In this lecture we show how the category $\operatorname{Shv}_{\mathrm{et}}(X)$ of étale sheaves on a scheme X can be reconstructed from $\operatorname{Shv}_{\mathrm{et}}(Z)$ sheaves on a closed subscheme $Z \subseteq X$ and $\operatorname{Shv}_{\mathrm{et}}(U)$ sheaves on its open complement $U=X-Z$, see Theorem 16

For easy of exposition, all presheaves will be presheaves of abelian groups ${ }^{1}$ and all sites small 2^{2} All schemes are assumed to be quasi-compact quasiseparated (e.g., Noetherian and separated), and we recall that étale morphisms are by definition locally of finite presentation (this means finite type if working only with Noetherian schemes) 4^{3}

1 Presheaf adjunctions

Definition 1. Suppose that $\pi: C^{\prime} \rightarrow C$ is a functor. We denote the functor induced by composition as

$$
\pi_{p}: \operatorname{PreShv}(C) \rightarrow \operatorname{PreShv}\left(C^{\prime}\right) ; \quad F \mapsto F \circ \pi
$$

Exercise 1. If $\pi^{\prime}: C^{\prime \prime} \rightarrow C^{\prime}$ and $\pi: C^{\prime} \rightarrow C$ are two functors, show that $\left(\pi \circ \pi^{\prime}\right)_{p}=\pi_{p} \circ \pi_{p}^{\prime}$.
Definition 2. Give a presheaf $F \in \operatorname{PreShv}\left(C^{\prime}\right)$ and $X \in C$ define

$$
\left(\pi^{p} F\right)(X)=\lim _{X \rightarrow \pi(Y)} F(Y)
$$

where the colimit is over the comma category $(X \downarrow \pi)$ whose objects are morphisms $X \rightarrow \pi(Y)$ in C, and $\operatorname{hom}\left(X \rightarrow \pi(Y), X \rightarrow \pi\left(Y^{\prime}\right)\right)=\left\{f: Y \rightarrow Y^{\prime}\right.$ s.t. the triangle $\nwarrow_{X}^{\pi(Y)} \longrightarrow \nearrow^{\pi\left(Y^{\prime}\right)}$ commutes $\}$.
Remark 3. There is also a right adjoint to π_{p} defined in an analogous way, but we will not use it.

Exercise 2. Using the universal property of the colimit, show that a morphism $X \rightarrow X^{\prime}$ in C induces a morphism $\left(\pi^{p} F\right)\left(X^{\prime}\right) \rightarrow\left(\pi^{p} F\right)(X)$, and that this makes $\pi^{p} F$ into a presheaf on C.

Exercise 3 (Advanced). Given an object $W \in C$ we write $h_{W}(-)=\operatorname{hom}_{C}(-, W)$ for the presheaf represented by W.

1. Show that $\pi^{p} h_{Y}=h_{\pi Y}$ for any $Y \in C^{\prime}$.
2. Show that there is canonical isomorphism $\operatorname{hom}\left(\pi^{p} h_{Y}, G\right) \cong \operatorname{hom}\left(h_{Y}, \pi_{p} G\right)$. Note: the right side is isomorphic to $\left(\pi_{p} G\right)(Y)$.

[^0]3. Show that for any presheaf $F \in \operatorname{PreShv}\left(C^{\prime}\right)$, we have $F \cong \underset{\longrightarrow}{\lim } h_{Y}$ where $h_{Y}=\operatorname{hom}_{C^{\prime}}(-, Y)$ is the presheaf represented by Y, and the colimit is over the category $\int_{C} F$ whose objects are pairs (Y, s) with $Y \in C^{\prime}$ and $s \in F$ and morphisms $(Y, s) \rightarrow\left(Y^{\prime}, s^{\prime}\right)$ are morphisms $Y \rightarrow Y^{\prime}$ of C^{\prime} such that $F\left(Y^{\prime}\right) \rightarrow F(Y)$ sends s^{\prime} to s.
4. Show that π^{p} preserves any colimits of presheaves.
5. Deduce that for any $F \in \operatorname{PreShv}\left(C^{\prime}\right)$ (not just representable presheaves) there is a canonical isomorphism hompreShv $(C)\left(\pi^{p} F, G\right) \cong \operatorname{hom}_{\operatorname{PreShv}\left(C^{\prime}\right)}\left(F, \pi_{p} G\right)$.

