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One of the principles of derived geometry is that one should expand the category
of sets to include not necessarily discrete “homotopy types”. In this lecture we
develop some models for a category of homotopy types. More concretely, we explain
the following picture

{ CW complexes } ⊂ Top

Sing

ss
{ Kan complexes } ⊂ Set∆

|−|

ii

whose rows should be compared with the inclusion

ChfreeR ⊆ ChR

we saw last week.
In both Set∆ and Top there is a notion of when a morphism is a weak equivalence.

One way of defining the term “homotopy type” one option would be: a homotopy
type is a weak equivalence class of objects in Set∆ or Top. That is, a connected
component of the graph whose verticies are objects of Set∆ (or Top) and edges are
weak equivalences.

2.1 Topological spaces

Definition 1. Let f, g : X → Y be two continuous morphisms between topological
spaces. A homotopy from f to g is a continuous morphism h : X × [0, 1] → Y such
that h(−, 0) = f(−) and h(−, 1) = g(−). In this case we write f ∼ g.

∗ ∗ ∗conepicture ∗ ∗∗

Exercise 2.
1. Show that any two continuous morphisms X ⇒ R are homotopic. Give an

example of two continuous morphisms X ⇒ Y which are not homotopic.1

1Hint: Try X = {0} and Y = {±1}
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2. Show that ∼ is an equivalence relation on the set of continuous morphisms
homTop(X, Y ) between two topological spaces.

3. Show that ∼ is preserved by pre- and post-composition. That is, if f ∼ g then

fa ∼ ga and bf ∼ bg for any continuous W
a→ X, X

f→ Y , X
g→ Y , Y

b→ Z.

Definition 3. Two topological spaces X, Y are said to be homotopy equivalent if
there exist continuous morphisms f : X � Y : g such that idX ∼ gf and fg ∼ idY .

If X is homotopy equivalent to a singleton {∗} then we say X is contractible.

Remark 4. By Exercise 2 we can make a new category hTop with the same objects
as Top, and homotopy classes of morphisms. Then X and Y are homotopy equivalent
if and only if they become isomorphic in hTop. Similarly, a space is contractible if
and only if it isomorphic to {∗} in hTop.

Exercise 5.
1. Show that Rn is contractible.
2. Give an example of two topological spaces which are not homeomorphic, but

which are homotopy equivalent.
3. Given an example of two topological spaces which are not homotopy equivalent.

Remark 6. There is also a pointed notion of homotopy. A pointed space is a pair
(X, x0) with X a topological space and x0 ∈ X a point. A morphism of pointed
spaces (X, x0) → (Y, y0) is any continuous map f : X → Y such that f(x0) = y0.
We write Top∗ for the category of pointed topological spaces. A homotopy between
morphisms f, g : (X, x0) ⇒ (Y, y0) of pointed spaces is a homotopy h : X× [0, 1]→ Y

from X
f→ Y to X

g→ Y such that h(x0, t) = y0 for all t ∈ [0, 1]. Exercise 2 can also
be done in the pointed setting.

Definition 7. The set of path components of a topological space X is

π0(X) = homTop({∗}, X)/ ∼ .

Let Sn := {(x0, . . . , xn) ∈ Rn+1 :
∑
x2
i = 1}. Equipped with e0 := (1, 0, . . . , 0) ∈ Sn

it becomes a pointed space. For n ≥ 0, the nth homotopy group of a pointed
space (X, x0) is the set of morphisms of pointed spaces up to (pointed) homotopy
equivalence

πn(X, x0) = homTop∗((S
n, e0), (X, x0))/ ∼ .

Remark 8. The homotopy groups πn(X, x0) are a way of formalising how many
“holes” are in a topological space.

Remark 9. Note that S0 = {±1} and Sn = ∅ for n < 0.

Example 10.
1. If X is contractible, then πj(X, x0) = {0} for all 0 ≤ j, n.
2. If x0, x1, . . . , xn ∈ R2 are n+1 distinct points, then π1(R2 \ {x0, x1, . . . , xn}) is

the free group on n generators.
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3.

