(Pro)Etale Cohomology Lecture 13. Functoriality II

In this talk we compare the pro-étale site with the étale site. First we will see that $\mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ is fully faithful, and a sheaf is in the image if and only if it "commutes" with filtered limits.

$$\operatorname{Image}\left(\mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})\right) = \left\{F : F(\varprojlim_{\lambda \in \Lambda} U_{\lambda}) = \varinjlim_{\lambda \in \Lambda} F(U_{\lambda})\right\}$$

Similarly, a complex is in the image of $D^+(X_{et}) \to D^+(X_{pro\acute{e}t})$ if and only if its cohomology is in the image of $\mathsf{Shv}_{et}(X)$.

Image
$$\left(D^+(X_{\mathsf{et}}) \rightarrow D^+(X_{\mathsf{pro\acute{e}t}}) \right) = \left\{ K : H^n K \in \mathsf{Shv}(X_{\mathsf{et}}) \ \forall \ n \right\}.$$

Then we see how the pro-étale site offers a technically simpler way to left complete the étale site. There is a canonical identification of $\hat{D}(X_{\text{et}})$ with the subcategory of $D(X_{\text{proét}})$ of objects whose cohomology lies in the image of X_{et} .

$$\widehat{D}(X_{\mathrm{et}}) \cong \bigg\{ K \in D(X_{\mathrm{pro\acute{e}t}}) : H^n K \in \mathsf{Shv}(X_{\mathrm{et}}) \; \forall \; n \bigg\}.$$

We also show how the pro-étale site can be used to recover the classical derived category of l-adic sheaves,

$$D^+_{Ek}(X_{\mathsf{et}}, \mathbb{Z}_{\ell}) \cong \left\{ K \in D^+(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_{\ell}) : \begin{array}{c} H^n(K/\ell) \in \mathsf{Shv}(X_{\mathsf{et}}) \; \forall \; n, \; \mathrm{and} \\ K \cong R \varprojlim_n (K \overset{L}{\otimes} \mathbb{Z}/\ell^n) \end{array} \right\}.$$

and Jannsen's continuous cohomology,

$$H^i_{cont}(X_{\mathsf{et}}, (\mathbb{Z}/\ell^n)_{\bullet}) \cong H^i(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_{\ell}).$$

1 From étale to pro-étale

Since every étale morphism is weakly étale, for any scheme X we have a canonical fully faithful functor

 $\nu: X_{\rm et} \to X_{\rm pro\acute{e}t}.$

Remark 1. If X is the spectrum of a separably closed field, then (when restricted to affines), ν is canonically identified with the inclusion of the category of finite sets into the category of profinite sets.

As explained in "Lecture 5: Functoriality I", such a functor leads to an adjunction

$$\nu^p : \mathsf{PreShv}(X_{\mathsf{et}}) \leftrightarrows \mathsf{PreShv}(X_{\mathsf{pro\acute{e}t}}) : \nu_p$$

where $(\nu_p F)(Y) = F(\nu(Y))$ and ν^p can be calculated as

$$(\nu^p F)(U) = \lim_{U \to V \to X} F(V),$$

for $U \in X_{\mathsf{pro\acute{e}t}}$ where the colimit is indexed by factorisations $U \to V \to X$ such that $V \in X_{\mathsf{et}}$.

Definition 2. In the last lecture we defined

$$X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}} \subseteq X_{\mathsf{pro\acute{e}t}}$$

as the full subcategory of weakly étale X-schemes that can be written as $\text{Spec}(A) = \lim_{\lambda \to \infty} \text{Spec}(A_{\lambda})$ for some filtered system of affine étale X-schemes $\text{Spec}(A_{\lambda})$.

Remark 3. We note for later use that every morphism in $X_{\text{proét}}^{\text{aff}}$ is also pro-étale [BS, Lem.4.2.2]. In other words, for every $V \to U$ in $X_{\text{proét}}^{\text{aff}}$ we have $V \in U_{\text{proét}}^{\text{aff}}$.

Lemma 4. Let X be a scheme. A presheaf F is in the image of the composition

$$\mathsf{PreShv}(X_{\mathsf{et}}) \xrightarrow{\nu^p} \mathsf{PreShv}(X_{\mathsf{pro\acute{e}t}}) \xrightarrow{(-)|_{X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}}} \mathsf{PreShv}(X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}})$$

if and only if

$$F(\underline{\lim} U_{\lambda}) = \underline{\lim} F(U_{\lambda})$$

for every filtered system $(U_{\lambda})_{\lambda \in \Lambda}$ of affine étale X-schemes U_{λ} .

