Derived Algebraic Geometry Shane Kelly, UTokyo Autumn Semester 2022-2023

3 Higher categories I

Reference: Higher Topos Theory, Lurie.

Infinity categories should be categories in a world where sets are replaced by homotopy types. So we might expect an infinity category to be a category object in the category of homotopy types.¹ Something essentially like this (simplicial categories) will appear. However, just as simplicial sets has been the standard language of homotopy theory since the 50's, *quasi-categories* has been the dominant language for ∞ -categories for the last decade. As such most people just call them ∞ -categories.

Here is the map of this lecture and the next. We will start on the right side and work towards the left.

$$\begin{cases} \text{Simplicial} \\ \text{Model} \\ \text{Categories} \end{cases} \rightarrow \left\{ \begin{array}{c} \text{Simplicial} \\ \text{Categories} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \infty \text{-categories} \end{array} \right\} \subseteq \mathcal{S}et_{\Delta} \end{aligned}$$

In this lecture we will meet ∞ -categories and simplicial categories. In the next lecture we will discuss simplicial model categories, and see some examples of interest.

¹That is, a homotopy type of objects C_0 , a homotopy type of morphisms C_1 , source and target morphisms $C_1 \Rightarrow C_0$, an identity morphisms $C_0 \rightarrow C_1$, and composition $C_1 \times_{C_0} C_1 \rightarrow C_1$ satisfying some kind of associativity.

3.1 Quasi-categories

To begin with we show how a "usual" category can be encoded in a simplicial set.

Definition 1. Let C be a small category. Considering the ordered sets [n] as categories² the assignment

$$N: [n] \mapsto \operatorname{Fun}([n], C)$$

sending [n] to the set of functors $[n] \to C$ defines a simplicial set. This is called the *nerve* of C.

Remark 2. Explicitly,

- 1. $N(C)_0$ is the set of objects of C,
- 2. $N(C)_1$ is the set of (all) morphisms in C,
- 3. The two morphisms $N(C)_1 \rightrightarrows N(C)_0$ induced by the two morphisms $[0] \rightrightarrows [1]$ send morphisms in $N(C)_1$ to their source and target.

$$(X \xrightarrow{f} Y) \qquad \mapsto \qquad X, Y$$

²So, for $0 \le i, j \le n$ there is exactly one morphism $i \to j$ if $i \le j$, and no morphisms otherwise.

4. The morphism $N(C)_0 \to N(C)_1$ induced by $[1] \to [0]$ sends each object to its identity morphism.

$$X \qquad \mapsto \qquad (X \stackrel{{}^{\operatorname{id}_X}}{\to} X)$$

- 5. $N(C)_2$ is the set of composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$. 6. The three maps $d_0, d_1, d_2 : N(C)_2 \xrightarrow{\Rightarrow} N(C)_1$ induced by the three monomorphisms $[1] \stackrel{\rightarrow}{\rightrightarrows} [2]$ send $\stackrel{f}{\rightarrow} \stackrel{g}{\rightarrow}$ to $g, g \circ f$, and f respectively.

$$X \xrightarrow{f} Z \xrightarrow{Y} g \longrightarrow (Y \xrightarrow{g} Z), \quad (X \xrightarrow{g \circ f} Y), \quad (X \xrightarrow{f} Y)$$

7. More generally, $N(C)_n$ is the set of sequences of *n* composable morphisms $\stackrel{f_1}{\rightarrow}$ $\cdots \xrightarrow{f_n}$ and the various maps $N(C)_n \to N(C)_m$ come from various combinations of composition and inserting identities.

Note that we can completely recover C from N(C). In fact we have a lot of degenerate information.

Exercise 3. Suppose that C is a simplicial set such that:

- 1. Each $\Lambda_1^2 \to C$ extends to a unique $\Delta^2 \to C$, and 2. Each $\Lambda_1^3 \to C$ extends to some $\Delta^3 \to C$.

Show that C canonically determines a category whose set of objects is C_0 and set of morphisms is C_1 .

Exercise 4 (HTT, Proposition 1.1.2.2). (Difficult) Show that a simplicial set K is of the form N(C) if and only if for every 0 < i < n and each diagram

there exists a *unique* dotted arrow making a commutative triangle.

Definition 5. An ∞ -category is a simplicial set K such that for every 0 < i < nand each diagram

there exists a (not necessarily unique) dashed arrow making a commutative triangle.

