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4 Higher (co)limits

In these lectures we present the theory of (co)limits in∞-categories. We see that for
∞-categories coming from simplicial model categories, (co)limits can be calculated
via derived (co)limits and weighted (co)limits. We list some important properties of
(co)limits in ∞-categories. We finish with special cases of interest.

4.1 Discussion

Recall that we want to replace sets with homotopy types. In particular, we want to
consider any contractible spaces, such as ∆1

top
∼= [0, 1] ⊆ R1 equivalent to a single

point. Now consider the following two diagrams in Top

∗

��

{1}

��
∗ // ∗ {0} // ∆1

top

These two diagrams are homotopy equivalent in a very strong sense, but their pull-
backs in Top are different

∗ ×∗ ∗ = ∗ 6= ∅ = {0} ×[0,1] {1}.

There are a couple of ways we can explain this problem.
1. (Local point of view). A classical pullback X ×Y Z is, by definition, an object

which functorially represents commutative squares.

hom(W,X ×Y Z) ∼=

 commutative
squares

W

��

// Y

��
X // Z


But in our new world, the left side is replaced with Map(W,X ×Y Z) and the
right hand side is also a homotopy type. Indeed, a commutative square in the
∞-category associated to Top is not a property f ◦ i = g ◦h of morphisms, but
the datum of a homotopy f ◦ i ∼ g ◦ h between compositions.

W

i
��

h // Y

g
��

X
f
// Z

:B
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So instead of trying to build a fibre product in Top using the set

X ×Y Z = {(x ∈ X, z ∈ Z)|f(x) = g(z) ∈ Y }

we should at least start with the set

X ×hY Z =

{
(x ∈ X, z ∈ Z, [0, 1]

γ→ Y )

∣∣∣∣ γ(0) = f(x);
γ(1) = g(z)

}
Exercise 1. Let X → Y ← Z be morphisms in Topcg. Give X ×hY Z ⊆
X × Z × homTop([0, 1], Y ) the subspace topology where homTop([0, 1], Z) has
the compact-open topology1 Show that there is an isomorphism of sets

homTopcg(W,X ×hY Z) =

{
(W

i→X,W h→Z, [0, 1]
γ→Y )

∣∣∣∣ γ(0) = f ◦ i,
γ(1) = g ◦ h

}
and that these isomorphisms are functorial in W .

2. (Global point of view). The fibre product functor (if it exists) is the right
adjoint to the constant diagram functor

const. : C
++
Funii (Λ2

2, C) : lim←−
The fibre product we are used to in Top doesn’t preserve weak equivalences2 in
general (as we saw above). We saw such a problem already in the first lecture:
the functor − ⊗R M : ChR → ChR doesn’t preserve quasi-isomorphisms in
general. The solution was to find some nice subcategory ChfreeR where −⊗RM
does preserve quasi-isomorphisms, and such that every chain complex is quasi-
isomorphic to one in ChfreeR . We could hope that the same thing happens here,
namely, that there is a nice subcategory

Fun(Λ2
2,Top)cf ⊆ Fun(Λ2

2,Top)

where lim←− does preserve weak equivalences, and such that every object of

Fun(Λ2
2,Top) is weakly equivalent to one in Fun(Λ2

2,Top)cf .

Exercise 2. Suppose that

X //

��

Y

��

Z
goo

��
X ′ // Y ′ Z ′

g′
oo

∈ ChZ is a commutative diagram of chain complexes of abelian groups such that
the vertical morphisms are quasi-isomorphisms and the two morphisms g, g′ are

1So for any W ∈ Topcg we have homTop(W, homTop([0, 1], Y )) = homTop(W × [0, 1], Y ).
2We say that a natural transformation η : X → Y of diagrams X,Y : I → Top is a weak

equivalence if Xi → Yi is a weak equivalence for all objects i ∈ I.
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(termwise) surjective. Show that the induced morphism X ×Y Z → X ′ ×Y ′ Z ′
is a quasi-isomorphism. Hint.3 Give an example where g, g′ are not surjective
and X ×Y Z → X ′ ×Y ′ Z ′ is not a quasi-isomorphism.

We will come back to these two points of view below. To begin with, we see what
the theory of (co)limits looks like inside the Cat∞.