Proof. (\Rightarrow) By [EGA IV-3, Prop.8.13.1]¹, for any morphism $V \to X$ locally of finite presentation, we have $\hom_X(\varprojlim U_\lambda, V) = \varinjlim \hom_X(U_\lambda, V)$, so the system $(U_\lambda)_{\lambda \in \Lambda}$ is cofinal in the system of all factorisations $\varprojlim U_\lambda \to V \to X$ through $V \in X_{\text{et}}$.

 (\Leftarrow) Given a presheaf F commuting with filtered limits as in the statement, define $G \in \mathsf{PreShv}(X_{\mathsf{et}})$ by $G(Y) = \varprojlim_{Y_{\mu} \to Y} F(Y_i)$ where the limit is over all affine étale Y-schemes Y_{μ} .² If Y is affine, then it is initial in the system of $(Y_{\mu} \to Y)$, so G(Y) = F(Y). Hence, inserting the definitions, we find that $\nu^{p}(G)|_{X_{\mathsf{ordef}}^{\mathsf{aff}}} = F$.

¹Or [Stacks project, 01ZC].

²That is, we right Kan extend from $X_{\text{pro\acute{e}t}}^{\text{aff}}$ to $X_{\text{pro\acute{e}t}}$ then apply ν_p .

Since ν sends étale covering families to proétale coverings families (cf. Exercise 9 in "Lecture 5: Functoriality I"), there adjunction (ν^p, ν_p) induces an adjunction

$$\nu^* : \mathsf{Shv}(X_{\mathsf{et}}) \rightleftharpoons \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}}) : \nu_*$$

such that $\nu_* = \nu_p$ and $\nu^* = a \circ \nu^p$ where $a : \mathsf{PreShv}(X_{\mathsf{pro\acute{e}t}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ is the sheafification functor.

Exercise 1. Show that ν^* is exact. That is, show that it preserves finite colimits and finite limits of sheaves. Hint: Look at the proof of Lemma 10 in "Lecture 5. Functoriality I".

Exercise 2 (Advanced). Following the strategy of Exercise 9 from "Lecture 3. Topology I" from last quarter show that a presheaf on $X_{\text{proét}}^{\text{aff}}$ is a sheaf if and only if:

- 1. For any surjection $V \rightarrow U$ in $X_{\text{pro\acute{e}t}}^{\text{aff}}$, the sequence $F(U) \rightarrow F(V) \rightrightarrows F(V \times_U V)$ is exact.
- 2. $F|_{Op(Y)}$ is a Zariski sheaf for each $Y \in X_{\text{pro\acute{e}t}}^{\text{aff}}$.

Lemma 5 ([Lem.5.1.1]). For $F \in \mathsf{Shv}(X_{\mathsf{et}})$ and $U \in X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$ with presentation $U = \varprojlim_{\lambda} U_{\lambda}$, we have $(\nu^* F)(U) = \varinjlim_{\lambda} F(U_{\lambda})$. In other words, $\nu^p F$ already satisfies the sheaf condition on $X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$ before sheafification.

Proof. We want to show that the presheaf $\nu^p F$ on $X_{\text{pro\acute{e}t}}^{\text{aff}}$ is a sheaf. It suffices to check the two conditions in Exercise 2. We check the first one, since the second one is similar. First suppose that $V \to U$ is a surjective étale (i.e., not a general pro-étale) morphism of finite presentation in $X_{\text{pro\acute{e}t}}^{\text{aff}}$, and let $U = \varprojlim U_{\lambda}$ be a presentation for U. Then for some λ , there exists a surjective étale morphism $V_{\lambda} \to U_{\lambda}$ such that $V = U \times_{U_{\lambda}} V_{\lambda}$,³ [Stacks project, 01ZM, 07RP, 081D]. Then the sheaf condition for $V \to U$ is the filtered colimit of the sheaf conditions for $V_{\mu} := U_{\mu} \times_{U_{\lambda}} V_{\lambda} \to U_{\mu}$ for $\mu \geq \lambda$

$$\nu^{p}F(U) \longrightarrow \nu^{p}F(V) \Longrightarrow \nu^{p}F(V \times_{U} V)$$

$$\| \qquad \| \qquad \| \qquad \|$$

$$\lim_{\substack{i \to \mu \ge \lambda}} F(U_{\mu}) \longrightarrow \lim_{\substack{\mu \ge \lambda}} F(V_{\mu}) \Longrightarrow \lim_{\substack{i \to \mu \ge \lambda}} F(V_{\mu} \times_{U_{\mu}} V_{\mu})$$

Here the vertical equalities are Lemma 4. Since F is an étale sheaf, the lower row is a filtered colimit of exact sequences. Filtered colimits preserve finite limits, so the lower row is exact, and therefore the upper row is exact.