A functor between ∞ -categories is a morphism of simplicial sets. That is, the category of ∞ -categories is a full subcategory of the category of simplicial sets

$$\mathcal{C}at_{\infty} \subset \mathcal{S}et_{\Delta}$$

Elements of K_0 are called *objects* and elements of K_1 are called 1-morphisms, or often just *morphisms*. Given two morphisms $f, g \in K_1$ such that $d_1 f = d_0 g$ (equivalently, a diagram $\Lambda_1^2 \to K$), for any $\sigma : \Delta^2 \to K$ completing the diagram, $d_1 \sigma \in K_1$ will be called a *composition* of g and f. For any object $X \in K_0$, the morphism $s_0 X \in K_1$ is called the *identity morphism* of X, and written id_X .

Example 6. The nerve N(C) of any small category C is an ∞ -category. So we get a functor (of 1-categories)

$$N: \mathcal{C}at \to \mathcal{C}at_{\infty}.$$

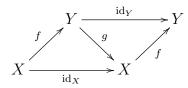
Example 7. Any Kan complex is an ∞ -category. That is, we have fully faithful inclusions

$$\mathcal{S}et_{\Delta} \supset \mathcal{C}at_{\infty} \supset \{ \text{ Kan complexes } \}.$$

In particular, for any topological space X, the simplicial set Sing X is an ∞ -category. In fact, Kan complexes are precisely the ∞ -groupoids (see below).

Exercise 8.

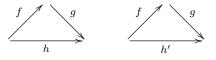
- 1. Show that every Kan complex is an ∞ -category.
- 2. Show that if K is a Kan complex, then every morphism in K is invertible up to homotopy in the sense that:
 - For every $X \xrightarrow{f} Y$ in K_1 we can find two 2-cells in K_2 fitting into a diagram of the form



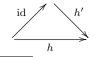
3. (Harder) Show that if K is an ∞ -category satisfying the above property, then K is a Kan complex. Hint.³

Note that in general, in Sing X composition is not unique, but any two choices of composition are homotopic. This is a general feature of ∞ -categories.

Exercise 9. Show that any in an ∞ -category C, any two compositions are "homotopic" in the sense that if there exist two 2-cells in C_2 of the form



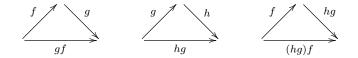
then there exists a 2-cell of the form



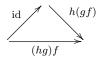
³Start with the case $\Lambda_0^2 \to C$ and work up to Λ_0^n by induction. Use opposite categories to deduce Λ_n^n from Λ_0^n .

Similarly, in $\operatorname{Sing} X$ composition is not associative on the nose, but only up to homotopy.

Exercise 10. Show that composition in an ∞ -category C is associative "up to homotopy" in the sense that if we have 2-cells in C_2 of the form



Then (hg)f is a composition of gf and h. In particular, by Exercise 9, if h(gf) is any other choice of composition of gf and h, then there is a 2-cell of the form:

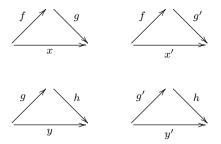


Exercise 11. Recall the nerve functor from Example 6. We will show that the nerve functor admits a left adjoint.

1. Let C be an ∞ -category. Define a relation on 1-morphisms in C by saying $f \sim g$ if f is a composition of g and id. That is, if there exists a 2-cell in C_2 of the form

Show that this is an equivalence relation.

2. Show that the above equivalence relation preserves composition. That is, suppose that $g \in C_1$ is equivalent to $g' \in C_1$, and suppose we have 2-cells of the following form.



Show that $x \sim x$ and $y \sim y'$. (Use Exercise 9 if necessary).

3. Define hC to be the 1-category whose objects are vertices C_0 , morphisms are edges C_1 modulo the above equivalence relation, and composition is induced by composition in C. Show that this is actually a 1-category. That is, show that it satisfies the identity and associativity axioms. (Use Exercise 10 for associativity).

4. Show that

$$h: \mathcal{C}at_{\infty} \to \mathcal{C}at$$

defines a functor which is left adjoint to N. Hint.⁴

Definition 12. The 1-category hC defined above is called the *homotopy category* of C. A morphism $X \xrightarrow{f} Y \in C_1$ in an ∞ -category is said to be an *equivalence* if it becomes an isomorphism in hC. If such an equivalence exists, we say X and Y are equivalent.

3.2 Mapping spaces

We wanted to replace sets with homotopy types, so for any two objects $x, y \in C_0$ in an ∞ -category, we should have a homotopy type $\operatorname{Map}_C(x, y)$ of morphisms. Here are two models for this homotopy type.

