Derived Algebraic Geometry

Shane Kelly, UTokyo
Autumn Semester 2022-2023
This file compiled November 11, 2022

## 4 Higher (co)limits

In these lectures we present the theory of (co)limits in $\infty$-categories. We see that for $\infty$-categories coming from simplicial model categories, (co)limits can be calculated via derived (co)limits and weighted (co)limits. We list some important properties of (co)limits in $\infty$-categories. We finish with special cases of interest.

### 4.1 Discussion

Recall that we want to replace sets with homotopy types. In particular, we want to consider any contractible spaces, such as $\Delta_{\text {top }}^{1} \cong[0,1] \subseteq \mathbb{R}^{1}$ equivalent to a single point. Now consider the following two diagrams in Top


These two diagrams are homotopy equivalent in a very strong sense, but their pullbacks in Top are different

$$
* \times_{*} *=* \quad \neq \quad \varnothing=\{0\} \times_{[0,1]}\{1\} .
$$

There are a couple of ways we can explain this problem.

1. (Local point of view). A classical pullback $X \times_{Y} Z$ is, by definition, an object which functorially represents commutative squares.

$$
\operatorname{hom}\left(W, X \times_{Y} Z\right) \cong\left\{\begin{array}{cll} 
& W & \\
\text { commutative } & 1 & \downarrow \\
\text { squares } & \stackrel{y}{l} & \downarrow \\
& X \longrightarrow Z
\end{array}\right\}
$$

But in our new world, the left side is replaced with $\operatorname{Map}\left(W, X \times_{Y} Z\right)$ and the right hand side is also a homotopy type. Indeed, a commutative square in the $\infty$-category associated to Top is not a property $f \circ i=g \circ h$ of morphisms, but the datum of a homotopy $f \circ i \sim g \circ h$ between compositions.


So instead of trying to build a fibre product in Top using the set

$$
X \times_{Y} Z=\{(x \in X, z \in Z) \mid f(x)=g(z) \in Y\}
$$

we should at least start with the set

$$
X \times_{Y}^{h} Z=\left\{\begin{array}{l|l}
(x \in X, z \in Z,[0,1] \xrightarrow{\gamma} Y) & \begin{array}{c}
\gamma(0)=f(x) ; \\
\gamma(1)=g(z)
\end{array}
\end{array}\right\}
$$

Exercise 1. Let $X \rightarrow Y \leftarrow Z$ be morphisms in Top ${ }^{\text {cg }}$. Give $X \times_{Y}^{h} Z \subseteq$ $X \times Z \times \operatorname{hom}_{\text {Top }}([0,1], Y)$ the subspace topology where $\operatorname{hom}_{\text {Top }}([0,1], Z)$ has the compact-open topology ${ }^{11}$ Show that there is an isomorphism of sets

$$
\operatorname{hom}_{\operatorname{Top}}\left(W, X \times \times_{Y}^{h} Z\right)=\left\{\begin{array}{l|l}
(W \xrightarrow{i} X, W \xrightarrow{h} Z,[0,1] \xrightarrow{\gamma} Y) & \begin{array}{l}
\gamma(0)=f \circ i, \\
\gamma(1)=g \circ h
\end{array}
\end{array}\right\}
$$

and that these isomorphisms are functorial in $W$.
2. (Global point of view). The fibre product functor (if it exists) is the right adjoint to the constant diagram functor

$$
\text { const. : } C \underset{\rightleftarrows}{\rightleftarrows} \text { Fun }\left(\Lambda_{2}^{2}, C\right): \lim
$$

The fibre product we are used to in Top doesn't preserve weak equivalences $\int^{2}$ in general (as we saw above). We saw such a problem already in the first lecture: the functor $-\otimes_{R} M: \mathrm{Ch}_{R} \rightarrow \mathrm{Ch}_{R}$ doesn't preserve quasi-isomorphisms in general. The solution was to find some nice subcategory $\mathrm{Ch}_{R}^{\text {free }}$ where $-\otimes_{R} M$ does preserve quasi-isomorphisms, and such that every chain complex is quasiisomorphic to one in $\mathrm{Ch}_{R}^{\text {free }}$. We could hope that the same thing happens here, namely, that there is a nice subcategory

$$
\operatorname{Fun}\left(\Lambda_{2}^{2}, \operatorname{Top}\right)^{\mathrm{cf}} \subseteq \operatorname{Fun}\left(\Lambda_{2}^{2}, \operatorname{Top}\right)
$$

where $\lim _{\leftrightarrows}$ does preserve weak equivalences, and such that every object of $\operatorname{Fun}\left(\Lambda_{2}^{2}, \operatorname{Top}\right)$ is weakly equivalent to one in $\operatorname{Fun}\left(\Lambda_{2}^{2}, \operatorname{Top}\right)^{\mathrm{cf}}$.

