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3 Higher categories I

Reference: Higher Topos Theory, Lurie.
Infinity categories should be categories in a world where sets are replaced by ho-

motopy types. So we might expect an infinity category to be a category object in the
category of homotopy types.1 Something essentially like this (simplicial categories)
will appear. However, just as simplicial sets has been the standard language of ho-
motopy theory since the 50’s, quasi-categories has been the dominant language for
∞-categories for the last decade. As such most people just call them ∞-categories.

Here is the map of this lecture and the next. We will start on the right side and
work towards the left.

Simplicial
Model

Categories

→
{

Simplicial
Categories

}
→
{
∞-categories

}
⊆ Set∆

In this lecture we will meet∞-categories and simplicial categories. In the next lecture
we will discuss simplicial model categories, and see some examples of interest.

1That is, a homotopy type of objects C0, a homotopy type of morphisms C1, source and target
morphisms C1 ⇒ C0, an identity morphisms C0 → C1, and composition C1×C0

C1 → C1 satisfying
some kind of associativity.
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3.1 Quasi-categories

To begin with we show how a “usual” category can be encoded in a simplicial
set.

Definition 1. Let C be a small category. Considering the ordered sets [n] as cate-
gories2 the assignment

N : [n] 7→ Fun([n], C)

sending [n] to the set of functors [n]→ C defines a simplicial set. This is called the
nerve of C.

Remark 2. Explicitly,
1. N(C)0 is the set of objects of C,
2. N(C)1 is the set of (all) morphisms in C,
3. The two morphisms N(C)1 ⇒ N(C)0 induced by the two morphisms [0] ⇒ [1]

send morphisms in N(C)1 to their source and target.

(X
f→ Y ) 7→ X, Y

2So, for 0 ≤ i, j ≤ n there is exactly one morphism i→ j if i ≤ j, and no morphisms otherwise.
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4. The morphism N(C)0 → N(C)1 induced by [1] → [0] sends each object to its
identity morphism.

X 7→ (X
idX→ X)

5. N(C)2 is the set of composable morphisms X
f→ Y

g→ Z.
6. The three maps d0, d1, d2 : N(C)2→→

→
N(C)1 induced by the three monomor-

phisms [1]→→
→

[2] send
f→ g→ to g, g ◦ f , and f respectively.

Y
g

��
X

f ??

g◦f
// Z

7→ (Y
g→ Z), (X

g◦f→ Y ), (X
f→ Y )

7. More generally, N(C)n is the set of sequences of n composable morphisms
f1→

· · · fn→ and the various maps N(C)n → N(C)m come from various combinations
of composition and inserting identities.

Note that we can completely recover C from N(C). In fact we have a lot of
degenerate information.

Exercise 3. Suppose that C is a simplicial set such that:
1. Each Λ2

1 → C extends to a unique ∆2 → C, and
2. Each Λ3

1 → C extends to some ∆3 → C.
Show that C canonically determines a category whose set of objects is C0 and set of
morphisms is C1.

Exercise 4 (HTT, Proposition 1.1.2.2). (Difficult) Show that a simplicial set K is
of the form N(C) if and only if for every 0 < i < n and each diagram

Λn
i

//

��

K

∆n

>>

there exists a unique dotted arrow making a commutative triangle.

Definition 5. An ∞-category is a simplicial set K such that for every 0 < i < n
and each diagram

Λn
i

//

��

K

∆n

>>

there exists a (not necessarily unique) dashed arrow making a commutative triangle.
A functor between ∞-categories is a morphism of simplicial sets. That is, the

category of ∞-categories is a full subcategory of the category of simplicial sets

Cat∞ ⊂ Set∆.
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Elements of K0 are called objects and elements of K1 are called 1-morphisms,
or often just morphisms. Given two morphisms f, g ∈ K1 such that d1f = d0g
(equivalently, a diagram Λ2

1 → K), for any σ : ∆2 → K completing the diagram,
d1σ ∈ K1 will be called a composition of g and f . For any object X ∈ K0, the
morphism s0X ∈ K1 is called the identity morphism of X, and written idX .

Example 6. The nerve N(C) of any small category C is an ∞-category. So we get
a functor (of 1-categories)

N : Cat→ Cat∞.

