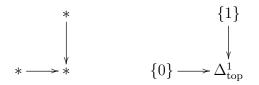
Derived Algebraic Geometry Shane Kelly, UTokyo Autumn Semester 2022-2023 This file compiled November 11, 2022

4 Higher (co)limits

In these lectures we present the theory of (co)limits in ∞ -categories. We see that for ∞ -categories coming from simplicial model categories, (co)limits can be calculated via derived (co)limits and weighted (co)limits. We list some important properties of (co)limits in ∞ -categories. We finish with special cases of interest.

4.1 Discussion

Recall that we want to replace sets with homotopy types. In particular, we want to consider any contractible spaces, such as $\Delta_{top}^1 \cong [0,1] \subseteq \mathbb{R}^1$ equivalent to a single point. Now consider the following two diagrams in Top



These two diagrams are homotopy equivalent in a very strong sense, but their pullbacks in Top are different

$$* \times_* * = * \neq \emptyset = \{0\} \times_{[0,1]} \{1\}$$

There are a couple of ways we can explain this problem.

1. (Local point of view). A classical pullback $X \times_Y Z$ is, by definition, an object which functorially represents commutative squares.

$$\hom(W, X \times_Y Z) \cong \left\{ \begin{array}{cc} W - - \succ Y \\ \text{commutative} & | & | \\ \text{squares} & \psi & \psi \\ X \longrightarrow Z \end{array} \right\}$$

But in our new world, the left side is replaced with $\operatorname{Map}(W, X \times_Y Z)$ and the right hand side is also a homotopy type. Indeed, a commutative square in the ∞ -category associated to Top is not a property $f \circ i = g \circ h$ of morphisms, but the datum of a homotopy $f \circ i \sim g \circ h$ between compositions.

So instead of trying to build a fibre product in Top using the set

$$X \times_Y Z = \{ (x \in X, z \in Z) | f(x) = g(z) \in Y \}$$

we should at least start with the set

$$X \times_Y^h Z = \left\{ (x \in X, z \in Z, [0, 1] \xrightarrow{\gamma} Y) \middle| \begin{array}{l} \gamma(0) = f(x); \\ \gamma(1) = g(z) \end{array} \right\}$$

Exercise 1. Let $X \to Y \leftarrow Z$ be morphisms in Top^{cg}. Give $X \times_Y^h Z \subseteq X \times Z \times \hom_{\text{Top}}([0,1],Y)$ the subspace topology where $\hom_{\text{Top}}([0,1],Z)$ has the compact-open topology¹ Show that there is an isomorphism of sets

$$\hom_{\mathrm{Top}^{\mathrm{cg}}}(W, X \times^{h}_{Y} Z) = \left\{ (W \xrightarrow{i} X, W \xrightarrow{h} Z, [0, 1] \xrightarrow{\gamma} Y) \middle| \begin{array}{c} \gamma(0) = f \circ i, \\ \gamma(1) = g \circ h \end{array} \right\}$$

and that these isomorphisms are functorial in W.

2. (Global point of view). The fibre product functor (if it exists) is the right adjoint to the constant diagram functor

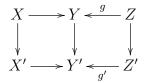
const. :
$$C \xrightarrow{}$$
 Fun (Λ_2^2, C) : $\lim_{\to \infty}$

The fibre product we are used to in Top doesn't preserve weak equivalences² in general (as we saw above). We saw such a problem already in the first lecture: the functor $-\otimes_R M$: $\operatorname{Ch}_R \to \operatorname{Ch}_R$ doesn't preserve quasi-isomorphisms in general. The solution was to find some nice subcategory $\operatorname{Ch}_R^{free}$ where $-\otimes_R M$ does preserve quasi-isomorphisms, and such that every chain complex is quasi-isomorphic to one in $\operatorname{Ch}_R^{free}$. We could hope that the same thing happens here, namely, that there is a nice subcategory

$$\operatorname{Fun}(\Lambda_2^2, \operatorname{Top})^{\operatorname{cf}} \subseteq \operatorname{Fun}(\Lambda_2^2, \operatorname{Top})$$

where $\lim_{\lambda_2} does$ preserve weak equivalences, and such that every object of $\operatorname{Fun}(\Lambda_2^2, \operatorname{Top})$ is weakly equivalent to one in $\operatorname{Fun}(\Lambda_2^2, \operatorname{Top})^{\operatorname{cf}}$.