Corollary 4. The pair $\left(\pi^{p}, \pi_{p}\right)$ is an adjunction $\operatorname{PreShv}(C) \rightleftarrows \operatorname{PreShv}\left(C^{\prime}\right)$.
Exercise 4. Using Exercise 1, Corollary 4, and the uniqueness properties of adjunctions show that $\pi^{\prime p} \circ \pi^{p}=\left(\pi \circ \pi^{\prime}\right)^{p}$.

Exercise 5. Suppose that $f: Y \rightarrow X$ is a morphism of topological spaces, and let $\pi: \operatorname{Op}(X) \rightarrow \mathrm{Op}(Y) ; U \mapsto f^{-1} U$ be the induced functor between the categories of open subsets of X, Y. Show that π_{p} is the usual push-forward $\operatorname{PreShv}(Y) \rightarrow \operatorname{PreShv}(X)$ and π^{p} is the usual inverse image of presheaves functor $\operatorname{PreShv}(X) \rightarrow \operatorname{PreShv}(Y)$.
Exercise 6. Suppose that the category C has a final object X, and let $\pi: * \rightarrow C$ be the functor from the category with one morphism which sends the unique object to X. Show that π_{p} is the global sections functor $F \mapsto F(X)$, and π^{p} is the constant presheaf functor $\left(\pi^{p} A\right)(U)=A$ for $A \in \mathrm{Ab}=\operatorname{PreShv}(*)$.

Exercise 7. Let $Y \rightarrow X$ be an étale morphism of schemes, and consider the functors

$$
\begin{equation*}
\pi: \operatorname{Et}(X) \rightarrow \operatorname{Et}(Y) ; \quad U \mapsto Y \times_{X} U \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma: \operatorname{Et}(Y) \rightarrow \operatorname{Et}(X) ; \quad(V \rightarrow Y) \mapsto(V \rightarrow Y \rightarrow X) \tag{2}
\end{equation*}
$$

Show that (γ, π) is an adjunction. Show that $\gamma_{p}=\pi^{p}$.

2 Sheaf adjunctions

Definition 5. Suppose that C^{\prime}, C are sites, i.e., categories equipped with Grothendieck topologies. A functor $\pi: C^{\prime} \rightarrow C$ is called continuous if for every sheaf F on C, the presheaf $\pi_{p} F$ is a sheaf.

Exercise 8. Suppose $\pi: C^{\prime} \rightarrow C$ sends fibre products to fibre products. Show that π is continuous if it sends covers to covers.

Example 6. If $Y \rightarrow X$ is a morphism topological spaces then the induced morphism of sites $\mathrm{Op}(X) \rightarrow \mathrm{Op}(Y)$ is continuous.

Example 7. If $f: Y \rightarrow X$ is a morphism of schemes, then π from Equation 1 is continuous. If f is an étale morphism of schemes then γ from Equation 2 is also continuous.

Definition 8. Suppose $\pi: C^{\prime} \rightarrow C$ is a continuous morphism of sites. The induced functor on sheaves is denoted

$$
\pi_{*}: \operatorname{Shv}(C) \rightarrow \operatorname{Shv}\left(C^{\prime}\right)
$$

The composition of π^{p} with sheafification $a: \operatorname{PreShv}(C) \rightarrow \operatorname{Shv}(C)$ is denoted

$$
\pi^{*}=a \circ \pi^{p}: \operatorname{Shv}\left(C^{\prime}\right) \rightarrow \operatorname{Shv}(C)
$$

Exercise 9. Suppose we are in the situation of Definition 8. Using the fact that sheafification $a: \operatorname{PreShv}(C) \rightarrow \operatorname{Shv}(C)$ is the left adjoint to the canonical inclusion $\iota: \operatorname{Shv}(C) \rightarrow \operatorname{PreShv}(C)$, show that

$$
\pi^{*}: \operatorname{Shv}(C) \rightleftarrows \operatorname{Shv}\left(C^{\prime}\right): \pi_{*}
$$

is an adjunction.
Exercise 10. Using Exercise 1 and Exercise 4, show that if $C, C^{\prime}, C^{\prime \prime}$ are equipped with Grothendieck topologies, and π, π^{\prime} are continuous, then $\left(\pi \circ \pi^{\prime}\right)_{*}=$ $\pi_{*} \circ \pi_{*}^{\prime}$ and $\pi^{*} \circ \pi^{*}=\left(\pi \circ \pi^{\prime}\right)^{*}$.