4.2 (Co)limits in ∞-categories

Recall that for classical category theory, the notion of final (initial) objects is equiv-
alent to that of (co)limits. Namely, a final object is the limit of the empty diagram
∅ → C, and a general limit lim←−i∈I Xi is a final object in the category C/p of cones,
i.e., the over category of the diagram p : I → C; i 7→ Xi.

We start with final (initial) objects. In classical category theory, an object ∗
is final if the sets hom(X, ∗) are all singleton sets. Since we are replacing sets with
homotopy types, “singleton” becomes “singleton up to homotopy”, or in other words,
“contractible”.

Definition 3 ([HTT, Prop.1.2.12.4]). Let C be an∞-category. An object X ∈ C0 is
final (resp. initial) if homR

C(Y,X) (resp. homL
C(X, Y )) is contractible for all Y ∈ C0.

Remark 4 ([HTT, Prop.1.2.12.9]). Let C be an ∞-category, and C ′ the full sub-
category of C spanned by the final vertices of C. Then C ′ is either empty, or is a
contractible Kan complex. That is, any two final objects are equivalent, and any two
equivalences are equivalent, and any two equivalences of equivalences are equivalent,
and...

Exercise 5.
1. Let C be a 1-category. Show that X ∈ C0 is final (resp. initial) if and only if it

is final (resp. initial) in the classical sense. I.e., there exists a unique morphism
Y → X for every Y ∈ C0.

2. Recall that an exercise in Lecture 3 was to construct an isomorphism of sim-
plicial sets MapRSingX(x, y) ∼= SingPX(x, y) associated to a topological space
X where PX(x, y) ⊆ homTop(∆1

top, X) is the subspace of paths from x to y.
Using the facts4 that:
(a) for any topological space Y the natural transformation | Sing Y | → Y is

always a weak equivalence, and
(b) a Kan complex is contractible if and only if all its homotopy groups are

trivial,
(c) there exist isomorphisms πn(PX(x, y), γ) ∼= πn+1(X, x) for all n ≥ 0,

x, y ∈ X, γ ∈ PX(x, y),
show that SingX admits a final object if and only if X is weakly equivalent to
a point ∗, in which case every object of SingX is final.

3Note that X ×Y Z = ker(X ⊕ Z → Y ) (and similar for X ′, Y ′, Z ′) and use the Snake Lemma
and the Five Lemma.

4The first two facts are theorems. The third is possible to prove directly.

3



Now we want to define categories over and under a diagram. Lurie first does this
using a generalisation ? : Set∆×Set∆ → Set∆ of the constructions ∆Jt[0] and ∆[0]tJ

which appear in the definition of homR and homL.
Note that ∆ is equipped with an operation

t : ∆×∆→ ∆

that sends finite linearly ordered sets I = {i0 < · · · < in} and I ′ = {i′0 < · · · < i′n′}
to I t I ′ := {i0 < · · · < in < i′0 < · · · < i′n′}.

Definition 6 ([HTT, Def.1.2.8.1]). Let K, L be simplicial sets. For any linearly
ordered set J we define

(K ? L)J :=
∐

J=ItI′
KI × LI′

In the case I or I ′ is empty, we set K∅ = {∗} = L∅ to be a single element set. Given
a morphism p : J → J ′ of linearly ordered sets and a decomposition J ′ = I t I ′,
there is an induced decomposition J = p−1I t p−1I ′, and an induced morphism

KI × LI′ → Kp−1I × Lp−1I′ .

These fit together to define morphisms

p∗ : (K ? L)J ′ → (K ? L)J

giving K ? L the structure of a simplicial set.

Exercise 7.
1. Show that K ?∅ = K = ∅ ? K for any K ∈ Set∆.
2. Show that ∆0 ?∆n ∼= ∆n+1 ∼= ∆n ?∆0. More generally, show that

∆i−1 ?∆j−1 ∼= ∆(i+j)−1.