Exercise 2. Suppose that



 $\in Ch_{\mathbb{Z}}$ is a commutative diagram of chain complexes of abelian groups such that the vertical morphisms are quasi-isomorphisms and the two morphisms g, g' are

¹So for any $W \in \operatorname{Top}^{\operatorname{cg}}$ we have hom $_{\operatorname{Top}}(W, \hom_{\operatorname{Top}}([0,1],Y)) = \hom_{\operatorname{Top}}(W \times [0,1],Y).$

²We say that a natural transformation $\eta : X \to Y$ of diagrams $X, Y : I \to$ Top is a weak equivalence if $X_i \to Y_i$ is a weak equivalence for all objects $i \in I$.

(termwise) surjective. Show that the induced morphism $X \times_Y Z \to X' \times_{Y'} Z'$ is a quasi-isomorphism. Hint.³ Give an example where g, g' are not surjective and $X \times_Y Z \to X' \times_{Y'} Z'$ is not a quasi-isomorphism.

We will come back to these two points of view below. To begin with, we see what the theory of (co)limits looks like inside the Cat_{∞} .

4.2 (Co)limits in ∞ -categories

Recall that for classical category theory, the notion of final (initial) objects is equivalent to that of (co)limits. Namely, a final object is the limit of the empty diagram $\emptyset \to C$, and a general limit $\lim_{i \in I} X_i$ is a final object in the category $C_{/p}$ of cones, i.e., the over category of the diagram $p: I \to C; i \mapsto X_i$.

We start with final (initial) objects. In classical category theory, an object * is final if the sets hom(X, *) are all singleton sets. Since we are replacing sets with homotopy types, "singleton" becomes "singleton up to homotopy", or in other words, "contractible".

Definition 3 ([HTT, Prop.1.2.12.4]). Let C be an ∞ -category. An object $X \in C_0$ is final (resp. *initial*) if $\hom_C^R(Y, X)$ (resp. $\hom_C^L(X, Y)$) is contractible for all $Y \in C_0$.

Remark 4 ([HTT, Prop.1.2.12.9]). Let C be an ∞ -category, and C' the full subcategory of C spanned by the final vertices of C. Then C' is either empty, or is a contractible Kan complex. That is, any two final objects are equivalent, and any two equivalences are equivalent, and any two equivalences of equivalences are equivalent, and...

Exercise 5.

- 1. Let C be a 1-category. Show that $X \in C_0$ is final (resp. initial) if and only if it is final (resp. initial) in the classical sense. I.e., there exists a unique morphism $Y \to X$ for every $Y \in C_0$.
- 2. Recall that an exercise in Lecture 3 was to construct an isomorphism of simplicial sets $\operatorname{Map}_{\operatorname{Sing} X}^{R}(x, y) \cong \operatorname{Sing} PX(x, y)$ associated to a topological space X where $PX(x, y) \subseteq \operatorname{hom}_{\operatorname{Top}}(\Delta_{\operatorname{top}}^{1}, X)$ is the subspace of paths from x to y. Using the facts⁴ that:
 - (a) for any topological space Y the natural transformation $|\operatorname{Sing} Y| \to Y$ is always a weak equivalence, and
 - (b) a Kan complex is contractible if and only if all its homotopy groups are trivial,
 - (c) there exist isomorphisms $\pi_n(PX(x,y),\gamma) \cong \pi_{n+1}(X,x)$ for all $n \ge 0$, $x, y \in X, \gamma \in PX(x,y)$,

show that $\operatorname{Sing} X$ admits a final object if and only if X is weakly equivalent to a point *, in which case every object of $\operatorname{Sing} X$ is final.