πj(S
n, e0) =


{∗} j = 0 < n
{0} 0 < j < n
Z 0 < j = n

major open problem 1 < n� j

4. πj

(
X×Y, (x0, y0)

)
∼= πj(X, x0)× πj(Y, y0).

Definition 11 ([HTT, Def.1.1.3.4]). A continuous morphism X → Y of topological
spaces is a weak equivalence if

1. π0(X)→ π0(Y ) is an isomorphism, and
2. πj(X, x0)→ πj(Y, fx0) is an isomorphism for all x0 ∈ X.

Exercise 12. Show that any homotopy equivalence is a weak equivalence.

Example 13. Not every topological space behaves well with respect to homotopy.
For example, the topologists sine curve

X = {(0, y) ∈ R2 | y ∈ R} t {(t, sin 1
t
) ∈ R2 | t > 0}

∗ ∗ ∗ADDPICTURE ∗ ∗∗

has a single connected component (i.e., there are is no homeomorphism X ∼= X0tX1

with X0, X1 non-empty) but it has two path connected components. In other words,
{(0, 0), (π, 0)} → X is a weak equivalence, but not a homotopy equivalence.

Remark 14. There exists a nice category of topological spaces (called CW com-
plexes) where every weak equivalence is a homotopy equivalence. Moreover, every
topological space is weakly equivalent to a CW complex.

Up to homotopy, every CW complex can be built from a simplicial set.

2.2 Simplicial sets

We write ∆ for the 1-category of finite linearly ordered sets. Every such set is
isomorphic to one of the form [n] = {0 < 1 < · · · < n} (here n ∈ Z). The 1-category
of simplicial sets Set∆ is the category of functors ∆op → Set. Given such a functor
K : ∆op → Set we write Kn := K([n]). Elements of Kn are called n-simplicies of K.

Example 15 (SingX). Define

∆n
top :=

{
(x0, . . . , xn) | 0 ≤ xi ≤ 1;

n∑
i=0

xi = 1

}

to be the convex hull of the standard basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0). So ∆0
top

is a point, ∆1
top is a line segment, ∆2

top is a triangle, ∆3
top is a tetrahedron, . . .

∗ ∗ ∗ADDPICTURE ∗ ∗∗

3



Any morphism p : [n] → [m] in ∆ defines an R-linear morphism Rn+1 → Rm+1;
ei 7→ ep(i), which restricts to a continuous morphism ∆n

top → ∆m
top. In this way we

get a functor
∆→ Top; [n] 7→ ∆n

top

from ∆ to the 1-category of topological spaces. For any other topological space X,
the assignment

SingX : [n] 7→ homTop(∆n
top, X)

defines a simplicial set. Explicitly,
1. Sing0X is the set of points of X,
2. Sing1X is the set of paths in X,
3. Sing2X is the set of triangles in X,
4. . . .

Remark 16. The term “singular” refers to the fact that we might have restricted
our attention to smooth manifolds X and smooth maps ∆n

top → X. However, our
maps are only required to be continuous, and we allow any topological space X (for
now).

Remark 17. One can think of SingX as a combinatorial model of X. The functor
Sing : Top→ Set∆ admits a left adjoint |·| : Set∆ → Top, and the counit | SingX| →
X is always a weak equivalence.

∗ ∗ ∗PICTUREOFTRIANGULATEDSURFACE ∗ ∗∗

Remark 18. We describe the geometric realisation functor in more detail later, but
for now, note that by Yoneda’s lemma, we must have |∆n| = ∆n

top since

homTop(|∆n|,−) = homSet∆
(∆n, Sing−) = (Sing−)n = homTop(∆n

top,−).

2.3 Kan complexes

Example 19 (∆n). For each n, the functor ∆n := hom∆(−, [n]) : ∆op → Set defines
a simplicial set. By Yoneda’s Lemma, for any K ∈ Set∆,

homSet∆
(∆n, K) ∼= Kn.

Definition 20. For each n, j we have the face morphism δj : [n−1]→ [n] defined as
the unique injection which does not have j in its image.