Definition 13. Let C be an ∞ -category, and $x, y \in C_0$ objects. Define

$$\hom_C^R(x,y)_J = \{ z : \Delta^{J \sqcup [0]} \to C \mid z|_{\Delta^J} = x \text{ and } z|_{\Delta^0} = y \}$$

where $J \sqcup [0] = \{j_0 < \cdots < j_n\} \sqcup \{0\} = \{j_0 < j_1 < \cdots < j_n < 0\}$ and we use x for the constant morphism $\Delta^J \to \Delta^0 \xrightarrow{x} C$. Similarly, define

$$\hom_C^L(x,y)_J = \{z : \Delta^{[0] \sqcup J} \to C \mid z|_{\Delta^0} = x \text{ and } z|_{\Delta^j} = y\}$$

where $[0] \sqcup J = \{0\} \sqcup \{j_0 < \dots < j_n\} \sqcup \{0\} = \{0 < j_0 < j_1 < \dots < j_n\}.$

Exercise 14. Suppose C is an ∞ -category and $x, y \in C_0$ are objects. Show that $\hom_C^R(x, y)$ and $\hom_C^L(x, y)$ are Kan complexes.

Exercise 15.

- 1. Let C be a 1-category. Show that $\hom_{NC}^{R}(x, y)_{J} = \hom_{C}(x, y)$ for all J.
- 2. Let X be a topological space and $x, y \in X$ two points. Let PX denote the set $\hom_{\text{Top}}(\Delta_{\text{top}}^1, X)$ equipped with the compact-open topology⁵ and $PX(x, y) \subseteq \hom(\Delta^1, X)$ the subspace of maps $\gamma : \Delta_{\text{top}}^1 \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Define an isomorphism of simplicial sets $\hom_{\text{Sing Top}}^R(x, y) \cong \text{Sing } PX(x, y)$.

Definition 16. A morphism $C \to D$ of ∞ -categories is:

- 1. fully faithful if for every pair of objects $X, Y \in C_0$ the induced morphism $\hom_C^R(X,Y) \to \hom_D^R(FX,FY)$ is a weak equivalence of Kan complexes,
- 2. essentially surjective if $hC \rightarrow hD$ is essentially surjective,
- 3. a categorical equivalence if it is essentially surjective and fully faithful.

⁵Or indeed, any topology such that $\hom_{\text{Top}}(\Delta_{\text{top}}^n, \hom_{\text{Top}}(\Delta_{\text{top}}^1, X)) = \hom_{\text{Top}}(\Delta_{\text{top}}^n \times \Delta_{\text{top}}^1, X).$

⁴It suffices to show that hN = id and to give a natural transformation $\eta : id \to Nh$ such that $h(\eta)$ is the identity natural transformation.

Exercise 17. Let $F : C \to C'$ be a functor between 1-categories. Show that F is an equivalence of 1-categories if and only if $F : NC \to NC'$ is an equivalence of ∞ -categories.

Clearly, we would like composition morphisms

$$\hom^R_C(X,Y) \times \hom^R_C(Y,Z) \xrightarrow{?} \hom^R_C(X,Z).$$

One way to obtain these is the generalise both \hom^R and \hom^L as follows.

Definition 18 (Dugger, Spivak). A *necklace* is a simplicial set of the form

$$\Delta^{J_0} \underset{\Delta^0}{\sqcup} \Delta^{J_1} \underset{\Delta^0}{\sqcup} \ldots \underset{\Delta^0}{\sqcup} \Delta^{J_r}$$

where the maps $\Delta^{J_{i-1}} \stackrel{\text{max}}{\leftarrow} \Delta^0 \stackrel{\text{min}}{\to} \Delta^{J_i}$ correspond to including the maximum, resp. minimum elements of the linearly ordered sets J_{i-1} resp. J_i . The full subcategory of necklaces is written $\mathcal{N}\text{ec} \subseteq \mathcal{S}\text{et}_\Delta$. Given a simplicial set C we write $\mathcal{N}\text{ec} \downarrow C$ for the category of morphisms $T \to C$ where T is a necklace, ⁶ and for vertices $X, Y \in C_0$, we write $(\mathcal{N}\text{ec} \downarrow C)_{X,Y}$ for the full subcategory of $(\mathcal{N}\text{ec} \downarrow C)$ of those $T \to C$ which send the initial vertex of T to X and the final vertex to Y. Finally, we define the simplicial set

$$\operatorname{Map}_{C}^{nec}(X,Y) = N(\mathcal{N}\mathrm{ec} \downarrow C)_{X,Y}$$

as the nerve of the category $(\mathcal{N}ec \downarrow C)_{X,Y}$.