³Note that $X \times_Y Z = \ker(X \oplus Z \to Y)$ (and similar for X', Y', Z') and use the Snake Lemma and the Five Lemma.

⁴The first two facts are theorems. The third is possible to prove directly.

Now we want to define categories over and under a diagram. Lurie first does this using a generalisation $\star : \mathcal{S}et_{\Delta} \times \mathcal{S}et_{\Delta} \to \mathcal{S}et_{\Delta}$ of the constructions $\Delta^{J \sqcup [0]}$ and $\Delta^{[0] \sqcup J}$ which appear in the definition of hom^{*R*} and hom^{*L*}.

Note that Δ is equipped with an operation

$$\sqcup:\Delta\times\Delta\to\Delta$$

that sends finite linearly ordered sets $I = \{i_0 < \dots < i_n\}$ and $I' = \{i'_0 < \dots < i'_{n'}\}$ to $I \sqcup I' := \{i_0 < \dots < i_n < i'_0 < \dots < i'_{n'}\}.$

Definition 6 ([HTT, Def.1.2.8.1]). Let K, L be simplicial sets. For any linearly ordered set J we define

$$(K \star L)_J := \prod_{J=I \sqcup I'} K_I \times L_{I'}$$

In the case I or I' is empty, we set $K_{\emptyset} = \{*\} = L_{\emptyset}$ to be a single element set. Given a morphism $p: J \to J'$ of linearly ordered sets and a decomposition $J' = I \sqcup I'$, there is an induced decomposition $J = p^{-1}I \sqcup p^{-1}I'$, and an induced morphism

$$K_I \times L_{I'} \to K_{p^{-1}I} \times L_{p^{-1}I'}.$$

These fit together to define morphisms

$$p^*: (K \star L)_{J'} \to (K \star L)_J$$

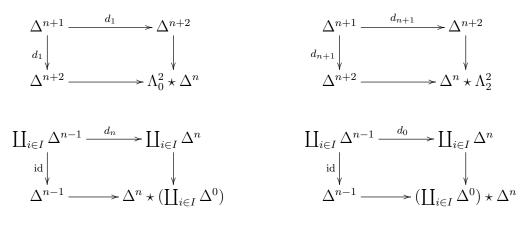
giving $K \star L$ the structure of a simplicial set.

Exercise 7.

- 1. Show that $K \star \emptyset = K = \emptyset \star K$ for any $K \in Set_{\Delta}$.
- 2. Show that $\Delta^0 \star \Delta^n \cong \Delta^{n+1} \cong \Delta^n \star \Delta^0$. More generally, show that

$$\Delta^{i-1} \star \Delta^{j-1} \cong \Delta^{(i+j)-1}.$$

3. Suppose that P, Q are partially ordered sets. Consider the coarsest partial order on $P \amalg Q$ such that $P, Q \to P \amalg Q$ are both morphisms of partially ordered sets, and such that $p \leq q$ for all $(p,q) \in P \times Q$. Show that $N(P \sqcup Q) = N(P) \star N(Q)$. Deduce that there are pushout squares in Set_{Δ}



4. Let C, D be a 1-categories. Define a new category $C \star D$ by taking the disjoint union $C \mid D$ and adding one morphism from c to d for every pair $(c, d) \in$ $Ob \ C \times Ob \ D$. Show that there is a unique composition law making $C \coprod D \rightarrow D$ $C \star D$ a functor. Show that $NC \star ND = N(C \star D)$. Deduce that there are pushout squares in $\mathcal{S}et_{\Delta}$

where K is the category $0 \Rightarrow 1$.