3. Suppose that P,Q are partially ordered sets. Consider the coarsest partial order
on P qQ such that P,Q→ P qQ are both morphisms of partially ordered sets,
and such that p ≤ q for all (p, q) ∈ P×Q. Show that N(P tQ) = N(P )?N(Q).
Deduce that there are pushout squares in Set∆

∆n+1

d1
��

d1 // ∆n+2

��

∆n+1

dn+1

��

dn+1 // ∆n+2

��
∆n+2 // Λ2

0 ?∆n ∆n+2 // ∆n ? Λ2
2

∐
i∈I ∆n−1 dn //

id
��

∐
i∈I ∆n

��

∐
i∈I ∆n−1 d0 //

id
��

∐
i∈I ∆n

��
∆n−1 // ∆n ? (

∐
i∈I ∆0) ∆n−1 // (

∐
i∈I ∆0) ?∆n
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4. Let C,D be a 1-categories. Define a new category C ?D by taking the disjoint
union C

∐
D and adding one morphism from c to d for every pair (c, d) ∈

Ob C ×Ob D. Show that there is a unique composition law making C
∐
D →

C ? D a functor. Show that NC ? ND = N(C ? D). Deduce that there are
pushout squares in Set∆(

∆{0}
∐

∆{1,...,n}
)∐ 2 //

��

(∆n)
∐

2

��

(
∆{0,...,n−1}∐∆{n}

)∐ 2 //

��

(∆n)
∐

2

��
∆{0}

∐
∆{1,...,n} // NK ?∆n−2 ∆{0,...,n−1}∐∆{n} // ∆n−2 ? NK

where K is the category 0 ⇒ 1.
5. Let X be a topological space and consider ∆1

top
∼= [0, 1] ⊆ R. Define

ConeX := (X × [0, 1]) tX×{1} {1}.

That is, ConeX is the topological space obtained from X× [0, 1] by identifying
all points of the form (x, 1). Show that there is a canonical morphism

(SingX) ?∆0 → Sing(ConeX)

sending SingX to Sing(X × {(1, 0)} and ∆0 to (0, 1).

Definition 8 (Joyal, [HTT, Prop.1.2.9.2]). Let p : K → S be a morphism of simpli-
cial sets, define

(S/p)n = {f : ∆n ? K → S : f |K = p}.
Similarly, define

(Sp/)n = {f : K ?∆n → S : f |K = p}.
Note, these are both functorial in [n] ∈ ∆, so define simplicial sets S/p and Sp/.
Moreover, there are canonical projection morphisms S/p → S and Sp/ → S.

Exercise 9. Cf. Example 7. Let S be a simplicial set.
1. Given a vertex s : ∆0 → S, show that (S/s)n can be identified with the set of
n+1-simplicies σ ∈ Sn+1 whose top vertex is s. That is, such that s= d0 . . . d0︸ ︷︷ ︸

n+1 times

σ.

2. Given a set of vertices s :
∐

i∈I ∆0 → S show that (S/s)n can be identified with
the set of sets of n+1-simplices {σi}i∈I such that the top vertex of σi is si, and
the lower n-simplex of each σi is the same, that is, dnσi = dnσj for all i, j.

3. Let p : Λ2
2 → S be a morphism of simplicial sets. Show that (S/p)n can be

identified with the set of pairs of n+2-simplicies (σ, τ) ∈ S2
n+2 whose (n+1)th

faces agree, that is, such that dn+1σ = dn+1τ .
4. Let K be the nerve of the category 0 ⇒ 1 and p : K → S a morphism

of simplicial sets. Show that (S/p)n can be identified with the set of pairs of
(n+2)-simplicies (σ, τ) ∈ S2

n+2 whose (n+2)th faces and final vertex agree, that
is, such that dn+2σ = dn+2τ and d0 . . . d0︸ ︷︷ ︸

n+2 times

σ = d0 . . . d0︸ ︷︷ ︸
n+2 times

τ .
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Exercise 10.
1. Let X be a topological space, and give homTop(∆1

top, X) the compact-open
topology. Let x ∈ X be a point and consider the subspaceXx/ ⊆ homTop(∆1

top, X)
of those γ : ∆1

top→X such that γ((1, 0)) = x. Show that Sing(Xx/) = (SingX)x/.
2. Let p : I → C be a functor between 1-categories. Show that C/p is the 1-

category of cones over p. That is, the category whose objects are collections of
morphisms (ψi : X → p(i))i∈ObI such that the triangles

X
ψi

!!

ψj

}}
p(i)

p(u)
// p(j)

commute for each i
u→ j and whose morphisms (X,ψ) → (X ′, ψ′) are those

morphisms f : X → X ′ such that the triangles

X
f

//

ψi !!