0

��

1

��

. . . j−1

��

j

��

j+1

��

. . . n−1

��
0 1 . . . j−1 j j+1 j+2 . . . n

For any simplicial set K : ∆op → Set we have a corresponding morphism

dj : Kn → Kn−1.

These (i.e., δj and dj) are called face morphisms. For σ ∈ Kn we call djσ the jth
face of σ.
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Exercise 21. Show that every monomorphism in ∆ is a composition of δj’s.

Exercise 22. Consider the morphism ∆n
top → ∆n+1

top associated to δj. Draw this
morphism for 0 ≤ j ≤ n ≤ 2.

Example 23 (∂∆n). Consider the morphisms of simplicial sets δj : ∆n−1 → ∆n. We
define

∂∆n =
n⋃
j=0

δj(∆
n−1)

as the union of these faces. Explicitly, (∂∆n)j ⊆ (∆n)j = hom∆([j], [n]) is the set of
morphisms [j]→ [n] of linearly ordered sets which are not surjective.

Exercise 24. Show that ∂∆n
top = ∪nj=0δj(∆

n−1
top ) is the boundary of ∆n

top ⊆ Rn+1.

Exercise 25. Let K be a simplicial set.
1. Show that a morphism f : ∂∆n → K of simplicial sets canonically determines

a collection of simplicies k0, k1, . . . , kn ∈ Kn−1 such that we have δ∗i kj = δ∗j−1ki
for i < j.

2. (Harder) Conversely, show that a collection of simplicies k0, k1, . . . , kn ∈ Kn−1

such that we have δ∗i kj = δ∗j−1ki for i < j determines a morphism f : ∂∆n → K
of simplicial sets. Hint.2

Exercise 26. Let I be the category associated to the partially ordered set of the
sub-linearly ordered sets of [n] of size n and n− 1. Show that ∂∆n

top = lim−→L∈I ∆L
top.

Using the fact that |−| preserves colimits and Remark 18 deduce that |∂∆n| = ∂∆n
top.

Definition 27 (Λn
j ). For 0 ≤ j ≤ n we define the jth horn as the union

Λn
j =

⋃
i 6=j

δi(∆
n−1).

Equivalently, (Λn
j )i ⊆ (∆n)i = hom∆([i], [n]) is the set of those [i]→ [n] whose image

does not contain the subset {0, 1, . . . , j−1, j+1, . . . , n}.

Exercise 28. Define Λn+1
top,j =

⋃
i 6=j δi(∆

n
top). Draw Λn

top,j for 0 ≤ j ≤ n ≤ 2.

Exercise 29. Do the Λn
i analogue of Exercise 25.

Definition 30 (Kan fibration). A morphism f : X → Y of simplicial sets is a Kan
fibration if for every 0 ≤ j ≤ n, and commutative square

Λn
j

//

��

X

��
∆n //

>>

Y

2I would do this as follows. Consider the partially ordered set I consisting of those sub-linearly
ordered sets σ ⊆ [n] such that σ ∼= [n−1] or σ ∼= [n−2]. This determines a diagram I → Set∆;
σ 7→ ∆σ. Show that ∂∆n ∼= lim−→σ∈I ∆σ, and therefore hom(∂∆n,K) = limσ∈I hom(∆σ,K). Now

use Yoneda hom(∆σ,K) ∼= K|σ|−1.
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a dashed morphism exists making two triangles commutative. A simplicial set K is
a Kan complex if the canonical morphism K → ∆0 is a Kan fibration.

Remark 31. Note ∅→ Y is a Kan fibration.

Remark 32. Kan fibrations are the simpicial version of Serre fibrations of topolog-
ical spaces.3 A Serre fibration X → Y of topological spaces has the nice property
that any x ∈ X gives rise to a long exact sequence

· · · → πn(F, x)→ πn(X, x)→ πn(Y, fx)→ πn−1(F, x)→ . . .

where F = f−1f(x).