5. Let X be a topological space and consider $\Delta_{top}^1 \cong [0,1] \subseteq \mathbb{R}$. Define

Cone
$$X := (X \times [0, 1]) \sqcup_{X \times \{1\}} \{1\}$$

That is, Cone X is the topological space obtained from $X \times [0, 1]$ by identifying all points of the form (x, 1). Show that there is a canonical morphism

$$(\operatorname{Sing} X) \star \Delta^0 \to \operatorname{Sing}(\operatorname{Cone} X)$$

sending Sing X to Sing($X \times \{(1,0)\}\)$ and Δ^0 to (0,1).

Definition 8 (Joyal, [HTT, Prop.1.2.9.2]). Let $p: K \to S$ be a morphism of simplicial sets, define

$$(S_{/p})_n = \{f : \Delta^n \star K \to S : f|_K = p\}.$$

Similarly, define

$$(S_{p/})_n = \{ f : K \star \Delta^n \to S : f|_K = p \}.$$

Note, these are both functorial in $[n] \in \Delta$, so define simplicial sets $S_{/p}$ and $S_{p/}$. Moreover, there are canonical projection morphisms $S_{/p} \to S$ and $S_{p/} \to S$.

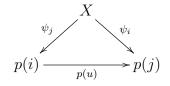
Exercise 9. Cf. Example 7. Let S be a simplicial set.

- 1. Given a vertex $s: \Delta^0 \to S$, show that $(S_{/s})_n$ can be identified with the set of n+1-simplicies $\sigma \in S_{n+1}$ whose top vertex is s. That is, such that $s = \underline{d_0 \dots d_0} \sigma$. n+1 times
- 2. Given a set of vertices $s: \coprod_{i \in I} \Delta^0 \to S$ show that $(S_{/s})_n$ can be identified with the set of sets of n+1-simplices $\{\sigma_i\}_{i\in I}$ such that the top vertex of σ_i is s_i , and the lower *n*-simplex of each σ_i is the same, that is, $d_n \sigma_i = d_n \sigma_j$ for all i, j.
- 3. Let $p: \Lambda_2^2 \to S$ be a morphism of simplicial sets. Show that $(S_{/p})_n$ can be identified with the set of pairs of n+2-simplicies $(\sigma, \tau) \in S^2_{n+2}$ whose (n+1)th faces agree, that is, such that $d_{n+1}\sigma = d_{n+1}\tau$.
- 4. Let K be the nerve of the category $0 \Rightarrow 1$ and $p : K \rightarrow S$ a morphism of simplicial sets. Show that $(S_{/p})_n$ can be identified with the set of pairs of (n+2)-simplicies $(\sigma, \tau) \in S^2_{n+2}$ whose (n+2)th faces and final vertex agree, that is, such that $d_{n+2}\sigma = d_{n+2}\tau$ and $\underbrace{d_0 \dots d_0}_{n+2 \text{ times}}\sigma = \underbrace{d_0 \dots d_0}_{n+2 \text{ times}}\tau$.

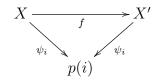
2 times
$$n+2$$
 t

Exercise 10.

- 1. Let X be a topological space, and give $\hom_{\text{Top}}(\Delta_{\text{top}}^1, X)$ the compact-open topology. Let $x \in X$ be a point and consider the subspace $X_{x/} \subseteq \hom_{\text{Top}}(\Delta_{\text{top}}^1, X)$ of those $\gamma : \Delta_{\text{top}}^1 \to X$ such that $\gamma((1, 0)) = x$. Show that $\operatorname{Sing}(X_{x/}) = (\operatorname{Sing} X)_{x/}$.
- 2. Let $p: I \to C$ be a functor between 1-categories. Show that $C_{/p}$ is the 1-category of cones over p. That is, the category whose objects are collections of morphisms $(\psi_i: X \to p(i))_{i \in ObI}$ such that the triangles



commute for each $i \xrightarrow{u} j$ and whose morphisms $(X, \psi) \to (X', \psi')$ are those morphisms $f: X \to X'$ such that the triangles



commute for each i.