 $^{^3\}mathrm{Note},$ any morphism between affines that is locally of finite presentation, is in fact, of finite presentation.

Now let $V = \lim_{\lambda \to U} V_{\lambda} \to U$ be a presentation for a general surjective morphism in $X_{\text{pro\acute{e}t}}^{\text{aff}}$. Then, again, the sheaf condition for $V \to U$ is the filtered colimit of the sheaf conditions for the $V_{\lambda} \to U$.

$$\nu^{p}F(U) \longrightarrow \nu^{p}F(V) \Longrightarrow \nu^{p}F(V \times_{U} V)$$

$$\| \qquad \| \qquad \| \qquad \|$$

$$\nu^{p}F(U) \longrightarrow \lim_{\lambda} \nu^{p}F(V_{\lambda}) \Longrightarrow \lim_{\lambda} \nu^{p}F(V_{\lambda} \times_{U} V_{\lambda})$$

Again, the vertical equalities are Lemma 4. We have just shown that the lower line is a filtered colimit of exact sequences (because each $V_{\lambda} \to U$ is surjective étale of finite presentation), so it follows that the upper line is exact.

For the Zariski case, since affine schemes are quasicompact, and basic opens $\operatorname{Spec}(A[a^{-1}]) \subseteq \operatorname{Spec}(A)$ form a base for the Zariski topology, it suffices to check the sheaf condition for coverings of the form $\{\operatorname{Spec}(A[a_i^{-1}]) \to \operatorname{Spec}(A)\}_{i=1}^{n}$.⁴ If $A = \varinjlim_{A_{\lambda}} A_{\lambda}$ is a presentation for the ind-étale algebra A, then we descend the covering $\{\operatorname{Spec}(A[a_i^{-1}]) \to \operatorname{Spec}(A)\}_{i=1}^{n}$ to some A_{λ} as in the previous case, and argue as in the previous case. \Box

Exercise 3. Prove the claim that filtered colimits preserve exact sequences. That is, suppose that Λ is a filtered category, and $A, B, C : \Lambda \to Ab$ are functors from Λ to the category of abelian groups, and $A \to B \to C$ are natural transformations such that for each $\lambda \in \Lambda$, the sequence

$$0 \to A_{\lambda} \to B_{\lambda} \to C_{\lambda} \to 0$$

is exact. Then show that

$$0 \to \varinjlim_{\lambda} A_{\lambda} \to \varinjlim_{\lambda} B_{\lambda} \to \varinjlim_{\lambda} C_{\lambda} \to 0$$

is an exact sequence.

Example 6. Suppose k is a field with separable closure k^{sep} such that k^{sep}/k is not a finite extension. Then consider the sheaf $F(-) = \hom(-, \operatorname{Spec}(k^{sep}))$ on the category $\operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}$. For any $\operatorname{Spec}(A) \in \operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}$ we have $F(\operatorname{Spec}(A)) = \emptyset$. However, $\operatorname{Spec}(k^{sep}) \in \operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}^{\operatorname{aff}}$ and we have $F(\operatorname{Spec}(k^{sep})) \neq \emptyset = \lim_{k \subseteq L \subseteq k^{sep}} F(\operatorname{Spec}(L))$ where the limit is over finite subextensions of k^{sep}/k . So F is not in the image of ν^* .

Lemma 7 ([Lem.5.1.2]). The functor

$$\nu^* : \mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$$

is fully faithful. Its essential image consists of those sheaves F which satisfy:

 $^{^4{\}rm This}$ reduction can be proven in a similar way to Exercise 9 from "Lecture 3. Topology I".

(Cla) $F(U) = \varinjlim_{\lambda} F(U_i)$ for any $U \in X_{\text{pro\acute{e}t}}^{\text{aff}}$ with presentation $U = \varprojlim_{\lambda} U_{\lambda}$.