Exercise 2. Suppose that

$\in \mathrm{Ch}_{\mathbb{Z}}$ is a commutative diagram of chain complexes of abelian groups such that the vertical morphisms are quasi-isomorphisms and the two morphisms $g, g^{\prime}$ are

[^0](termwise) surjective. Show that the induced morphism $X \times_{Y} Z \rightarrow X^{\prime} \times_{Y^{\prime}} Z^{\prime}$ is a quasi-isomorphism. Hint $3^{3}$ Give an example where $g, g^{\prime}$ are not surjective and $X \times_{Y} Z \rightarrow X^{\prime} \times_{Y^{\prime}} Z^{\prime}$ is not a quasi-isomorphism.

We will come back to these two points of view below. To begin with, we see what the theory of (co)limits looks like inside the $\mathcal{C}$ at ${ }_{\infty}$.

## 4.2 (Co)limits in $\infty$-categories

Recall that for classical category theory, the notion of final (initial) objects is equivalent to that of (co)limits. Namely, a final object is the limit of the empty diagram $\varnothing \rightarrow C$, and a general limit $\lim _{i \in I} X_{i}$ is a final object in the category $C_{/ p}$ of cones, i.e., the over category of the diagram $p: I \rightarrow C ; i \mapsto X_{i}$.

We start with final (initial) objects. In classical category theory, an object $*$ is final if the sets $\operatorname{hom}(X, *)$ are all singleton sets. Since we are replacing sets with homotopy types, "singleton" becomes "singleton up to homotopy", or in other words, "contractible".

Definition 3 ([HTT, Prop.1.2.12.4]). Let $C$ be an $\infty$-category. An object $X \in C_{0}$ is final (resp. initial) if $\operatorname{hom}_{C}^{R}(Y, X)\left(\right.$ resp. $\left.\operatorname{hom}_{C}^{L}(X, Y)\right)$ is contractible for all $Y \in C_{0}$.

Remark 4 ([HTT, Prop.1.2.12.9]). Let $C$ be an $\infty$-category, and $C^{\prime}$ the full subcategory of $C$ spanned by the final vertices of $C$. Then $C^{\prime}$ is either empty, or is a contractible Kan complex. That is, any two final objects are equivalent, and any two equivalences are equivalent, and any two equivalences of equivalences are equivalent, and...

## Exercise 5.

1. Let $C$ be a 1-category. Show that $X \in C_{0}$ is final (resp. initial) if and only if it is final (resp. initial) in the classical sense. I.e., there exists a unique morphism $Y \rightarrow X$ for every $Y \in C_{0}$.
2. Recall that an exercise in Lecture 3 was to construct an isomorphism of simplicial sets $\operatorname{Map}_{\operatorname{Sing} X}^{R}(x, y) \cong \operatorname{Sing} P X(x, y)$ associated to a topological space $X$ where $P X(x, y) \subseteq \operatorname{hom}_{\text {Top }}\left(\Delta_{\text {top }}^{1}, X\right)$ is the subspace of paths from $x$ to $y$. Using the facts $\int^{4}$ that:
(a) for any topological space $Y$ the natural transformation $|\operatorname{Sing} Y| \rightarrow Y$ is always a weak equivalence, and
(b) a Kan complex is contractible if and only if all its homotopy groups are trivial,
(c) there exist isomorphisms $\pi_{n}(P X(x, y), \gamma) \cong \pi_{n+1}(X, x)$ for all $n \geq 0$, $x, y \in X, \gamma \in P X(x, y)$,
show that $\operatorname{Sing} X$ admits a final object if and only if $X$ is weakly equivalent to a point $*$, in which case every object of $\operatorname{Sing} X$ is final.
[^1]Now we want to define categories over and under a diagram. Lurie first does this using a generalisation $\star: \mathcal{S e t}_{\Delta} \times \mathcal{S e t}_{\Delta} \rightarrow \mathcal{S}$ et $_{\Delta}$ of the constructions $\Delta^{J \sqcup[0]}$ and $\Delta^{[0] \sqcup J}$ which appear in the definition of hom ${ }^{R}$ and hom ${ }^{L}$.

