e A" [lie, A" [Lic; A" [Les A"

. l “| J

Adﬂl A" % ([, A°) Adnl (I, A) + A™




4. Let C, D be a 1-categories. Define a new category C'x D by taking the disjoint
union C'[[ D and adding one morphism from ¢ to d for every pair (¢,d) €
Ob C x Ob D. Show that there is a unique composition law making C'[[ D —
C % D a functor. Show that NC' * ND = N(C % D). Deduce that there are

pushout squares in Seta

(A{O} 11 Al n})]_[2 . (An)HZ (A{O ,,,,, n—1} 11 A{n})UQ . (An)HQ

where K is the category 0 = 1.
5. Let X be a topological space and consider Al = 10,1] C R. Define

top T
Cone X := (X x [0,1]) Uxxqy {1}

That is, Cone X is the topological space obtained from X x [0, 1] by identifying
all points of the form (z,1). Show that there is a canonical morphism

(Sing X) « A? — Sing(Cone X)
sending Sing X to Sing(X x {(1,0)} and A° to (0,1).

Definition 8 (Joyal, [HTT, Prop.1.2.9.2]). Let p : K — S be a morphism of simpli-
cial sets, define

(Siphn ={f A" *xK = 5 : flx =p}.
Similarly, define

(Sp)n ={f : KxA" = S : flx =p}.

Note, these are both functorial in [n] € A, so define simplicial sets S/, and S,.
Moreover, there are canonical projection morphisms S,, — S and S, — S.

Exercise 9. Cf. Example[7l Let S be a simplicial set.

1. Given a vertex s : A? — S, show that (S/,), can be identified with the set of
n+1-simplicies o € S,,41 whose top vertex is s. That is, such that s=d;...dyo.

2. Given a set of vertices s : [],.; A — S show that (S),), can be identified with
the set of sets of n+1-simplices {o;};cr such that the top vertex of o; is s;, and
the lower n-simplex of each o; is the same, that is, d,,0; = d,,0; for all 4, j.

3. Let p : A3 — S be a morphism of simplicial sets. Show that (S),), can be
identified with the set of pairs of n+2-simplicies (o, 7) € SZ., whose (n+1)th
faces agree, that is, such that d,,; 10 = d,,117.

4. Let K be the nerve of the category 0 = 1 and p : K — S a morphism
of simplicial sets. Show that (S5),), can be identified with the set of pairs of
(n+2)-simplicies (o, 7) € SZ,, whose (n+2)th faces and final vertex agree, that
iS, such that dn+20' = dn+27' and do c. do o = dg . dg T.

—— ——

n—+2 times n—+2 times

5



Exercise 10.
1. Let X be a topological space, and give homr,, (AL, X) the compact-open

top?
topology. Let z € X be a point and consider the subspace X,, C homTop(Agop, X)
of those v : A{,,—X such that ((1,0)) = x. Show that Sing(X,/) = (Sing X),,.

2. Let p : I — C be a functor between 1-categories. Show that C), is the 1-
category of cones over p. That is, the category whose objects are collections of
morphisms (¢; : X — p(i))icopr such that the triangles

X
pj %
FOREREA

commute for each i - j and whose morphisms (X,v) — (X’,v') are those
morphisms f : X — X’ such that the triangles

p(i)

commute for each 7.

Definition 11 ([HTT, Def.1.2.13.4]). Let C' be an oco-category and p : K — C a
morphism of simplicial sets. A colimit for p is an initial object of C,, and a limit for
p is a final object in C',,.

Remark 12 ([HTT, 1.2.13.5]). Note that an object in C,, is a map K » A" — C.
Restricting to AY, we obtain an object A® — C of C. One says that K+xA? — C'is a
colimit diagram if it is a colimit of p, and abuse terminology be referring to A — C
as a colimit of p. We use the notation

Hm(p), ( resp. lim(p)).

By Remark [4] there is a contractible space of choices for a limit (resp. colimit)
diagram.

4.3 Calculating (co)limits I. Derived (co)limits

To make the exposition lighter we only discuss limits. For the colimit statements
insert (—)° everywhere.
We begin with the global point of view. In classical category theory, if a category
C has all limits then the limit functor is the right adjoint to the constant diagram
functor
const. : CZ__Fun (I,C): Jm

For oo-categories, one can define adjunctions in the familiar way, just replacing
hom sets with mapping spaces.



Definition 13 ([HTT, Def.5.2.2.1, Prop.5.2.2.8]). Let C, D € Cato,. An adjunction
between C' and D is a pair of functors f : C' &2 D : g for which there exists a
morphism u : id — g o f in Fun(C,C) such that for every pair of objects ¢ € C,
d € D, the composition

Mapp ((f(c), d) % Mapa(g(f(c)), g(d)) = Mapc(c, g(d))

is a weak equivalence.

Exercise 14 ([HTT, Prop.5.2.2.9]). Recall the homotopy / nerve adjunction.
h:Cate = Cat : N
Show that both A and N send adjunctions to adjunctions.

As in the classical case, if an adjoint exists, it is unique. In oo-category land,
uniqueness is up to homotopy unique up to homotopy unique up to...and this unique-
ness is expressed as an equivalence.

Proposition 15 ([HTT, Prop.5.2.1.3, Rem.5.2.2.2, Prop.5.2.6.2]). Consider C, D €
Cato, and let Fun®(C, D) C Fun(C, D) (resp. Fun®(D,C) C Fun(D, C)) denote the
full subcategory whose objects are those functors which are left adjoints (resp. right
adjoints). Then there is a canonical equivalence

Fun’(C, D) = Fun®(D, C)°?
such that left adjoints correspond to their right adjoints.