Proof. A left adjoint is fully faithful if and only if the unit id $\rightarrow \nu_* \nu^*$ is an isomorphism.⁵ Isomorphisms of sheaves can be detected locally, cf. Exercise 4 below, and in X_{et} every scheme is locally affine. For any affine étale $U \rightarrow X$, the constant diagram (U) is a presentation for U. So then by Lemma 5 above we have $F(U) \cong \nu_* \nu^* F(U)$ for any $F \in \text{Shv}(X_{\text{et}})$.

For the second part, suppose $G \in \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ satisfies the conditions of the lemma. To show that G is in the image of ν^* , we will show that $\nu^*\nu_*G \to G$ is an isomorphism. Since every weakly étale X-scheme can be covered by affine proétale X-schemes [BS, Thm.2.3.4] (\leftarrow this is a difficult theorem), it suffices to show that $\nu^*\nu_*G(U) \to G(U)$ is an isomorphism for every $U \in X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$, cf. Exercise 4 below. But this follows from Lemma 5 and the hypothesis.

Exercise 4. Prove the claim in the above proof that a morphism of sheaves $\phi: F \to G$ on a site (C, τ) is an isomorphism if and only if for every $X \in C$, there is a τ -covering family $\{U_i \to X\}_{i \in I}$ such that $F(U_i) \to G(U_i)$ is an isomorphism for all i.

Hint: The hypothesis is for every $X \in C$, in particular, for any cover $\{U_i \rightarrow X\}$ with ϕ an isomorphism on each U_i , there are also covers $\{W_{ijk} \rightarrow U_i \times_X U_j\}_{k \in K_{ij}}$ with ϕ an isomorphism on each W_{ijk} .

Definition 8. Sheaves in the image of $Shv(X_{et}) \subseteq Shv(X_{pro\acute{e}t})$, that is sheaves satisfying the condition (Cla) in Lemma 7 called classical.

The recognition of classical sheaves can be used to show that

$$D^+(X_{\text{et}}) \to D^+(X_{\text{pro\acute{e}t}})$$

is also fully faithful.

Proposition 9 ([Cor.5.1.6]). For any $K \in D^+(X_{et})$, the map $K \to R\nu_*\nu^*K$ is an equivalence. Moreover, if $U \in X_{pro\acute{e}t}^{aff}$ has presentation $U = \varprojlim_{\lambda} U_{\lambda}$ then $R\Gamma_{pro\acute{e}t}(U, \nu^*K) = \varinjlim_{\lambda} R\Gamma_{et}(U_{\lambda}, K).$

Proof. (Probably omitted from lecture). The first part follows from the second part. Indeed, to prove the first part, it suffices to show that the morphism of presheaves $R\Gamma_{\text{et}}(U, K) \to R\Gamma_{\text{et}}(U, R\nu_*\nu^*K)$ is an isomorphism for every affine étale X-scheme U, cf.Ex.4. But if the second part is true, then for every such U, we have $R\Gamma_{\text{et}}(U, K) = R\Gamma_{\text{proét}}(U, \nu^*K) = R\Gamma_{\text{et}}(U, R\nu_*\nu^*K)$.⁶

For the second part, it suffices to consider the case that K is concentrated in degree zero. Indeed, if its true for K concentrated in degree zero, then its true for K concentrated in any one degree. Then by the truncation triangles $\tau^{\leq n-1}K \to \tau^{\leq n}K \to \underline{H}^n K[n] \to \tau^{\leq n-1}K[1]$ it is true for any bounded complex.

⁵This is because the composition $hom(X, Y) \to hom(LX, LY) \cong hom(X, RLY)$ induced by the unit $Y \to RLY$.

⁶The second equality comes from the fact that $\Gamma_{\text{et}}(-,\nu_*-) = \Gamma_{\text{pro\acute{e}t}}(-,-)$, and $R(F \circ G) = RF \circ RG$ for composable left exact functors.

Finally, since $K \cong \varinjlim_n \tau^{\leq n} K$, if it's true for bounded complexes, it's true for bounded below complexes.