Example 7. Any Kan complex is an ∞-category. That is, we have fully faithful
inclusions

Set∆ ⊃ Cat∞ ⊃ { Kan complexes }.
In particular, for any topological space X, the simplicial set SingX is an∞-category.
In fact, Kan complexes are precisely the ∞-groupoids (see below).

Exercise 8.
1. Show that every Kan complex is an ∞-category.
2. Show that if K is a Kan complex, then every morphism in K is invertible up

to homotopy in the sense that:

• For every X
f→ Y in K1 we can find two 2-cells in K2 fitting into a diagram

of the form

Y
g

  

idY // Y

X
idX

//

f
>>

X
f

>>

3. (Harder) Show that if K is an ∞-category satisfying the above property, then
K is a Kan complex. Hint.3

Note that in general, in SingX composition is not unique, but any two choices
of composition are homotopic. This is a general feature of ∞-categories.

Exercise 9. Show that any in an ∞-category C, any two compositions are “homo-
topic” in the sense that if there exist two 2-cells in C2 of the form

g

��

g

��
h

//

f
??

h′
//

f
??

then there exists a 2-cell of the form

h′

��
h

//

id
??

3Start with the case Λ2
0 → C and work up to Λn

0 by induction. Use opposite categories to deduce
Λn
n from Λn

0 .
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Similarly, in SingX composition is not associative on the nose, but only up to
homotopy.

Exercise 10. Show that composition in an ∞-category C is associative “up to
homotopy” in the sense that if we have 2-cells in C2 of the form

g

��

h

��

hg

��
gf

//

f
??

hg
//

g
??

(hg)f
//

f
??

Then (hg)f is a composition of gf and h. In particular, by Exercise 9, if h(gf) is
any other choice of composition of gf and h, then there is a 2-cell of the form:

h(gf)

��
(hg)f

//

id
??

Exercise 11. Recall the nerve functor from Example 6. We will show that the nerve
functor admits a left adjoint.

1. Let C be an ∞-category. Define a relation on 1-morphisms in C by saying
f ∼ g if f is a composition of g and id. That is, if there exists a 2-cell in C2 of
the form

g

��
f

//

id
??

Show that this is an equivalence relation.
2. Show that the above equivalence relation preserves composition. That is, sup-

pose that g ∈ C1 is equivalent to g′ ∈ C1, and suppose we have 2-cells of the
following form.

g

��

g′

��
x

//

f
??

x′
//

f
??

h

��

h

��
y

//

g
??

y′
//

g′
??

Show that x ∼ x and y ∼ y′. (Use Exercise 9 if necessary).
3. Define hC to be the 1-category whose objects are vertices C0, morphisms are

edges C1 modulo the above equivalence relation, and composition is induced
by composition in C. Show that this is actually a 1-category. That is, show
that it satisfies the identity and associativity axioms. (Use Exercise 10 for
associativity).
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4. Show that
h : Cat∞ → Cat

defines a functor which is left adjoint to N . Hint.4

Definition 12. The 1-category hC defined above is called the homotopy category of

C. A morphism X
f→ Y ∈ C1 in an ∞-category is said to be an equivalence if it

becomes an isomorphism in hC. If such an equivalence exists, we say X and Y are
equivalent.

3.2 Mapping spaces

We wanted to replace sets with homotopy types, so for any two objects x, y ∈ C0

in an ∞-category, we should have a homotopy type MapC(x, y) of morphisms. Here
are two models for this homotopy type.

Definition 13. Let C be an ∞-category, and x, y ∈ C0 objects. Define

homR
C(x, y)J = {z : ∆Jt[0] → C | z|∆J = x and z|∆0 = y}

where J t [0] = {j0 < · · · < jn} t {0} = {j0 < j1 < · · · < jn < 0} and we use x for
the constant morphism ∆J → ∆0 x→ C. Similarly, define

homL
C(x, y)J = {z : ∆[0]tJ → C | z|∆0 = x and z|∆j = y}

where [0] t J = {0} t {j0 < · · · < jn} t {0} = {0 < j0 < j1 < · · · < jn}.

Exercise 14. Suppose C is an ∞-category and x, y ∈ C0 are objects. Show that
homR

C(x, y) and homL
C(x, y) are Kan complexes.