Definition 11 ([HTT, Def.1.2.13.4]). Let C be an ∞ -category and $p: K \to C$ a morphism of simplicial sets. A *colimit* for p is an initial object of $C_{p/}$ and a *limit* for p is a final object in $C_{/p}$.

Remark 12 ([HTT, 1.2.13.5]). Note that an object in $C_{p/}$ is a map $K \star \Delta^0 \to C$. Restricting to Δ^0 , we obtain an object $\Delta^0 \to C$ of C. One says that $K \star \Delta^0 \to C$ is a *colimit diagram* if it is a colimit of p, and abuse terminology be referring to $\Delta^0 \to C$ as a colimit of p. We use the notation

$$\underline{\lim}(p), (\text{ resp. } \underline{\lim}(p)).$$

By Remark 4 there is a contractible space of choices for a limit (resp. colimit) diagram.

4.3 Calculating (co)limits I. Derived (co)limits

To make the exposition lighter we only discuss limits. For the colimit statements insert $(-)^{op}$ everywhere.

We begin with the global point of view. In classical category theory, if a category C has all limits then the limit functor is the right adjoint to the constant diagram functor

const. :
$$C$$
 $\overline{\mathbf{x}}$ Fun (I, C) : $\lim_{n \to \infty}$

For ∞ -categories, one can define adjunctions in the familiar way, just replacing hom sets with mapping spaces.

Definition 13 ([HTT, Def.5.2.2.1, Prop.5.2.2.8]). Let $C, D \in Cat_{\infty}$. An adjunction between C and D is a pair of functors $f : C \rightleftharpoons D : g$ for which there exists a morphism $u : id \to g \circ f$ in Fun(C, C) such that for every pair of objects $c \in C$, $d \in D$, the composition

$$\operatorname{Map}_D((f(c), d) \xrightarrow{g} \operatorname{Map}_C(g(f(c)), g(d)) \xrightarrow{u} \operatorname{Map}_C(c, g(d))$$

is a weak equivalence.

Exercise 14 ([HTT, Prop.5.2.2.9]). Recall the homotopy / nerve adjunction.

$$h: \mathcal{C}at_{\infty} \rightleftharpoons \mathcal{C}at: N$$

Show that both h and N send adjunctions to adjunctions.

As in the classical case, if an adjoint exists, it is unique. In ∞ -category land, uniqueness is up to homotopy unique up to homotopy unique up to...and this uniqueness is expressed as an equivalence.

Proposition 15 ([HTT, Prop.5.2.1.3, Rem.5.2.2.2, Prop.5.2.6.2]). Consider $C, D \in Cat_{\infty}$ and let $\operatorname{Fun}^{L}(C, D) \subseteq \operatorname{Fun}(C, D)$ (resp. $\operatorname{Fun}^{R}(D, C) \subseteq \operatorname{Fun}(D, C)$) denote the full subcategory whose objects are those functors which are left adjoints (resp. right adjoints). Then there is a canonical equivalence

$$\operatorname{Fun}^{L}(C, D) = \operatorname{Fun}^{R}(D, C)^{op}$$

such that left adjoints correspond to their right adjoints.

As in the classical case, if limits exist, then \varprojlim is functorial, and adjoint to the constant diagram functor.

Proposition 16 ([HTT, Def.4.3.2.2, Prop.4.3.2.17]). Let $I, C \in Cat_{\infty}$ and suppose that C admits all limits indexed by I. Then the constant diagram functor $C \rightarrow Fun(I, C)$ admits a right adjoint Φ with the property that $\Phi(p) = \varprojlim(p)$ for all $p \in Fun(I, C)$. In this situation we just write $\liminf for \Phi$.

const. :
$$C \rightleftharpoons \operatorname{Fun}(I, C)$$
 : \lim

Warning 17. In general,

$$h \operatorname{Fun}(I, C) \neq \operatorname{Fun}(hI, hC).$$

The adjunction of Prop.16 of ∞ -categories induce an adjunction of classical categories

$$hC \rightleftharpoons h\operatorname{Fun}(I,C) : h \varprojlim$$

but there is no reason for $h \lim_{\to \infty} t$ to induce a limit functor on hC. That is an ∞ -category can admit limits without its homotopy category admitting limits.