Note that $\Delta$ is equipped with an operation

$$
\sqcup: \Delta \times \Delta \rightarrow \Delta
$$

that sends finite linearly ordered sets $I=\left\{i_{0}<\cdots<i_{n}\right\}$ and $I^{\prime}=\left\{i_{0}^{\prime}<\cdots<i_{n^{\prime}}^{\prime}\right\}$ to $I \sqcup I^{\prime}:=\left\{i_{0}<\cdots<i_{n}<i_{0}^{\prime}<\cdots<i_{n^{\prime}}^{\prime}\right\}$.

Definition 6 ([HTT, Def.1.2.8.1]). Let $K, L$ be simplicial sets. For any linearly ordered set $J$ we define

$$
(K \star L)_{J}:=\coprod_{J=I \sqcup I^{\prime}} K_{I} \times L_{I^{\prime}}
$$

In the case $I$ or $I^{\prime}$ is empty, we set $K_{\varnothing}=\{*\}=L_{\varnothing}$ to be a single element set. Given a morphism $p: J \rightarrow J^{\prime}$ of linearly ordered sets and a decomposition $J^{\prime}=I \sqcup I^{\prime}$, there is an induced decomposition $J=p^{-1} I \sqcup p^{-1} I^{\prime}$, and an induced morphism

$$
K_{I} \times L_{I^{\prime}} \rightarrow K_{p^{-1} I} \times L_{p^{-1} I^{\prime}} .
$$

These fit together to define morphisms

$$
p^{*}:(K \star L)_{J^{\prime}} \rightarrow(K \star L)_{J}
$$

giving $K \star L$ the structure of a simplicial set.
Exercise 7.

1. Show that $K \star \varnothing=K=\varnothing \star K$ for any $K \in \mathcal{S e t}_{\Delta}$.
2. Show that $\Delta^{0} \star \Delta^{n} \cong \Delta^{n+1} \cong \Delta^{n} \star \Delta^{0}$. More generally, show that

$$
\Delta^{i-1} \star \Delta^{j-1} \cong \Delta^{(i+j)-1} .
$$

3. Suppose that $P, Q$ are partially ordered sets. Consider the coarsest partial order on $P \amalg Q$ such that $P, Q \rightarrow P \amalg Q$ are both morphisms of partially ordered sets, and such that $p \leq q$ for all $(p, q) \in P \times Q$. Show that $N(P \sqcup Q)=N(P) \star N(Q)$. Deduce that there are pushout squares in $\mathcal{S e t}_{\Delta}$

4. Let $C, D$ be a 1-categories. Define a new category $C \star D$ by taking the disjoint union $C \coprod D$ and adding one morphism from $c$ to $d$ for every pair $(c, d) \in$ $O b C \times O b D$. Show that there is a unique composition law making $C \coprod D \rightarrow$ $C \star D$ a functor. Show that $N C \star N D=N(C \star D)$. Deduce that there are pushout squares in $\mathcal{S e t}_{\Delta}$

where $K$ is the category $0 \rightrightarrows 1$.
5. Let $X$ be a topological space and consider $\Delta_{\text {top }}^{1} \cong[0,1] \subseteq \mathbb{R}$. Define

$$
\text { Cone } X:=(X \times[0,1]) \sqcup_{X \times\{1\}}\{1\} .
$$

That is, Cone $X$ is the topological space obtained from $X \times[0,1]$ by identifying all points of the form $(x, 1)$. Show that there is a canonical morphism

$$
(\operatorname{Sing} X) \star \Delta^{0} \rightarrow \operatorname{Sing}(\text { Cone } X)
$$

sending $\operatorname{Sing} X$ to $\operatorname{Sing}\left(X \times\{(1,0)\}\right.$ and $\Delta^{0}$ to $(0,1)$.
Definition 8 (Joyal, [HTT, Prop.1.2.9.2]). Let $p: K \rightarrow S$ be a morphism of simplicial sets, define

$$
\left(S_{/ p}\right)_{n}=\left\{f: \Delta^{n} \star K \rightarrow S:\left.f\right|_{K}=p\right\} .
$$

Similarly, define

$$
\left(S_{p /}\right)_{n}=\left\{f: K \star \Delta^{n} \rightarrow S:\left.f\right|_{K}=p\right\}
$$

Note, these are both functorial in $[n] \in \Delta$, so define simplicial sets $S_{/ p}$ and $S_{p /}$. Moreover, there are canonical projection morphisms $S_{/ p} \rightarrow S$ and $S_{p /} \rightarrow S$.