Definition 9. If $f: Y \rightarrow X$ is a morphism of schemes, and π the pullback functor from Equation (1), we write

$$
f^{*}:=\pi^{*}, \quad f_{*}:=\pi_{*}
$$

If f is étale, so π has a left adjoint γ from Equation 2 then we write

$$
f_{!}:=\gamma^{*}
$$

Note that since $\gamma_{*}=\pi^{*}$, cf. Exercise 7, in addition to the adjunction $\left(f^{*}, f_{*}\right)$, we have another adjunction $\left(f_{!}, f^{*}\right)$.

Lemma 10. Let $f: Y \rightarrow X$ be a morphism of schemes. Then f^{*} preserves exact sequences.

Proof. It automatically commutes with colimits because it is a left adjoint. On the other hand, π^{p} commutes with finite limits because limits of presheaves are calculated object wise, and π^{p} is defined using filtered colimits, which commute with finite limits. To deduce that $f^{*}=\pi^{*}$ commutes with finite limits from π^{p} commuting, we just recall that sheafification is exact, so $\pi^{*}=a \circ \pi^{p}$ is a composition of two functors which commute with finite limits.

Lemma 11. Let $f: Y \rightarrow X$ and $X^{\prime} \rightarrow X$ be morphisms of schemes. Let h_{X}^{\prime} denote the étale sheaf of sets $h_{X^{\prime}}=\operatorname{hom}_{X}\left(-, X^{\prime}\right) \in \operatorname{Shv}_{\mathrm{et}}(X)$, and similarly, $h_{Y \times_{X} X^{\prime}}=\operatorname{hom}_{Y}\left(-, Y \times_{X} X^{\prime}\right) \in \operatorname{Shv}_{\mathrm{et}}(Y)$. We have

$$
f^{*} h_{X^{\prime}}=h_{Y \times_{X} X^{\prime}}
$$

Proof. By Yoneda, it suffices to produce isomorphisms

$$
\operatorname{hom}_{\operatorname{Shv}}\left(f^{*} h_{X^{\prime}}, F\right) \cong \operatorname{hom}_{\operatorname{Shv}}\left(h_{Y \times_{X} X^{\prime}}, F\right)
$$

for each $F \in \operatorname{Shv}_{\text {et }}(Y)$, which are natural in F. But we have

$$
\begin{array}{rlr}
\operatorname{hom}_{\text {Shv }}\left(f^{*} h_{X^{\prime}}, F\right) & \cong \operatorname{hom}_{\operatorname{Shv}}\left(h_{X^{\prime}}, f_{*} F\right) & \text { adjunction } \\
& \cong\left(f_{*} F\right)\left(X^{\prime}\right) & \text { Yoneda } \\
& \cong F\left(Y \times_{X} X^{\prime}\right) & \text { definition } \\
& \cong \operatorname{hom}_{\operatorname{Shv}}\left(h_{Y \times_{X} X^{\prime}}, F\right) & \text { Yoneda. }
\end{array}
$$

Exercise 11. Using the same argument as in Lemma 11 show that if $f: Y \rightarrow X$ is an étale morphism of schemes, and $Y^{\prime} \rightarrow Y$ any morphism then

$$
f_{!} h_{Y^{\prime}}=h_{Y^{\prime}}
$$

where the left Y^{\prime} is considered as a Y-scheme, and the right one as an X-scheme.