X ′

ψi}}
p(i)

commute for each i.

Definition 11 ([HTT, Def.1.2.13.4]). Let C be an ∞-category and p : K → C a
morphism of simplicial sets. A colimit for p is an initial object of Cp/ and a limit for
p is a final object in C/p.

Remark 12 ([HTT, 1.2.13.5]). Note that an object in Cp/ is a map K ? ∆0 → C.
Restricting to ∆0, we obtain an object ∆0 → C of C. One says that K?∆0 → C is a
colimit diagram if it is a colimit of p, and abuse terminology be referring to ∆0 → C
as a colimit of p. We use the notation

lim←−(p), ( resp. lim−→(p)).

By Remark 4 there is a contractible space of choices for a limit (resp. colimit)
diagram.

4.3 Calculating (co)limits I. Derived (co)limits

To make the exposition lighter we only discuss limits. For the colimit statements
insert (−)op everywhere.

We begin with the global point of view. In classical category theory, if a category
C has all limits then the limit functor is the right adjoint to the constant diagram
functor

const. : C
++
Funii (I, C) : lim←−

For ∞-categories, one can define adjunctions in the familiar way, just replacing
hom sets with mapping spaces.
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Definition 13 ([HTT, Def.5.2.2.1, Prop.5.2.2.8]). Let C,D ∈ Cat∞. An adjunction
between C and D is a pair of functors f : C � D : g for which there exists a
morphism u : id → g ◦ f in Fun(C,C) such that for every pair of objects c ∈ C,
d ∈ D, the composition

MapD((f(c), d)
g→ MapC(g(f(c)), g(d))

u→ MapC(c, g(d))

is a weak equivalence.

Exercise 14 ([HTT, Prop.5.2.2.9]). Recall the homotopy / nerve adjunction.

h : Cat∞ � Cat : N

Show that both h and N send adjunctions to adjunctions.

As in the classical case, if an adjoint exists, it is unique. In ∞-category land,
uniqueness is up to homotopy unique up to homotopy unique up to...and this unique-
ness is expressed as an equivalence.

Proposition 15 ([HTT, Prop.5.2.1.3, Rem.5.2.2.2, Prop.5.2.6.2]). Consider C,D ∈
Cat∞ and let FunL(C,D) ⊆ Fun(C,D) (resp. FunR(D,C) ⊆ Fun(D,C)) denote the
full subcategory whose objects are those functors which are left adjoints (resp. right
adjoints). Then there is a canonical equivalence

FunL(C,D) = FunR(D,C)op

such that left adjoints correspond to their right adjoints.

As in the classical case, if limits exist, then lim←− is functorial, and adjoint to the
constant diagram functor.

Proposition 16 ([HTT, Def.4.3.2.2, Prop.4.3.2.17]). Let I, C ∈ Cat∞ and sup-
pose that C admits all limits indexed by I. Then the constant diagram functor
C→Fun(I, C) admits a right adjoint Φ with the property that Φ(p) = lim←−(p) for
all p ∈ Fun(I, C). In this situation we just write lim←− for Φ.

const. : C � Fun(I, C) : lim←−
Warning 17. In general,

hFun(I, C) 6= Fun(hI, hC).

The adjunction of Prop.16 of∞-categories induce an adjunction of classical categories

hC � hFun(I, C) : h lim←−
but there is no reason for h lim←− to induce a limit functor on hC. That is an ∞-
category can admit limits without its homotopy category admitting limits.
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Example 18. Sometimes the homotopy category does have (co)limits, but they don’t
agree with the ∞-category (co)limits. For example, in the ∞-category N(ChQ)cf

the pushout of 0 ← Q → 0 is Q[1] (we will prove this below). But h(N(ChQ)cf)
is equivalent to the (1-)category of Z-graded Q-vector spaces, so the pushout of
0← Q→ 0 in h(N(ChQ)cf) ∼= GrV ecQ is zero.

Example 19. Sometimes homotopy categories lack (some) (co)limits. At the end of
these notes we show that the (1-)category h(N(ChZ)cf) does not have all pushouts.
Of course the ∞-category N(ChZ)cf has all limits and colimits in the ∞-categoric
sense.

On the other hand, we do have the following identification, applicable in many
cases such as (Set∆)Quillen, Ab∆, ChR, Ring∆.