Exercise 9. Cf. Example 7. Let $S$ be a simplicial set.

1. Given a vertex $s: \Delta^{0} \rightarrow S$, show that $\left(S_{/ s}\right)_{n}$ can be identified with the set of $n+1$-simplicies $\sigma \in S_{n+1}$ whose top vertex is $s$. That is, such that $s=\underbrace{d_{0} \ldots d_{0}}_{n+1 \text { times }} \sigma$.
2. Given a set of vertices $s: \coprod_{i \in I} \Delta^{0} \rightarrow S$ show that $\left(S_{/ s}\right)_{n}$ can be identified with the set of sets of $n+1$-simplices $\left\{\sigma_{i}\right\}_{i \in I}$ such that the top vertex of $\sigma_{i}$ is $s_{i}$, and the lower $n$-simplex of each $\sigma_{i}$ is the same, that is, $d_{n} \sigma_{i}=d_{n} \sigma_{j}$ for all $i, j$.
3. Let $p: \Lambda_{2}^{2} \rightarrow S$ be a morphism of simplicial sets. Show that $\left(S_{/ p}\right)_{n}$ can be identified with the set of pairs of $n+2$-simplicies $(\sigma, \tau) \in S_{n+2}^{2}$ whose $(n+1)$ th faces agree, that is, such that $d_{n+1} \sigma=d_{n+1} \tau$.
4. Let $K$ be the nerve of the category $0 \rightrightarrows 1$ and $p: K \rightarrow S$ a morphism of simplicial sets. Show that $\left(S_{/ p}\right)_{n}$ can be identified with the set of pairs of $(n+2)$-simplicies $(\sigma, \tau) \in S_{n+2}^{2}$ whose $(n+2)$ th faces and final vertex agree, that is, such that $d_{n+2} \sigma=d_{n+2} \tau$ and $\underbrace{d_{0} \ldots d_{0}}_{n+2 \text { times }} \sigma=\underbrace{d_{0} \ldots d_{0}}_{n+2 \text { times }} \tau$.

## Exercise 10.

1. Let $X$ be a topological space, and give $\operatorname{hom}_{\text {Top }}\left(\Delta_{\text {top }}^{1}, X\right)$ the compact-open topology. Let $x \in X$ be a point and consider the subspace $X_{x /} \subseteq \operatorname{hom}_{\text {Top }}\left(\Delta_{\text {top }}^{1}, X\right)$ of those $\gamma: \Delta_{\text {top }}^{1} \rightarrow X$ such that $\gamma((1,0))=x$. Show that $\operatorname{Sing}\left(X_{x /}\right)=(\operatorname{Sing} X)_{x /}$.
2. Let $p: I \rightarrow C$ be a functor between 1-categories. Show that $C_{/ p}$ is the 1category of cones over $p$. That is, the category whose objects are collections of morphisms $\left(\psi_{i}: X \rightarrow p(i)\right)_{i \in O b I}$ such that the triangles

commute for each $i \xrightarrow{u} j$ and whose morphisms $(X, \psi) \rightarrow\left(X^{\prime}, \psi^{\prime}\right)$ are those morphisms $f: X \rightarrow X^{\prime}$ such that the triangles

commute for each $i$.
Definition 11 ([HTT, Def.1.2.13.4]). Let $C$ be an $\infty$-category and $p: K \rightarrow C$ a morphism of simplicial sets. A colimit for $p$ is an initial object of $C_{p /}$ and a limit for $p$ is a final object in $C_{/ p}$.

Remark 12 ([HTT, 1.2.13.5]). Note that an object in $C_{p /}$ is a map $K \star \Delta^{0} \rightarrow C$. Restricting to $\Delta^{0}$, we obtain an object $\Delta^{0} \rightarrow C$ of $C$. One says that $K \star \Delta^{0} \rightarrow C$ is a colimit diagram if it is a colimit of $p$, and abuse terminology be referring to $\Delta^{0} \rightarrow C$ as a colimit of $p$. We use the notation

$$
\underset{\leftrightarrows}{\lim }(p),(\text { resp. } \underset{\longrightarrow}{\lim }(p)) .
$$

By Remark 4 there is a contractible space of choices for a limit (resp. colimit) diagram.