3 Immersions

Exercise 12. Suppose that $j: U \rightarrow X$ is an open immersion. Show that in this case, $\gamma: \operatorname{Et}(U) \rightarrow \operatorname{Et}(X)$ from Equation 2 is the inclusion of a full subcategory. Show that since this subcategory is full, the functor $j^{*}: \operatorname{Shv}(X) \rightarrow \operatorname{Shv}(U)$ is none-other-than the restriction functor

$$
j^{*} F=\left.F\right|_{\operatorname{Et}(U)}
$$

Show that $j_{!}: \operatorname{Shv}(U) \rightarrow \operatorname{Shv}(X)$ is "extension by zero" in the sense that for any $H \in \operatorname{Shv}(U)$,

$$
\left(j_{!} H\right)(V)=\left\{\begin{array}{cc}
H(V) & V \in \operatorname{Et}(U) \\
0 & V \notin \operatorname{Et}(U)
\end{array}\right.
$$

Show that

$$
\left(j_{*} H\right)(V)=H(V) \text { if } V \in \operatorname{Et}(U)
$$

but give an example where $V \notin \operatorname{Et}(U)$, and $\left(j_{*} H\right)(V) \neq 0$.
Deduce that

$$
j^{*} j_{!}=\mathrm{id}=j^{*} j_{*} .
$$

Exercise 13. Let X be a scheme, and $\iota: \bar{x} \rightarrow X$ a geometric point. Show that

$$
\iota^{*} F=F_{\bar{x}}
$$

is the stalk of F at \bar{x}, where we implicitly use the identification $\operatorname{Shv}(\bar{x}) \cong \mathrm{Ab}$.

Proposition 12 (Milne Cor.II.3.5). Let $i: Z \rightarrow X$ be the inclusion of a closed immersion, $\bar{x} \rightarrow X$ a geometric point, and $G \in \operatorname{Shv}(Z)$. Then

$$
\left(i_{*} G\right)_{\bar{x}}=\left\{\begin{array}{cl}
G_{\bar{x}} & \operatorname{im}(\bar{x}) \in Z \\
0 & \operatorname{im}(\bar{x}) \notin Z
\end{array}\right.
$$

If $j: U \rightarrow X$ is the open complement of Z, then we have $j^{*} i_{*}=0$.
Remark 13. We are abusing the notation a bit here in the case $\operatorname{im}(\bar{x}) \in Z$. When writing $\left(i_{*} G\right)_{\bar{x}}$, we are considering \bar{x} as a geometric point of X, so the colimit is over factorisations through $\operatorname{Et}(X)$. But when writing $G_{\bar{x}}$, we are considering \bar{x} as a geometric point of Z, and so the colimit is over factorisations through $\operatorname{Et}(Z)$.

Easy parts of the proof (Omitted from the lecture). The second claim follows from the first claim, since a sheaf is zero if and only if all its stalks are zero, and the stalks of $j^{*} i_{*}$ are all zero by Exercises 10,12 , and 13 .

Certainly, if $\operatorname{im}(\bar{x}) \notin Z$, then $\left(i_{*} G\right)_{\bar{x}}=\lim _{\bar{x} \rightarrow V \rightarrow X} G(V)=0$, since each $\bar{x} \rightarrow V \rightarrow X$ is refinable by some $\bar{x} \rightarrow V^{\prime} \rightarrow X$ with $\vec{Z} \times{ }_{X} V^{\prime} \overrightarrow{=}=\varnothing$ (e.g., $V^{\prime}=U \times_{X} V$), and for such V^{\prime} we have $\left(i_{*} G\right)\left(V^{\prime}\right)=G\left(Z \times_{X} V^{\prime}\right)=G(\varnothing)=0$.

The difficult part is to show that for any $\bar{x} \rightarrow V \rightarrow Z$ with $V \in \operatorname{Et}(Z)$, there is some $\bar{x} \rightarrow V^{\prime} \rightarrow X$ and a factorisation $\bar{x} \rightarrow Z \times_{X} V^{\prime} \rightarrow V \rightarrow Z$. If we know this, then the system defining $\left(i_{*} G\right)_{\bar{x}}$ is cofinal in the system defining $G_{\bar{x}}$, and the colimits will be the same.

The proof of this claim is omitted. See Milne Thm.II.3.2(b) for details. Really, check it out. Its a very neat argument using properties of limit schemes from EGA, in particular, EGA IV, Part 3, Cor.8.13.2.