Exercise 19. Consider the operation

$$\vee:\mathcal{N}\mathrm{ec}\times\mathcal{N}\mathrm{ec}\to\mathcal{N}\mathrm{ec}$$

given by

$$(\Delta^{J_0} \underset{\Delta^0}{\sqcup} \dots \underset{\Delta^0}{\sqcup} \Delta^{J_n}) \vee (\Delta^{J'_0} \underset{\Delta^0}{\sqcup} \dots \underset{\Delta^0}{\sqcup} \Delta^{J'_m})$$
$$= \Delta^{J_0} \underset{\Delta^0}{\sqcup} \dots \underset{\Delta^0}{\sqcup} \Delta^{J_n} \underset{\Delta^0}{\sqcup} \Delta^{J'_0} \underset{\Delta^0}{\sqcup} \dots \underset{\Delta^0}{\sqcup} \Delta^{J'_m}$$

Show that this defines a morphism of categories

$$(\mathcal{N}\mathrm{ec}\downarrow C)_{X,Y} \times (\mathcal{N}\mathrm{ec}\downarrow C)_{Y,Z} \to (\mathcal{N}\mathrm{ec}\downarrow C)_{X,Z}$$

which induces morphisms of simplicial sets

$$\operatorname{Map}_{C}^{nec}(X,Y) \times \operatorname{Map}_{C}^{nec}(Y,Z) \to \operatorname{Map}_{C}^{nec}(X,Z).$$

Show that these morphisms satisfy identity and associativity properties (cf. Def.22).

⁶Morphisms are commutative triangles of simplicial sets $T' \to T \to C$.

Theorem 20 ([HTT, Cor.4.2.1.8], [Dugger, Spivak, Rigidification, Thm.5.2]). Let C be an ∞ -category. Then for * = R, L, there is a zig-zag of weak equivalences of Kan complexes

 $\hom_C^*(X,Y) \hookrightarrow \longleftrightarrow \to \operatorname{Map}_C^{nec}(X,Y).$

Remark 21. Explicitly, the zig-zag is

 $\hom^*_C(X,Y) \xrightarrow{a} \operatorname{Map}_{\mathfrak{C}[C]}(X,Y) \xleftarrow{b} \operatorname{Map}_C^{hoc}(X,Y) \xrightarrow{c} \operatorname{Map}_C^{nec}(X,Y).$

where b and c are compatible with the composition morphisms, the complex $\operatorname{Map}_{\mathfrak{C}[C]}(X, Y)$ and a is defined in [HTT] (see also below), and $\operatorname{Map}_{C}^{hoc}(X, Y)$ and b, c are defined in [DS].

3.3 Simplicial categories

References:

[1982 Max Kelly, Basic Concepts of Enriched Category Theory][2003 Hirschorn, Model categories and their localisations, Def.9.1.2][2012 Lurie, Higher Topos Theory]

Definition 22 ([HTT, Def.1.1.4.1]). A simplicial category C is a category enriched over Set_{Δ} . Explicitly, it is the data of:

- 1. A collection of objects Ob C.
- 2. For every pair of objects $X, Y \in Ob \ C$, a simplicial set $\operatorname{Map}_{C}(X, Y)$.
- 3. For every triple of objects $W, X, Y \in Ob \ C$ a morphism of simplicial sets

 $-\circ -: \operatorname{Map}_{C}(W, X) \times \operatorname{Map}_{C}(X, Y) \to \operatorname{Map}_{C}(W, Y).$

These data are required to satisfy:

(Id.) Every object has an identity morphism. That is, for every $X \in Ob \ C$ there is a vertex $id_X \in Map(X, X)_0$ such that

$${}^{\{\mathrm{id}_X\}\times\mathrm{id}_{\mathrm{Map}(X,Y)}} \Delta^0 \times \mathrm{Map}(X,Y) \longrightarrow \mathrm{Map}(X,X) \times \mathrm{Map}(X,Y) \xrightarrow{\circ} \mathrm{Map}(X,Y)$$

is the canonical identification $\Delta^0 \times \operatorname{Map}(X, Y) \cong \operatorname{Map}(X, Y)$, and similarly for $\operatorname{Map}(W, X) \times \operatorname{Map}(X, X) \to \operatorname{Map}(W, X)$.