Example 18. Sometimes the homotopy category does have (co)limits, but they don't agree with the ∞ -category (co)limits. For example, in the ∞ -category $N(\operatorname{Ch}_{\mathbb{Q}})^{\operatorname{cf}}$ the pushout of $0 \leftarrow \mathbb{Q} \rightarrow 0$ is $\mathbb{Q}[1]$ (we will prove this below). But $h(N(\operatorname{Ch}_{\mathbb{Q}})^{\operatorname{cf}})$ is equivalent to the (1-)category of \mathbb{Z} -graded \mathbb{Q} -vector spaces, so the pushout of $0 \leftarrow \mathbb{Q} \rightarrow 0$ in $h(N(\operatorname{Ch}_{\mathbb{Q}})^{\operatorname{cf}}) \cong GrVec_{\mathbb{Q}}$ is zero.

Example 19. Sometimes homotopy categories lack (some) (co)limits. At the end of these notes we show that the (1-)category $h(N(Ch_{\mathbb{Z}})^{cf})$ does not have all pushouts. Of course the ∞ -category $N(Ch_{\mathbb{Z}})^{cf}$ has all limits and colimits in the ∞ -categoric sense.

On the other hand, we do have the following identification, applicable in many cases such as $(Set_{\Delta})_{\text{Quillen}}$, $\mathcal{A}b_{\Delta}$, Ch_R , $\mathcal{R}ing_{\Delta}$.

Proposition 20 ([Prop.4.2.4.4, Rem.4.2.4.5]). If \mathcal{M} is a combinatorial⁵ simplicial model category and I a small simplicial category there is an identification of ∞ -categories

$$N \operatorname{Fun}(I, \mathcal{M})^{\operatorname{cf}} \cong \operatorname{Fun}(NI, N\mathcal{M}^{\operatorname{cf}})$$

where $\operatorname{Fun}(I, \mathcal{M})$ is equipped with either the injective or projective model structures.

Remark 21. Prop.20 was used in the case $\mathcal{M} = (\mathcal{S}et_{\Delta})_{\text{Quillen}}$ to construct the Yoneda embedding. It's quite a strong statement. It says that any diagram of ∞ -categories $NI \to N\mathcal{M}^{\text{cf}}$ (where composition only has to be preserved up to homotopy) can be "rectified" to a diagram of 1-categories $I \to \mathcal{M}$ (where composition has to be preserved on the nose).

So we can hope to build limits in the ∞ -cateory $N\mathcal{M}^{cf}$ using limits in \mathcal{M} . We will do this next week.

Goal 22. Given a simplicial model category \mathcal{M} , build adjoints to the functor of ∞ -categories

$$N\mathcal{M}^{\mathrm{cf}} \to N\operatorname{Fun}(I,\mathcal{M})^{\mathrm{cf}}$$

induced by the constant diagram functor $\mathcal{M} \to \operatorname{Fun}(I, \mathcal{M})$.

4.4 A homotopy category lacking a pushout

Example 23 (Cf. [Strom, Modern classical homotopy theory, §20.1]).

Sometimes homotopy categories don't have (some) colimits. Consider $h(N(\operatorname{Ch}_{\mathbb{Z}})^{\operatorname{cf}})$. We will show that the diagram $0 \leftarrow \mathbb{Z} \to \mathbb{Z}/2$ (which of course has a colimit in the ∞ category $N(\operatorname{Ch}_{\mathbb{Z}})^{\operatorname{cf}}$) does not have a colimit in the homotopy category $h(N(\operatorname{Ch}_{\mathbb{Z}})^{\operatorname{cf}})$.

We begin with a lemma.

⁵Part of the definition of a combinatorial model category is the definition of a locally presentable category, and I don't want to talk about this. Basically, every model category you will see is combinatorial, so please ignore this for now.