Exercise 14. Suppose that $F \in \operatorname{Shv}_{\mathrm{et}}(U)$ is a constant sheaf (that is, there is an abelian group such that for each connected $V \in \operatorname{Et}(U)$, we have $F(V)=A)$. If $i: Z \rightarrow X$ is a nowhere dense closed immersion with open complement $j: U \rightarrow X$, using the fact that étale morphisms send generic points to generic points, show that $j_{*} F$ and $i^{*} j_{*} F$ are constant sheaves on X and Z respectively.

4 The localistion sequences

Definition 14. Let $i: Z \rightarrow X$ be a closed immersion of schemes, and $j: U \rightarrow X$ the open complement. Define $T(X)$ to be the category y^{4} whose objects are triples $\left(F_{1}, F_{2}, \phi\right)$ consisting of two objects $F_{1} \in \operatorname{Shv}(Z), F_{2} \in \operatorname{Shv}(U)$, and a morphism $\phi: F_{1} \rightarrow i^{*} j_{*} F_{2}$. Morphisms $\left(F_{1}, F_{2}, \phi\right) \rightarrow\left(F_{1}^{\prime}, F_{2}^{\prime}, \phi^{\prime}\right)$ are pairs of morphisms

[^1]$\left(F_{1} \xrightarrow{\psi_{7}} F_{1}^{\prime}, F_{2} \xrightarrow{\psi_{2}} F_{2}^{\prime}\right)$ such that the square commutes.

We define a functor $t: \operatorname{Shv}(X) \rightarrow T(X)$ by

$$
F \mapsto\left(i^{*} F, \quad j^{*} F, \quad i^{*}\left(F \xrightarrow{\eta} j_{*} j^{*} F\right)\right)
$$

where η : id $\rightarrow j_{*} j^{*}$ is the unit of the adjunction $\left(j^{*}, j_{*}\right)$.
Remark 15. Given $V \in \operatorname{Et}(X)$, we have $j_{*} j^{*} F(V)=F\left(U \times_{X} V\right)$, and η is the canonical morphism $F(V) \rightarrow F\left(U \times_{X} V\right)$ induced by the canonical morphism $U \times{ }_{X} V \rightarrow V$.

Theorem 16 (Milne Thm.II.3.10). The functor $t: \operatorname{Shv}(X) \rightarrow T(X)$ is an equivalence of categories.

Proof. Given a triple $\left(F_{1}, F_{2}, \phi\right)$ in $T(X)$ define

$$
s\left(F_{1}, F_{2}, \phi\right):=\operatorname{ker}\left(i_{*} F_{1} \oplus j_{*} F_{2} \xrightarrow{i_{*} \phi+\eta} i_{*} i^{*} j_{*} F_{2}\right) .
$$

Here, η : id $\rightarrow i_{*} i^{*}$ is the unit of the adjunction $\left(i^{*}, i_{*}\right)$. Notice that every morphism of $T(X)$ induces a morphism in $\operatorname{Shv}(X)$ in a way that defines a functor

$$
s: T(X) \rightarrow \operatorname{Shv}(X)
$$

So it suffices to check that $s t \cong \mathrm{id}$ and $t s \cong \mathrm{id}$. Consider $s t F$. By definition, this is

$$
s t F=\operatorname{ker}\left(i_{*} i^{*} F \oplus j_{*} j^{*} F \stackrel{i_{*} \phi+\eta}{\longrightarrow} i_{*} i^{*} j_{*} j^{*} F\right) .
$$

This comes equipped with a canonical morphism $F \rightarrow s t F$. This morphism is an isomorphism if and only if the sequence

$$
0 \rightarrow F \rightarrow i_{*} i^{*} F \oplus j_{*} j^{*} F \xrightarrow{i_{*} \phi+\eta} i_{*} i^{*} j_{*} j^{*} F
$$

is exact. One can check exactness on stalks, so consider a geometric point $\bar{x} \rightarrow X$. If $\operatorname{im}(\bar{x}) \in U=X \backslash Z$ then our sequence becomes

$$
0 \rightarrow F_{\bar{x}} \rightarrow 0 \oplus F_{\bar{x}} \longrightarrow 0
$$

If $\operatorname{im}(\bar{x}) \in Z=X \backslash U$ then our sequence becomes

$$
0 \rightarrow F_{\bar{x}} \rightarrow F_{\bar{x}} \oplus\left(j_{*} j^{*} F\right)_{\bar{x}} \longrightarrow\left(j_{*} j^{*} F\right)_{\bar{x}}
$$