Proposition 20 ([Prop.4.2.4.4, Rem.4.2.4.5]). If M is a combinatorial5 simplicial
model category and I a small simplicial category there is an identification of ∞-
categories

N Fun(I,M)cf ∼= Fun(NI,NMcf)

where Fun(I,M) is equipped with either the injective or projective model structures.

Remark 21. Prop.20 was used in the case M = (Set∆)Quillen to construct the
Yoneda embedding. It’s quite a strong statement. It says that any diagram of
∞-categories NI → NMcf (where composition only has to be preserved up to ho-
motopy) can be “rectified” to a diagram of 1-categories I →M (where composition
has to be preserved on the nose).

So we can hope to build limits in the ∞-cateory NMcf using limits in M. We
will do this next week.

Goal 22. Given a simplicial model category M, build adjoints to the functor of
∞-categories

NMcf → N Fun(I,M)cf .

induced by the constant diagram functor M→ Fun(I,M).

4.4 A homotopy category lacking a pushout

Example 23 (Cf.[Strom, Modern classical homotopy theory, §20.1]).
Sometimes homotopy categories don’t have (some) colimits. Consider h(N(ChZ)cf).
We will show that the diagram 0← Z→ Z/2 (which of course has a colimit in the∞-
category N(ChZ)cf) does not have a colimit in the homotopy category h(N(ChZ)cf).

We begin with a lemma.

5Part of the definition of a combinatorial model category is the definition of a locally presentable
category, and I don’t want to talk about this. Basically, every model category you will see is
combinatorial, so please ignore this for now.
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Lemma 24. Suppose C is an ∞-category, X : Λ2
0 ? ∆0 → C is a pushout diagram

with pushout H, and suppose the induced diagram Λ2
0 → hC admits a pushout P in

the 1-category hC. Then P is a retract of H in hC.

Proof. We have

MapC(H,Y )
w.e.∼= MapC(X0, Y )×MapC(X2,Y ) MapC(X1, Y )

homhC(P, Y ) = homhC(X0, Y )×homhC(X2,Y ) homhC(X1, Y )

(the first fibre product is in the ∞-category of spaces S, the second fibre product
in the 1-category of sets). Setting Y = H the second equation gives us a morphism
s : P → H, and setting Y = P , the first equation gives us a morphism p : H → P .
To see that idP = p ◦ s in hC is a diagram chase:

s

7→

homhC(P,H) =

��

homhC(X0, H)×homhC(X2,H) homhC(X1, H)

��
p ◦ s homhC(P, P ) = homhC(X0, P )×homhC(X2,P ) homhC(X1, P )

(and one needs to unwrap the definitions a bit).

Set C := N(ChZ)cf . With the above lemma in hand, suppose the diagram 0 ←
Z→ Z/2 has a pushout P in the homotopy category hC. The∞-categorical pushout
in the ∞-category C is6 Z[1], so in the homotopy category, P is a retract of Z[1].
Since7 homhC(Z[1],Z[1]) = Z we must have either P = 0 or P = Z[1]. Direct
calculation shows that both of these are impossible.8

homhC(P,Z[1]) = homhC(0,Z[1])×homhC(Z,Z[1]) homhC(Z/2,Z[1])

= {0} ×{0} Z/2
= Z/2,

homhC(Z[1],Z[1]) = Z,
homhC(0,Z[1]) = 0.

6To see this, one can choose the cofibrant-fibrant model Q(Z/2) := (. . .→0→Z 2→Z→0→ . . . ) for
Z/2 and then the ∞-categorical pushout is the 1-categorical pushout of 0 ← Z → Q(Z/2) in the
model category ChZ. (This new diagram is not injectively cofibrant because only one morphism
is a cofibration, but for diagrams indexed by Λ2

0 as long as one morphism is cofibrant, pushout
preserves weak equivalences, cf. Exercise 2. So this is enough to get the correct pushout.)

7If P
s→ Z[1] and Z[1]

p→ P are morphisms such that idP = ps then we have (sp)(sp) = sp; that
is, sp ∈ homhC(Z[1],Z[1]) = Z is an idempotent. But the only two idempotents in Z are 0 and 1.

8One can use Q(Z/2) again for the calculation of homhC(Z/2,Z[1]).
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