Exercise 15.
1. Let C be a 1-category. Show that homR

NC(x, y)J = homC(x, y) for all J .
2. Let X be a topological space and x, y ∈ X two points. Let PX denote the set

homTop(∆1
top, X) equipped with the compact-open topology5 and PX(x, y) ⊆

hom(∆1, X) the subspace of maps γ : ∆1
top → X such that γ(0) = x and γ(1) =

y. Define an isomorphism of simplicial sets homR
Sing Top(x, y) ∼= SingPX(x, y).

Definition 16. A morphism C → D of ∞-categories is:
1. fully faithful if for every pair of objects X, Y ∈ C0 the induced morphism

homR
C(X, Y )→ homR

D(FX,FY ) is a weak equivalence of Kan complexes,
2. essentially surjective if hC → hD is essentially surjective,
3. a categorical equivalence if it is essentially surjective and fully faithful.

4It suffices to show that hN = id and to give a natural transformation η : id → Nh such that
h(η) is the identity natural transformation.

5Or indeed, any topology such that homTop(∆n
top,homTop(∆1

top, X)) = homTop(∆n
top×∆1

top, X).
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Exercise 17. Let F : C → C ′ be a functor between 1-categories. Show that F
is an equivalence of 1-categories if and only if F : NC → NC ′ is an equivalence of
∞-categories.

Clearly, we would like composition morphisms

homR
C(X, Y )× homR

C(Y, Z)
?→ homR

C(X,Z).

One way to obtain these is the generalise both homR and homL as follows.

Definition 18 (Dugger, Spivak). A necklace is a simplicial set of the form

∆J0 t
∆0

∆J1 t
∆0
. . . t

∆0
∆Jn

where the maps ∆Ji−1
max← ∆0 min→ ∆Ji correspond to including the maximum, resp.

minimum elements of the linearly ordered sets Ji−1 resp. Ji. The full subcategory of
necklaces is written N ec ⊆ Set∆. Given a simpicial set C we write N ec ↓ C for the
category of morphisms T → C where T is a necklace, 6 and for verticies X, Y ∈ C0,
we write (N ec ↓ C)X,Y for the full subcategory of (N ec ↓ C) of those T → C which
send the initial vertex of T to X and the final vertex to Y . Finally, we define the
simplicial set

Mapnec
C (X, Y ) = N(N ec ↓ C)X,Y

as the nerve of the category (N ec ↓ C)X,Y .

Exercise 19. Consider the operation

∨ : N ec×N ec→ N ec

given by

(∆J0 t
∆0
. . . t

∆0
∆Jn) ∨ (∆J ′0 t

∆0
. . . t

∆0
∆J ′m)

=∆J0 t
∆0
. . . t

∆0
∆Jn t

∆0
∆J ′0 t

∆0
. . . t

∆0
∆J ′m

Show that this defines a morphism of categories

(N ec ↓ C)X,Y × (N ec ↓ C)Y,Z → (N ec ↓ C)X,Z

which induces morphisms of simplicial sets

Mapnec
C (X, Y )×Mapnec

C (Y, Z)→ Mapnec
C (X,Z).

Show that these morphisms satisfy identity and associativity properties (cf. Def.22).

6Morphisms are commutative triangles of simplicial sets T ′ → T → C.
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Theorem 20 ([HTT, Cor.4.2.1.8], [Dugger, Spivak, Rigidification, Thm.5.2]). Let
C be an ∞-category. Then for ∗ = R,L, there is a zig-zag of weak equivalences of
Kan complexes

hom∗C(X, Y ) ↪→←→ Mapnec
C (X, Y ).

Remark 21. Explicitly, the zig-zag is

hom∗C(X, Y )
a
↪→ MapC[C](X, Y )

b← Maphoc
C (X, Y )

c→ Mapnec
C (X, Y ).

where b and c are compatible with the composition morphisms, the complex MapC[C](X, Y )

and a is defined in [HTT] (see also below), and Maphoc
C (X, Y ) and b, c are defined in

[DS].

3.3 Simplicial categories

References:
[1982 Max Kelly, Basic Concepts of Enriched Category Theory]
[2003 Hirschorn, Model categories and their localisations, Def.9.1.2]
[2012 Lurie, Higher Topos Theory]

Definition 22 ([HTT, Def.1.1.4.1]). A simplicial category C is a category enriched
over Set∆. Explicitly, it is the data of:

1. A collection of objects Ob C.
2. For every pair of objects X, Y ∈ Ob C, a simplicial set MapC(X, Y ).
3. For every triple of objects W,X, Y ∈ Ob C a morphism of simplicial sets

− ◦ − : MapC(W,X)×MapC(X, Y )→ MapC(W,Y ).