Hence, we have confirmed exactness, and $F \xrightarrow{\sim} s t F$.
Now consider $t s\left(F_{1}, F_{2}, \phi\right)$. We have

$$
\begin{aligned}
i^{*} s\left(F_{1}, F_{2}, \phi\right) & =i^{*} \operatorname{ker}\left(i_{*} F_{1} \oplus j_{*} F_{2} \longrightarrow i_{*} i^{*} j_{*} F_{2}\right) \\
& =\operatorname{ker}\left(i^{*} i_{*} F_{1} \oplus i^{*} j_{*} F_{2} \longrightarrow i^{*} i_{*} i^{*} j_{*} F_{2}\right) \\
& =\operatorname{ker}\left(F_{1} \oplus i^{*} j_{*} F_{2} \longrightarrow i^{*} j_{*} F_{2}\right) \\
& =F_{1}
\end{aligned}
$$

One similarly checks that $j^{*} s\left(F_{1}, F_{2}, \phi\right) \cong F_{2}$, and that the canonical morphism $i^{*} s\left(F_{1}, F_{2}, \phi\right) \rightarrow i^{*} j_{*} j^{*} s\left(F_{1}, F_{2}, \phi\right)$ is none-other-than ϕ, under these identifications. Hence, $\operatorname{ts}\left(F_{1}, F_{2}, \phi\right)=\left(F_{1}, F_{2}, \phi\right)$.

Theorem 17 (Milne Prop.II.3.14). Its possible to define six functors

$$
\operatorname{Shv}_{\mathrm{et}}(Z) \underset{\underset{\leftarrow}{<}}{\stackrel{i^{*}}{i_{*}}} \operatorname{Shv}_{\mathrm{et}}(X) \underset{\underset{i^{!}}{\stackrel{j_{*}}{j_{*}}}}{\stackrel{j_{!}}{\leftarrow}} \operatorname{Shv}_{\mathrm{et}}(U)
$$

such that under the identification $\operatorname{Shv}_{\mathrm{et}}(X) \cong T(X)$, they correspond to:

$$
\begin{aligned}
F_{1} & \hookrightarrow\left(F_{1}, F_{2}, \phi\right) & \left(0, F_{2}, 0\right) & \hookrightarrow & F_{2} \\
F_{1} & \mapsto\left(F_{1}, 0,0\right) & \left(F_{1}, F_{2}, \phi\right) & \mapsto & F_{2} \\
\operatorname{ker}(\phi) & \hookleftarrow\left(F_{1}, F_{2}, \phi\right) & \left(i^{*} j_{*} F_{2}, F_{2}, \mathrm{id}\right) & \hookleftarrow & F_{2}
\end{aligned}
$$

1. Each functor is left adjoint to the one below it.
2. The functors i^{*}, i_{*}, j^{*}, j preserve exact sequences; $j_{*}, i^{!}$preserve monomorphisms.
3. The composites $i^{*} j_{!}, i^{!} j_{!}, i^{!} j_{*}, j^{*} i_{*}$ are zero.
4. The functors i_{*}, j_{*} are fully faithful.
5. The functors $j_{*}, j^{*}, i^{!}, i_{*}$ map injective objects to injective objects.

Remark 18. Heuristicaly, j_{*} "fills in the gaps" over Z in a canonical way, and i ! isolates the part of F which cannot be recovered from $\left.F\right|_{\mathrm{Et}(U)}$ by this "filling in the gaps" process.

Exercise 15 (Not advanced). Prove Theorem 17 using what we have seen so far. Note that if a functor has a left adjoint preserving monomorphisms then it preserves injectives.
Exercise 16 (Not advanced). In the situation of Theorem 17 show that there are short exact sequence

$$
\begin{aligned}
& 0 \rightarrow j_{!} j^{*} \rightarrow \mathrm{id} \rightarrow i_{*} i^{*} \rightarrow 0 \\
& 0 \rightarrow i_{*} i^{!} \rightarrow \mathrm{id} \rightarrow j_{*} j^{*} \rightarrow 0
\end{aligned}
$$