Lemma 24. Suppose C is an ∞ -category, $X : \Lambda_0^2 \star \Delta^0 \to C$ is a pushout diagram with pushout H, and suppose the induced diagram $\Lambda_0^2 \to hC$ admits a pushout P in the 1-category hC. Then P is a retract of H in hC.

Proof. We have

$$\operatorname{Map}_{C}(H,Y) \stackrel{w.e.}{\cong} \operatorname{Map}_{C}(X_{0},Y) \times_{\operatorname{Map}_{C}(X_{2},Y)} \operatorname{Map}_{C}(X_{1},Y)$$
$$\operatorname{hom}_{hC}(P,Y) = \operatorname{hom}_{hC}(X_{0},Y) \times_{\operatorname{hom}_{hC}(X_{2},Y)} \operatorname{hom}_{hC}(X_{1},Y)$$

(the first fibre product is in the ∞ -category of spaces S, the second fibre product in the 1-category of sets). Setting Y = H the second equation gives us a morphism $s: P \to H$, and setting Y = P, the first equation gives us a morphism $p: H \to P$. To see that $\mathrm{id}_P = p \circ s$ in hC is a diagram chase:

(and one needs to unwrap the definitions a bit).

Set $C := N(\operatorname{Ch}_{\mathbb{Z}})^{\operatorname{cf}}$. With the above lemma in hand, suppose the diagram $0 \leftarrow \mathbb{Z} \to \mathbb{Z}/2$ has a pushout P in the homotopy category hC. The ∞ -categorical pushout in the ∞ -category C is⁶ $\mathbb{Z}[1]$, so in the homotopy category, P is a retract of $\mathbb{Z}[1]$. Since⁷ hom_{hC}($\mathbb{Z}[1], \mathbb{Z}[1]) = \mathbb{Z}$ we must have either P = 0 or $P = \mathbb{Z}[1]$. Direct calculation shows that both of these are impossible.⁸

$$\begin{aligned} \hom_{hC}(P,\mathbb{Z}[1]) &= \hom_{hC}(0,\mathbb{Z}[1]) \times_{\hom_{hC}(\mathbb{Z},\mathbb{Z}[1])} \hom_{hC}(\mathbb{Z}/2,\mathbb{Z}[1]) \\ &= \{0\} \times_{\{0\}} \mathbb{Z}/2 \\ &= \mathbb{Z}/2, \\ \hom_{hC}(\mathbb{Z}[1],\mathbb{Z}[1]) &= \mathbb{Z}, \\ \hom_{hC}(0,\mathbb{Z}[1]) &= 0. \end{aligned}$$

⁶To see this, one can choose the cofibrant-fibrant model $Q(\mathbb{Z}/2) := (\ldots \to 0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to 0 \to \ldots)$ for $\mathbb{Z}/2$ and then the ∞ -categorical pushout is the 1-categorical pushout of $0 \leftarrow \mathbb{Z} \to Q(\mathbb{Z}/2)$ in the model category $Ch_{\mathbb{Z}}$. (This new diagram is not injectively cofibrant because only one morphism is a cofibration, but for diagrams indexed by Λ_0^2 as long as one morphism is cofibrant, pushout preserves weak equivalences, cf. Exercise 2. So this is enough to get the correct pushout.)

⁷If $P \xrightarrow{s} \mathbb{Z}[1]$ and $\mathbb{Z}[1] \xrightarrow{p} P$ are morphisms such that $\operatorname{id}_P = ps$ then we have (sp)(sp) = sp; that is, $sp \in \operatorname{hom}_{hC}(\mathbb{Z}[1], \mathbb{Z}[1]) = \mathbb{Z}$ is an idempotent. But the only two idempotents in \mathbb{Z} are 0 and 1.

⁸One can use $Q(\mathbb{Z}/2)$ again for the calculation of $\hom_{hC}(\mathbb{Z}/2,\mathbb{Z}[1])$.