These data are required to satisfy:
(Id.) Every object has an identity morphism. That is, for every X ∈ Ob C there is

a vertex idX ∈ Map(X,X)0 such that

∆0 ×Map(X, Y ) //

{idX}×idMap(X,Y )

Map(X,X)×Map(X, Y ) ◦ //Map(X, Y )

is the canonical identification ∆0×Map(X, Y ) ∼= Map(X, Y ), and similarly for
Map(W,X)×Map(X,X)→Map(W,X).

(Assoc.) The composition is associative. That is the following diagram of simplicial sets
commutes for any objects W,X, Y, Z.

MapC(W,X)×MapC(X, Y )×MapC(Y, Z) //

��

MapC(W,Y )×MapC(Y, Z)

��
MapC(W,X)×MapC(X,Z) //MapC(W,Z)

A simplicial category is called fibrant if all MapC(X, Y ) are Kan complexes.
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Example 23. In the previous section we saw that every simplicial set K has an
associated simplicial category, Cnec(K), whose objects are zero simplicies of K and
mapping spaces are MapCnec(K)(X, Y ) = Mapnec

K (X, Y ).

Example 24. The simplicial category of simplicial sets is defined as follows. Objects
are simplicial sets. Given two simplicial sets K,L the mapping space is defined by

MapSet∆
(K,L)n = homSet∆

(K ×∆n, L).

The simplicial set structure comes from functoriality in [n] ∈ ∆. Composition is
defined using the diagonal maps ∆n → ∆n ×∆n. Explicitly, the composition of two
n-cells f : K×∆n → L and g : L×∆n →M is

K×∆n diag.−→ K×∆n×∆n f×id∆n−→ L×∆n g−→M.

Exercise 25. Show that composition in the simplicial category Set∆ satisfies the
identity and associativity axioms.

Exercise 26 ([HTT, Prop.1.2.7.3], [Gabriel-Zisman, 3.1.3]). Let C be an∞-category
(resp. Kan complex). It turns out [HTT, Cor.2.3.2.4],7 [Gabriel-Zisman, Prop.2.2]
that C satisfies the stronger property:

(*) For every simplicial set K, every 0 < i < n (resp. 0 ≤ i ≤ n), and every
morphism Λn

i ×K → C there exists a factorisation

Λn
i ×K

��

// C

∆n ×K

;;

Using this property, show that for any K ∈ Set∆, the simplicial set Map(K,C) is an
∞-category (resp. Kan complex).

Exercise 27. Give an example of C,C ′ ∈ Cat∞ such that MapSet∆
(C,C ′) is not a

Kan complex.

Like ∞-categories, simplicial categories also have associated 1-categories.

Exercise 28.
1. Let C be a simplicial category. For X, Y ∈ Ob C define homC(X, Y ) =

MapC(X, Y )0. Show that this defines a 1-category. This category is some-
times denoted C0. Be careful not to confuse this with the set of 0-simplicies of
a simplicial set.

2. If K is a simplicial set, show that π0|K| is the set K0 modulo the equivalence
relation generated by K1. Show that π0(|K|× |L|) = π0(|K×L|) for simplicial
sets K,L.

7This is a result of Joyal.
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3. Let C be a fibrant simplicial category. For X, Y ∈ Ob C define homhC(X, Y ) =
π0|MapC(X, Y )|. Show that this defines a 1-category.

Definition 29. A morphism F : C → D between two simplicial categories is defined
in the obvious way. We have a map Ob C → Ob D, for every pair X, Y ∈ Ob C we
have a morphism of simpicial sets MapC(X, Y ) → MapD(FX,FY ), and these mor-
phisms are required to be compatible with composition and send identity morphisms
to identity morphisms. The category of simplicial categories is denoted Cat∆.

Definition 30 ([HTT, Def.1.1.4.4]). A morphism F : C → C ′ of simplicial categories
is an equivalence if

1. it is fully faithful in the sense that for everyX, Y ∈ Ob C the map MapC(X, Y )→
MapC′(FX,FY ) is a weak equivalence of simplicial sets, and

2. it is essentially surjective in the sense that hC → hC ′ is essentially surjective.
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