Remark 19. Sometimes one defines $j^{*}:=j^{!}$and $i_{!}:=i_{*}$ so that the short exact sequences can be written as

$$
\begin{aligned}
& 0 \rightarrow j_{!} j^{!} \rightarrow \mathrm{id} \rightarrow i_{*} i^{*} \rightarrow 0 \\
& 0 \rightarrow i_{!} i^{!} \rightarrow \mathrm{id} \rightarrow j_{*} j^{*} \rightarrow 0
\end{aligned}
$$

5 Curves

Example 20 (Milne, Exam.II.3.12). Let A be a discrete valuation ring (e.g., $\left.\mathbb{C}[[z]], \mathbb{F}_{p}[[z]], \mathbb{Z}_{p}, \ldots\right)$. Let

1. $K=\operatorname{Frac}(A)$,
2. $k=A / \mathfrak{m}$,
3. $G_{K}=\operatorname{Gal}\left(K^{s e p} / K\right)$,
4. $G_{k}=\operatorname{Gal}\left(k^{s e p} / k\right)$,

Since A is a discrete valuation ring, $X=\operatorname{Spec}(A)$ has one open point, and one closed point. Let $U=\operatorname{Spec}(K), Z=\operatorname{Spec}(k)$ be the corresponding open and closed subschemes. Recall that the category of étale sheaves over a field is equivalent to the category of discrete Galois modules. That is, $\operatorname{Shv}_{e t}(Z) \cong$ $G_{k}-\bmod$ and $\operatorname{Shv}_{e t}(U) \cong G_{K}$-mod. We can give an analogous description of $\operatorname{Shv}_{e t}(X)$ using a similar construction to $T(X)$. It suffices to work out what functor $G_{K}-\bmod \rightarrow G_{k}-\bmod$ corresponds to $i^{*} j_{*}: \operatorname{Shv}_{e t}(U) \rightarrow \operatorname{Shv}_{e t}(Z)$.

Let A^{h} be the henselisation of A, and $A^{\text {sh }}$ a strict henselisation. Since $K^{\text {sep }}$ is separable closed, there are factorisations $A \rightarrow A^{h} \rightarrow A^{s h} \rightarrow K^{\text {sep }}$ which are actually inclusions. The choice of $A^{\text {sh }}$ and the inclusion define subgroups $I=$ $\operatorname{Gal}\left(K^{\text {sep }} / \operatorname{Frac}\left(A^{\text {sh }}\right)\right)$ and $D=\operatorname{Gal}\left(K^{\text {sep }} / \operatorname{Frac}\left(A^{h}\right)\right)$, with $I \subseteq D \subseteq G_{K}$, and it turns out that D / I is canonically isomorphic to $\operatorname{Gal}\left(k^{\text {sep }} / k\right)$ where we identify $k^{s e p}=A^{s h} / \mathfrak{m}_{A^{s h}}$. Then we claim that the functor $i^{*} j_{*}: \operatorname{Shv}_{e t}(U) \rightarrow \operatorname{Shv}_{e t}(Z)$ corresponds to the functor of I-invariants.

$$
(-)^{I}: G_{K}-\bmod \rightarrow G_{k}-\bmod
$$

Hence, the category Shv $_{\text {et }}$ is equivalent to the category of triples $\left(M_{1}, M_{2}, \phi\right)$ where $M_{1} \in G_{k}$-mod, $M_{2} \in G_{K}$-mod, and $\phi: M_{1} \rightarrow M_{2}$ is compatible with the actions of $G_{k} \cong D / I$ and G_{K}.

Example 21. Example 20 can be generalised to any normal curve, see Milne Exer.II.3.16 for details.

[^0]: ${ }^{1}$ Sheaves of sets work just as well.
 ${ }^{2}$ This is to ensure that the colimits defining π^{p} are well-defined. In practice, there are many functors between large categories for which these colimits are still well-defined.
 ${ }^{3}$ These finiteness assumptions ensure that $\operatorname{Et}(X)$ are small (enough) categories (so that the left adjoints π^{p} existence is guaranteed), but otherwise are basically only used in the proof of Proposition 12

[^1]: ${ }^{4}$ This is just the comma category $\left(\operatorname{Shv}(Z) \downarrow i^{*} j_{*}\right)$.