Exercise 33. Show that for any 0 ≤ j ≤ n there exists a continuous retraction4

∆n
top → Λn

top,j to the inclusion Λn
top,j ⊆ ∆n

top. Using the adjunction

| − | : Set∆ � Top : Sing,

and Exercise ??, show that for any topological space X, the simplicial set SingX is
a Kan complex.

Just as for topological spaces, we can define the notion of homotopy equivalence
of simplicial sets.

Definition 34. If K,L are two simplicial sets, we get a new simplicial set K ×L by
setting

(K × L)n = Kn × Ln.

Exercise 35.
1. Given [m]→ [n] in ∆, describe the associated morphisms of sets (K × L)n →

(K × L)m.
2. LetX, Y be topological spaces and show that Sing(X×Y ) = (SingX)×(Sing Y ).
3. Draw the topological spaces ∆1

top × ∆1
top and ∆1

top × ∆2
top. Describe all non-

degenerate simplices5 in ∆1, ∆2, ∆1 ×∆1 and ∆1 ×∆2.

Definition 36. Let f, g : K ⇒ L be two morphisms of simplicial sets. A homotopy
from f to g is a morphism

h : K ×∆1 → L

such that h(−, 0) = f(−) and h(−, 1) = g(−). Here, h(−, 0) (resp. h(−, 1)) means
the the composition K ∼= K ×∆0 → K ×∆1 → L where ∆0 → ∆1 corresponds to
[0]→ [1]; 0 7→ 0 (resp. 0 7→ 1).

3In fact, a morphism of topological spaces X → Y is a Serre fibration if and only if SingX →
Sing Y is a Kan fibration, [Keredon, https://kerodon.net/tag/021V]. That is, if and only if it satisfies
the lifting criterion of Def.30 using Λntop,j → ∆n

top instead of Λnj → ∆n.
4That is, a continuous morphism such that the composition Λntop,j→∆n

top→Λntop,j is the identity.
5A simplex σ ∈ Kn is called non-degenerate if it is not of the form p∗σ for some surjection

p : [n]→ [n−1].
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Exercise 37. Suppose that f, g : X ⇒ Y are two continuous morphisms of topo-
logical spaces which are homotopic. Show that Sing f, Sing g : SingX ⇒ Sing Y are
homotopic.

Definition 38. A morphism of simplicial sets K → L is a (Quillen) weak equivalence
if |K| → |L| is a weak equivalence of topological spaces.

2.4 Colimits of topological spaces

For concreteness, let us recall the following.

Definition 39. Let I be a category and X : I → Top a functor. The colimit of this
diagram can be constructed explicitly as follows. The underline set of lim−→i∈I Xi is the
colimit taken in the category of sets. That is, it is the quotient of the disjoint union
ti∈IXi by the equivalence relation generated by xi ∈ Xi is equivalent to xj ∈ Xj if
there exists u : i→ j in I such that Xu(xi) = xj.

We equip ti∈IXi/ ∼ with the finest topology such that the canonical morphisms
ιi : Xi → ti∈IXi/ ∼ are continuous. Explicitly, a subset U ⊆ ti∈IXi/ ∼ is open if
and only if ι−1

i (U) is open for all i.

Exercise 40. Suppose that Z1, Z2 ⊆ X are two subspaces of a topological space X.
Show that if Z1, Z2 are both closed, then Z1 ∪ Z2 is homeomorphic to Z1 tZ1∪Z2 Z2.
Give an example of subspaces Z1, Z2 ⊆ X (not closed) such that Z1 ∪ Z2 is not
homeomorphic to Z1 tZ1∪Z2 Z2.

2.5 Geometric realisation

In this section we consider three different descriptions of the geometric realisation.
Consider the geometric realsation | · | : Set∆ → Top. We would like | · | to be left

adjoint to Sing. This forces the following properties:
1. |∆n| has to corepresent the functor Sing(−)n = homSet∆

(∆n, Sing−). We know
that this functor is isomorphic to homTop(∆n

top,−), so we must have

|∆n| = ∆n
top.

2. | − | has to preserve colimits (since it’s a left adjoint). Since every simplicial
set is a colimit of ∆ns, this completely determines | − |. This leads to three
descriptions.