### 4.3 Calculating (co)limits I. Derived (co)limits

To make the exposition lighter we only discuss limits. For the colimit statements insert ( -$)^{o p}$ everywhere.

We begin with the global point of view. In classical category theory, if a category $C$ has all limits then the limit functor is the right adjoint to the constant diagram functor

$$
\text { const. : } C \underset{\varlimsup}{\rightleftarrows} \operatorname{Fun}(I, C): \lim _{\curvearrowleft}
$$

For $\infty$-categories, one can define adjunctions in the familiar way, just replacing hom sets with mapping spaces.

Definition 13 ([HTT, Def.5.2.2.1, Prop.5.2.2.8]). Let $C, D \in \mathcal{C}^{( } t_{\infty}$. An adjunction between $C$ and $D$ is a pair of functors $f: C \rightleftarrows D: g$ for which there exists a morphism $u$ : id $\rightarrow g \circ f$ in $\operatorname{Fun}(C, C)$ such that for every pair of objects $c \in C$, $d \in D$, the composition

$$
\operatorname{Map}_{D}\left((f(c), d) \xrightarrow{g} \operatorname{Map}_{C}(g(f(c)), g(d)) \xrightarrow{u} \operatorname{Map}_{C}(c, g(d))\right.
$$

is a weak equivalence.
Exercise 14 ([HTT, Prop.5.2.2.9]). Recall the homotopy / nerve adjunction.

$$
h: \mathcal{C a t}_{\infty} \rightleftarrows \mathcal{C} \text { at }: N
$$

Show that both $h$ and $N$ send adjunctions to adjunctions.
As in the classical case, if an adjoint exists, it is unique. In $\infty$-category land, uniqueness is up to homotopy unique up to homotopy unique up to...and this uniqueness is expressed as an equivalence.

Proposition 15 ([HTT, Prop.5.2.1.3, Rem.5.2.2.2, Prop.5.2.6.2]). Consider $C, D \in$ $\mathcal{C}$ at ${ }_{\infty}$ and let $\operatorname{Fun}^{L}(C, D) \subseteq \operatorname{Fun}(C, D)\left(\right.$ resp. $\left.\operatorname{Fun}^{R}(D, C) \subseteq \operatorname{Fun}(D, C)\right)$ denote the full subcategory whose objects are those functors which are left adjoints (resp. right adjoints). Then there is a canonical equivalence

$$
\operatorname{Fun}^{L}(C, D)=\operatorname{Fun}^{R}(D, C)^{o p}
$$

such that left adjoints correspond to their right adjoints.
As in the classical case, if limits exist, then lim is functorial, and adjoint to the constant diagram functor.

Proposition 16 ([HTT, Def.4.3.2.2, Prop.4.3.2.17]). Let $I, C \in \mathcal{C} \mathrm{Ct}_{\infty}$ and suppose that $C$ admits all limits indexed by $I$. Then the constant diagram functor $C \rightarrow \operatorname{Fun}(I, C)$ admits a right adjoint $\Phi$ with the property that $\Phi(p)=\lim (p)$ for all $p \in \operatorname{Fun}(I, C)$. In this situation we just write $\varliminf_{\rightleftarrows}$ for $\Phi$.

$$
\text { const. : } C \rightleftarrows \operatorname{Fun}(I, C): \lim _{\leftrightarrows}
$$

Warning 17. In general,

$$
h \operatorname{Fun}(I, C) \neq \operatorname{Fun}(h I, h C) .
$$

The adjunction of Prop. 16 of $\infty$-categories induce an adjunction of classical categories

$$
h C \rightleftarrows h \operatorname{Fun}(I, C): h \underset{\rightleftarrows}{\rightleftarrows}
$$

but there is no reason for $h$ lim to induce a limit functor on $h C$. That is an $\infty-$ category can admit limits without its homotopy category admitting limits.

Example 18. Sometimes the homotopy category does have (co)limits, but they don't agree with the $\infty$-category (co)limits. For example, in the $\infty$-category $N\left(\mathrm{Ch}_{\mathbb{Q}}\right)^{\text {cf }}$ the pushout of $0 \leftarrow \mathbb{Q} \rightarrow 0$ is $\mathbb{Q}[1]$ (we will prove this below). But $h\left(N\left(\mathrm{Ch}_{\mathbb{Q}}\right)^{\text {cf }}\right.$ ) is equivalent to the (1-)category of $\mathbb{Z}$-graded $\mathbb{Q}$-vector spaces, so the pushout of $0 \leftarrow \mathbb{Q} \rightarrow 0$ in $h\left(N\left(\mathrm{Ch}_{\mathbb{Q}}\right)^{\text {cf }}\right) \cong G r V e c_{\mathbb{Q}}$ is zero.