(Assoc.) The composition is associative. That is the following diagram of simplicial sets commutes for any objects W, X, Y, Z.

$$\begin{split} \operatorname{Map}_{C}(W,X) \times \operatorname{Map}_{C}(X,Y) \times \operatorname{Map}_{C}(Y,Z) &\longrightarrow \operatorname{Map}_{C}(W,Y) \times \operatorname{Map}_{C}(Y,Z) \\ & \downarrow & \downarrow \\ \operatorname{Map}_{C}(W,X) \times \operatorname{Map}_{C}(X,Z) & \longrightarrow \operatorname{Map}_{C}(W,Z) \end{split}$$

A simplicial category is called *fibrant* if all $Map_C(X, Y)$ are Kan complexes.

Example 23. In the previous section we saw that every simplicial set K has an associated simplicial category, $\mathfrak{C}^{nec}(K)$, whose objects are zero simplicies of K and mapping spaces are $\operatorname{Map}_{\mathfrak{C}^{nec}(K)}(X,Y) = \operatorname{Map}_{K}^{nec}(X,Y)$.

Example 24. The simplicial category of simplicial sets is defined as follows. Objects are simplicial sets. Given two simplicial sets K, L the mapping space is defined by

$$\operatorname{Map}_{\mathcal{S}et_{\Delta}}(K, L)_{n} = \operatorname{hom}_{\mathcal{S}et_{\Delta}}(K \times \Delta^{n}, L).$$

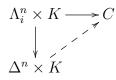
The simplicial set structure comes from functoriality in $[n] \in \Delta$. Composition is defined using the diagonal maps $\Delta^n \to \Delta^n \times \Delta^n$. Explicitly, the composition of two *n*-cells $f: K \times \Delta^n \to L$ and $g: L \times \Delta^n \to M$ is

$$K \times \Delta^n \xrightarrow{\text{diag.}} K \times \Delta^n \times \Delta^n \xrightarrow{f \times \operatorname{id}_{\Delta^n}} L \times \Delta^n \xrightarrow{g} M.$$

Exercise 25. Show that composition in the simplicial category Set_{Δ} satisfies the identity and associativity axioms.

Exercise 26 ([HTT, Prop.1.2.7.3], [Gabriel-Zisman, 3.1.3]). Let C be an ∞ -category (resp. Kan complex). It turns out [HTT, Cor.2.3.2.4],⁷ [Gabriel-Zisman, Prop.2.2] that C satisfies the stronger property:

(*) For every simplicial set K, every 0 < i < n (resp. $0 \le i \le n$), and every morphism $\Lambda_i^n \times K \to C$ there exists a factorisation



Using this property, show that for any $K \in Set_{\Delta}$, the simplicial set Map(K, C) is an ∞ -category (resp. Kan complex).

Exercise 27. Give an example of $C, C' \in Cat_{\infty}$ such that $\operatorname{Map}_{Set_{\Delta}}(C, C')$ is not a Kan complex.

Like ∞ -categories, simplicial categories also have associated 1-categories.

Exercise 28.

- 1. Let C be a simplicial category. For $X, Y \in Ob \ C$ define $\hom_C(X, Y) = \operatorname{Map}_C(X, Y)_0$. Show that this defines a 1-category. This category is sometimes denoted C_0 . Be careful not to confuse this with the set of 0-simplicies of a simplicial set.
- 2. If K is a simplicial set, show that $\pi_0|K|$ is the set K_0 modulo the equivalence relation generated by K_1 . Show that $\pi_0(|K| \times |L|) = \pi_0(|K \times L|)$ for simplicial sets K, L.

⁷This is a result of Joyal.

3. Let C be a fibrant simplicial category. For $X, Y \in Ob \ C$ define $\hom_{hC}(X, Y) = \pi_0 |\operatorname{Map}_C(X, Y)|$. Show that this defines a 1-category.

Definition 29. A morphism $F: C \to D$ between two simplicial categories is defined in the obvious way. We have a map $Ob \ C \to Ob \ D$, for every pair $X, Y \in Ob \ C$ we have a morphism of simplicial sets $\operatorname{Map}_C(X,Y) \to \operatorname{Map}_D(FX,FY)$, and these morphisms are required to be compatible with composition and send identity morphisms to identity morphisms. The category of simplicial categories is denoted $\mathcal{C}at_{\Delta}$.

Definition 30 ([HTT, Def.1.1.4.4]). A morphism $F: C \to C'$ of simplicial categories is an *equivalence* if

- 1. it is *fully faithful* in the sense that for every $X, Y \in Ob \ C$ the map $\operatorname{Map}_{C}(X, Y) \to \operatorname{Map}_{C'}(FX, FY)$ is a weak equivalence of simplicial sets, and
- 2. it is essentially surjective in the sense that $hC \to hC'$ is essentially surjective.