As in the classical case, if limits exist, then @ is functorial, and adjoint to the
constant diagram functor.

Proposition 16 ([HTT, Def.4.3.2.2, Prop.4.3.2.17]). Let I,C € Cats and sup-
pose that C' admits all limits indexed by I. Then the constant diagram functor
C—Fun(l,C) admits a right adjoint ® with the property that ®(p) = M(p) for
all p € Fun(1,C). In this situation we just write an for ®.

const. : C = Fun(I,C) : Jim
Warning 17. In general,
hFun(1l,C) # Fun(hl, hC).
The adjunction of Prop[I6]of co-categories induce an adjunction of classical categories
hC = hFun(I,C) : h lim

but there is no reason for hlim to induce a limit functor on AC. That is an oo-
category can admit limits without its homotopy category admitting limits.

7



Example 18. Sometimes the homotopy category does have (co)limits, but they don’t
agree with the oo-category (co)limits. For example, in the oo-category N(Chg)
the pushout of 0 <~ Q — 0 is Q[1] (we will prove this below). But h(N(Chg))
is equivalent to the (1-)category of Z-graded Q-vector spaces, so the pushout of
0+ Q — 0in h(N(Chg)) = GrVecy is zero.

Example 19. Sometimes homotopy categories lack (some) (co)limits. At the end of
these notes we show that the (1-)category h(N(Chz)) does not have all pushouts.
Of course the oo-category N(Chz)®f has all limits and colimits in the oo-categoric
sense.

On the other hand, we do have the following identification, applicable in many
cases such as (Seta)Quillen, Aba, Chp, Ring,.

Proposition 20 ([Prop.4.2.4.4, Rem.4.2.4.5)). If M is a combinatoriaf| simplicial
model category and I a small simplicial category there is an identification of oo-
categories

N Fun(I, M) = Fun(NT, NM)
where Fun(I, M) is equipped with either the injective or projective model structures.

Remark 21. Prop. was used in the case M = (Seta)quinen to construct the
Yoneda embedding. It’s quite a strong statement. It says that any diagram of
oo-categories NI — NM® (where composition only has to be preserved up to ho-
motopy) can be “rectified” to a diagram of 1-categories I — M (where composition
has to be preserved on the nose).

So we can hope to build limits in the co-cateory NM® using limits in M. We
will do this next week.

Goal 22. Given a simplicial model category M, build adjoints to the functor of
oo-categories
NM — N Fun(I, M)

induced by the constant diagram functor M — Fun(/, M).

4.4 A homotopy category lacking a pushout

Example 23 (Cf.[Strom, Modern classical homotopy theory, §20.1]).

Sometimes homotopy categories don’t have (some) colimits. Consider h(N(Chgz)<).

We will show that the diagram 0 <— Z — Z/2 (which of course has a colimit in the co-

category N(Chz)) does not have a colimit in the homotopy category h(N(Chz)).
We begin with a lemma.

5Part of the definition of a combinatorial model category is the definition of a locally presentable
category, and I don’t want to talk about this. Basically, every model category you will see is
combinatorial, so please ignore this for now.



Lemma 24. Suppose C' is an co-category, X : A3 x A — C' is a pushout diagram
with pushout H, and suppose the induced diagram A3 — hC admits a pushout P in
the 1-category hC. Then P is a retract of H in hC'.

Proof. We have

Mapo(H,Y) = Mape(Xo,Y) Xape(xa,v) Mape (X1, Y)

hoth(P, Y) = homhc(Xo, Y) Xhoth(XQ,y) homhc(Xl, Y)

(the first fibre product is in the co-category of spaces S, the second fibre product
in the 1-category of sets). Setting Y = H the second equation gives us a morphism
s: P — H, and setting Y = P, the first equation gives us a morphism p : H — P.
To see that idp = po s in hC is a diagram chase:

S homhc(P, H) = hoth(Xg,H) Xhomhc(Xg,H) hOIIlhc(Xl,H>
: | |
pos homhc(P, P) = hOl’Ilhc(Xo,P) Xhoth(X%p) hoth(Xl,P)
(and one needs to unwrap the definitions a bit). O

Set C := N(Chz). With the above lemma in hand, suppose the diagram 0 <
Z — 7./2 has a pushout P in the homotopy category hC'. The oco-categorical pushout
in the oo-category C iﬂ Z[1], so in the homotopy category, P is a retract of Z[1].
Sincd’| homyc(Z[1], Z[1]) = Z we must have either P = 0 or P = Z[1]. Direct
calculation shows that both of these are impossible[]

hoth(P, Z[l]) = hoth(O, Z[l]) Xhomhc(Z,Z[lD hoth(Z/2, Z[l])
= {0} xq0y Z/2
=1z/2,
homyc(Z[1],Z[1]) = Z,
homy,(0, Z[1]) = 0.

To see this, one can choose the cofibrant-fibrant model Q(Z/2) := (... S0Z37—0— ... ) for
Z/2 and then the oco-categorical pushout is the 1-categorical pushout of 0 + Z — Q(Z/2) in the
model category Chz. (This new diagram is not injectively cofibrant because only one morphism
is a cofibration, but for diagrams indexed by A3 as long as one morphism is cofibrant, pushout
preserves weak equivalences, cf. Exercise [2l So this is enough to get the correct pushout.)

If P> Z[1] and Z[1] % P are morphisms such that idp = ps then we have (sp)(sp) = sp; that
is, sp € homp(Z[1],Z[1]) = Z is an idempotent. But the only two idempotents in Z are 0 and 1.

80mne can use Q(Z/2) again for the calculation of hompc(Z/2, Z[1]).
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