Example 19. Sometimes homotopy categories lack (some) (co)limits. At the end of these notes we show that the (1-)category $h\left(N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}\right)$ does not have all pushouts. Of course the $\infty$-category $N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}$ has all limits and colimits in the $\infty$-categoric sense.

On the other hand, we do have the following identification, applicable in many cases such as $\left(\mathcal{S e t}_{\Delta}\right)_{\text {Quillen }}, \mathcal{A b}_{\Delta}, \mathrm{Ch}_{R}, \mathcal{R i n g}_{\Delta}$.

Proposition 20 ([Prop.4.2.4.4, Rem.4.2.4.5]). If $\mathcal{M}$ is a combinatoria ${ }^{[ }$simplicial model category and I a small simplicial category there is an identification of $\infty$ categories

$$
N \operatorname{Fun}(I, \mathcal{M})^{\mathrm{cf}} \cong \operatorname{Fun}\left(N I, N \mathcal{M}^{\mathrm{cf}}\right)
$$

where $\operatorname{Fun}(I, \mathcal{M})$ is equipped with either the injective or projective model structures.
Remark 21. Prop 20 was used in the case $\mathcal{M}=\left(\mathcal{S e t}_{\Delta}\right)_{\text {Quillen }}$ to construct the Yoneda embedding. It's quite a strong statement. It says that any diagram of $\infty$-categories $N I \rightarrow N \mathcal{M}^{\text {cf }}$ (where composition only has to be preserved up to homotopy) can be "rectified" to a diagram of 1-categories $I \rightarrow \mathcal{M}$ (where composition has to be preserved on the nose).

So we can hope to build limits in the $\infty$-cateory $N \mathcal{M}^{\text {cf }}$ using limits in $\mathcal{M}$. We will do this next week.

Goal 22. Given a simplicial model category $\mathcal{M}$, build adjoints to the functor of $\infty$-categories

$$
N \mathcal{M}^{\mathrm{cf}} \rightarrow N \operatorname{Fun}(I, \mathcal{M})^{\mathrm{cf}}
$$

induced by the constant diagram functor $\mathcal{M} \rightarrow \operatorname{Fun}(I, \mathcal{M})$.

### 4.4 A homotopy category lacking a pushout

Example 23 (Cf.[Strom, Modern classical homotopy theory, §20.1]).
Sometimes homotopy categories don't have (some) colimits. Consider $h\left(N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}\right)$. We will show that the diagram $0 \leftarrow \mathbb{Z} \rightarrow \mathbb{Z} / 2$ (which of course has a colimit in the $\infty$ category $\left.N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}\right)$ does not have a colimit in the homotopy category $h\left(N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}\right)$.

We begin with a lemma.

[^2]Lemma 24. Suppose $C$ is an $\infty$-category, $X: \Lambda_{0}^{2} \star \Delta^{0} \rightarrow C$ is a pushout diagram with pushout $H$, and suppose the induced diagram $\Lambda_{0}^{2} \rightarrow h C$ admits a pushout $P$ in the 1-category $h C$. Then $P$ is a retract of $H$ in $h C$.

Proof. We have

$$
\begin{gathered}
\operatorname{Map}_{C}(H, Y) \stackrel{\text { w.e. }}{\cong} \operatorname{Map}_{C}\left(X_{0}, Y\right) \times_{\operatorname{Map}_{C}\left(X_{2}, Y\right)} \operatorname{Map}_{C}\left(X_{1}, Y\right) \\
\operatorname{hom}_{h C}(P, Y)=\operatorname{hom}_{h C}\left(X_{0}, Y\right) \times \times_{\operatorname{hom}_{h C}\left(X_{2}, Y\right)} \operatorname{hom}_{h C}\left(X_{1}, Y\right)
\end{gathered}
$$

(the first fibre product is in the $\infty$-category of spaces $\mathcal{S}$, the second fibre product in the 1-category of sets). Setting $Y=H$ the second equation gives us a morphism $s: P \rightarrow H$, and setting $Y=P$, the first equation gives us a morphism $p: H \rightarrow P$. To see that $\mathrm{id}_{P}=p \circ s$ in $h C$ is a diagram chase:

(and one needs to unwrap the definitions a bit).
Set $C:=N\left(\mathrm{Ch}_{\mathbb{Z}}\right)^{\text {cf }}$. With the above lemma in hand, suppose the diagram $0 \leftarrow$ $\mathbb{Z} \rightarrow \mathbb{Z} / 2$ has a pushout $P$ in the homotopy category $h C$. The $\infty$-categorical pushout in the $\infty$-category $C$ is $s^{6} \mathbb{Z}[1]$, so in the homotopy category, $P$ is a retract of $\mathbb{Z}[1]$. Sinc $\oint^{7} \operatorname{hom}_{h C}(\mathbb{Z}[1], \mathbb{Z}[1])=\mathbb{Z}$ we must have either $P=0$ or $P=\mathbb{Z}[1]$. Direct calculation shows that both of these are impossible $\sqrt[8]{ }$

$$
\begin{aligned}
\operatorname{hom}_{h C}(P, \mathbb{Z}[1]) & =\operatorname{hom}_{h C}(0, \mathbb{Z}[1]) \times_{\operatorname{hom}_{h C}(\mathbb{Z}, \mathbb{Z}[1])} \operatorname{hom}_{h C}(\mathbb{Z} / 2, \mathbb{Z}[1]) \\
& =\{0\} \times_{\{0\}} \mathbb{Z} / 2 \\
& =\mathbb{Z} / 2 \\
\operatorname{hom}_{h C}(\mathbb{Z}[1], \mathbb{Z}[1]) & =\mathbb{Z} \\
\operatorname{hom}_{h C}(0, \mathbb{Z}[1]) & =0 .
\end{aligned}
$$

[^3]
[^0]:    ${ }^{1}$ So for any $W \in \operatorname{Top}^{\text {cg }}$ we have $\operatorname{hom}_{\text {Top }}\left(W, \operatorname{hom}_{\text {Top }}([0,1], Y)\right)=\operatorname{hom}_{T o p}(W \times[0,1], Y)$.
    ${ }^{2}$ We say that a natural transformation $\eta: X \rightarrow Y$ of diagrams $X, Y: I \rightarrow$ Top is a weak equivalence if $X_{i} \rightarrow Y_{i}$ is a weak equivalence for all objects $i \in I$.

[^1]:    ${ }^{3}$ Note that $X \times_{Y} Z=\operatorname{ker}(X \oplus Z \rightarrow Y)$ (and similar for $\left.X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ and use the Snake Lemma and the Five Lemma.
    ${ }^{4}$ The first two facts are theorems. The third is possible to prove directly.

[^2]:    ${ }^{5}$ Part of the definition of a combinatorial model category is the definition of a locally presentable category, and I don't want to talk about this. Basically, every model category you will see is combinatorial, so please ignore this for now.

[^3]:    ${ }^{6}$ To see this, one can choose the cofibrant-fibrant model $Q(\mathbb{Z} / 2):=(\ldots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow 0 \rightarrow \ldots)$ for $\mathbb{Z} / 2$ and then the $\infty$-categorical pushout is the 1 -categorical pushout of $0 \leftarrow \mathbb{Z} \rightarrow Q(\mathbb{Z} / 2)$ in the model category $\mathrm{Ch}_{\mathbb{Z}}$. (This new diagram is not injectively cofibrant because only one morphism is a cofibration, but for diagrams indexed by $\Lambda_{0}^{2}$ as long as one morphism is cofibrant, pushout preserves weak equivalences, cf. Exercise 2, So this is enough to get the correct pushout.)
    ${ }^{7}$ If $P \xrightarrow{s} \mathbb{Z}[1]$ and $\mathbb{Z}[1] \xrightarrow{p} P$ are morphisms such that $\operatorname{id}_{P}=p s$ then we have $(s p)(s p)=s p$; that is, $s p \in \operatorname{hom}_{h C}(\mathbb{Z}[1], \mathbb{Z}[1])=\mathbb{Z}$ is an idempotent. But the only two idempotents in $\mathbb{Z}$ are 0 and 1.
    ${ }^{8}$ One can use $Q(\mathbb{Z} / 2)$ again for the calculation of $\operatorname{hom}_{h C}(\mathbb{Z} / 2, \mathbb{Z}[1])$.