So now we are trying to prove that for any $F \in \mathsf{Shv}(X_{\mathsf{et}}, \mathrm{Ab})$ we have $H^n_{\mathsf{pro\acute{e}t}}(U, \nu^* F) = \varinjlim_{\lambda} H^n_{\mathsf{et}}(U_{\lambda}, F)$ when $U = \varprojlim_{\lambda} U_{\lambda}$ with $U_{\lambda} \in X_{\mathsf{et}}$ affine. When n = 0 this is just Lemma 5. Now choose a short exact sequence $0 \to F \to I \to G \to 0$ in $\mathsf{Shv}(X_{\mathsf{et}})$ with I injective, and use induction on n. By the morphism of long exact sequences⁷

and the fact that since I is injective $H^n_{\text{et}}(U_{\lambda}, I) = 0$ for all $n > 0,^8$ it suffices to show that $H^n_{\text{prot}}(U, \nu^* I) = 0$ for n > 0.

To show $H^n_{\text{pro\acute{e}t}}(U, \nu^* I) = 0$ for n > 0, by the Čech-to-sheaf cohomology spectral sequence [Milne, Prop.III.2.3]

$$\check{H}^p(U,\underline{H}^q_{\mathsf{pro\acute{e}t}}\nu^*I) \Rightarrow H^{p+q}_{\mathsf{pro\acute{e}t}}(U,\nu^*I)$$

and induction on n, it suffices to show that the Čech cohomology $\check{H}^p(U, \nu^*I)$ vanishes.⁹

Similar to what happened in the proof of Lemma 5, to calculate this Čech cohomology, it suffices to take the colimit over coverings of U the form $V := U \times_{U_{\lambda}} V_{\lambda}$ for $\lambda \in \Lambda$ and étale coverings $V_{\lambda} \to U_{\lambda}$ in $X_{\text{et}}^{\text{aff}}$. By Lemma 5, for such a covering we have

$$\check{H}^{n}(V/U,\nu^{*}I) = \varinjlim_{\mu \ge \lambda} \check{H}^{n}(V_{\mu}/U_{\mu},I)$$

where $V_{\mu} := U_{\mu} \times_{U_{\lambda}} V_{\lambda}$. The right hand side vanishes for n > 0 because I is injective in $Shv(X_{et})$.

Corollary 10 ([BS, Prop.5.2.6(1),(3)]). Let X be a scheme. Then the functor

$$\nu^*: D^+(X_{\mathsf{et}}) \to D^+(X_{\mathsf{pro\acute{e}t}})$$

is fully faithful, and its essential image consists of those complexes K whose cohomology sheaves are classical.

Proof. Fully faithfulness follows from Prop.9, since a left adjoint L is fully faithful if and only if the unit id $\rightarrow RL$ is a natural isomorphism.

⁷Note ν^* is exact, so $0 \to \nu^* F \to \nu^* I \to \nu^* G \to 0$ is again a short exact sequence.

⁸One quick way to see this is to note that I is its own injective resolution.

⁹N.B. We automatically have $\check{H}^0(U, \underline{H}^q_{\text{pro\acute{e}t}}\nu^*I) = 0$ for q > 0 and $\check{H}^0(U, \underline{H}^0_{\text{pro\acute{e}t}}\nu^*I) = \underline{H}^0_{\text{pro\acute{e}t}}(U, \nu^*I)$.

For the essential image, we use an argument that appeared in the proof of Prop.9. Certainly, by definition, if a complex $K \in D^+(X_{\text{pro\acute{e}t}})$ has only one nonzero cohomology sheaf, and that cohomology sheaf is classical, i.e., in the image of ν^* : $\text{Shv}(X_{\text{et}}) \to \text{Shv}(X_{\text{pro\acute{e}t}})$, then K is in the image of ν^* . By the truncation triangles $\tau^{\leq n-1}K \to \tau^{\leq n}K \to \underline{H}^n K[n] \to \tau^{\leq n-1}K[1]$ and induction on the number of non-zero cohomology sheaves, it is true for any bounded complex. Finally, since $K \cong \varinjlim_n \tau^{\leq n}K$, if it's true for bounded complexes, it's true for bounded below complexes.

2 Left completion via the pro-étale site

Recall that the left completion $D(X_{et})$ of $D(X_{et})$ is the subcategory of $D(X_{et})$ consisting of those sequence of chain complexes $(\cdots \to K_2 \to K_1 \to K_0)$ in $Ch(\mathsf{Shv}(X_{et})^{\mathbb{N}})$ such that

- 1. $\underline{H}^i K_n = 0$ for i < -n,
- 2. $\underline{H}^i K_{n+1} = \underline{H}^i K_n$ for $i \ge -n$.

Here $\underline{H}^{i}K$ is the *i*th cohomology sheaf of K.