As a colimit of representables. Let
∫
K be the category whose objects are pairs

([n], k) where n ∈ N and k ∈ Kn; i.e., elements of qNKn. A morphism ([n], k) →
([n′], k′) is a morphism σ : [n] → [n′] such that Kn′ → Kn sends k′ to k. Then
K = lim−→([n],k)∈

∫
K

∆n (see Exercise 41) so we must have

|K| = lim−→
([n],f)∈

∫
K

∆n
top.
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Exercise 41. Let F : Cop → Set be a presheaf of sets. Show that

F = lim−→
c∈Ob C,

hom(−,c) s→F

homC(−, c)

where the colimit is indexed by the category
∫
F described above (recall that F (c) ∼=

hom(hom(−, c), F ) by Yoneda’s Lemma).

As a homotopy colimit. In general, we can write colimits in terms of coequalisers
and coproducts, lim−→i∈I Xi = coeq(t

i
u→j∈IXi ⇒ ti∈IXi). If we do this for the above

colimit, we get K = coeq
(∐

[n]
σ→[m]

∐
k∈Km ∆n ⇒

∐
n∈∆

∐
k∈Kn ∆n

)
where one mor-

phism sends the kth copy of ∆n to the σ∗kth copy of ∆n, and the other morphism
is the canonical σ : ∆n → ∆m from the kth copy to the kth copy. So we must have

|K| = coeq
(∐

[n]
σ→[m]

∐
k∈Km ∆n

top ⇒
∐

n∈∆

∐
k∈Kn ∆n

top

)
which can be written as

|K| = coeq

 ∐
[n]

σ→[m]

Km ×∆n
top ⇒

∐
n∈∆

Kn ×∆n
top


if we think of each Ki as a discrete topological space. We will see in a few weeks
that this is a model for the homotopy colimit

hocolim[n]∈∆ Kn

in Top, where the Kn are considered as discrete spaces in Top.
As a tower of relative cells complexes. Finally, recall that one defines a simplex

σ ∈ Kn to be degenerate if σ ∈
⋃

hom([n],[n−1]) im(Kn−1 → Kn) and non-degenerate if
it is not degenerate. Write NKn ⊆ Kn for the set of non-degenerate simplicies of
dimension n, and for n ≥ −1 define sk−1K = ∅ and let

sknK =
⋃

0≤j≤n
σ∈NKn

im(∆j σ→ K) ⊆ K

be the smallest subsimplicial set containing all σ ∈ NKj; j ≤ n. Note that skn is
functorial, and ∂∆n = skn−1 ∆n. In particular, given any σ ∈ NKn, we have a cor-
responding morphism ∂∆n → skn−1K. In fact, one sees that there exist cocartesian
squares ∐

NKn

∂∆n //

��

skn−1K

��∐
NKn

∆n // sknK.
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By Remark 18 we have |∆n| = ∆n
top and by Exercise 26 we have |∂∆n| = ∂∆n

top.
Consequently, since | − | preserves all colimits there are cocartesian squares∐

NKn

∂∆n
top

//

��

| skn−1K|

��∐
NKn

∆n
top

// | sknK|.

Morevoer, K = lim−→(sk0K → sk1K → . . . ) so

|K| = lim−→

(
| sk0K| → | sk1K| → . . .

)
.

In other words, we obtain |K| be sequentially glueing cells ∆n
top along their boundaries

∂∆n
top → | skn−1K|.

∗ ∗ ∗ ∗ picture ∗ ∗∗

Corollary 42. For K ∈ Set∆ there is a bijection of sets

|K| ∼= K0 q

(∐
n>0

∐
NKn

(∆n
top)
◦

)

where (∆n
top)
◦ means the interior of ∆n

top. In particular, a simplex k ∈ Kn is non-
degenerate if and only if the induced continuous morphism (∆n

top)
◦ → |K| is injective,

and degenerate if and only if it factors via a linear projection (∆n
top)
◦ → (∆m

top)
◦ →

|K| for some m < n and some non-degenerate ∆m → K.
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