Proposition 11 ([Prop.5.3.2]). Let X be a scheme. The functor

$$\widehat{D}(X_{\mathsf{et}}) \to D(X_{\mathsf{pro\acute{e}t}})$$
$$(\dots \to K_2 \to K_1 \to K_0) \mapsto R \varprojlim \nu^* K_n$$

is fully faithful. It's essential image is the full subcategory of those $K \in D(X_{\text{pro\acute{e}t}})$ such that each cohomology sheaf $\underline{H}^i K$ is classical.

Notes about the proof. Most of the proof is formal. The main non-formal ingredients are Cor.10, the fact shown in Exercise 1 that $\nu^* : \mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ is exact, and of course the equivalence $D(X_{\mathsf{pro\acute{e}t}}) \cong \widehat{D}(X_{\mathsf{pro\acute{e}t}})$ coming from the fact that $\mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ is replete.

3 Ekedahl's *l*-adic sheaves via the pro-étale site

Suppose l is a prime, and X is a $\mathbb{Z}[1/l]$ -scheme. The l-adic cohomology is classically defined as

$$H^i_{\mathsf{et}}(X, \mathbb{Z}_\ell) := \varprojlim_n H^i_{\mathsf{et}}(X, \mathbb{Z}/\ell^n).$$

On the other hand, it is useful to have a description of cohomology in terms of derived categories. We have

$$\hom_{D(X_{\mathsf{et}},\mathbb{Z}/\ell^n)}(\mathbb{Z}/\ell^n,\mathbb{Z}/\ell^n[i]) = H^i_{\mathsf{et}}(X;\mathbb{Z}/\ell^n)$$

but to extend this to $l\mbox{-}adic$ cohomology, we would need to consider something like

$$\varprojlim_n D(X_{\mathsf{et}}, \mathbb{Z}/\ell^n)$$

but categories are only well-defined up to equivalence, so limits of categories are technically complicated to define.

Exercise 5. In this exercise we show that naïve inverse limits of categories are not well-defined up to equivalence of categories. Let $\cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0$ be a system of functors of small categories. Define $\varprojlim C_n$ to be the category with set of objects

$$Ob_{\varprojlim C_n} = \varprojlim Ob_{C_n}$$

Given objects $x = (\dots, x_2, x_1, x_0)$ and $y = (\dots, y_2, y_1, y_0)$ in $\lim_{n \to \infty} C_n$ define

$$\hom_{\lim C_n}(x,y) = \lim \hom_{C_n}(x_n,y_n).$$

1. For an abelian group A, let BA be the category of one object, *, and $\hom_{BA}(*,*) = A$ with composition in BA given by addition in A. Note that any group homomorphism $A \to A'$ induces a functor $BA \to BA'$. Show that

$$\lim_{n \to \infty} B(\mathbb{Z}/\ell^n) = B\mathbb{Z}_\ell.$$

2. Now define C_n to be the category whose objects are $Ob \ C_n = \{i \in \mathbb{Z} : i \geq n\}$, morphisms are $\hom_{C_n}(i,j) = \mathbb{Z}/\ell^n$ for every i, j, and composition is given by addition in \mathbb{Z}/ℓ^n . Note that there are canonical functors $C_{n+1} \to C_n$ induced by the group homomorphisms $\mathbb{Z}/\ell^{n+1} \to \mathbb{Z}/\ell^n$ and the inclusions $Ob \ C_{n+1} \subset Ob \ C_n$. Show that

$$\lim_{n \to \infty} C_n = \varnothing.$$

3. Show that for every n, the canonical functor $C_n \to B\mathbb{Z}/\ell^n$ is fully faithful, and essentially surjective. That is, it is an equivalence of categories. Deduce that \varprojlim , as defined above, does not preserve equivalences of categories.

There is a notion of 2-limit of categories defined by keeping track of isomorphisms, which does preserve equivalences.

One could also use ∞ -categories which not only invisibly keep track of chain homotopies, but homotopies between homotopies, and homotopies between homotopies between homotopies, etc. However, since there are now infinitely many compatibility conditions, ∞ -categories are not well-suited to concrete calculations.

The following is a more concrete way of dealing with this problem, more suited to calculations that might arise in Galois cohomology. **Definition 12** ([Def.5.5.2]). Define $D_{Ek}^+(X_{et}, \mathbb{Z}_{\ell})$ as the full subcategory of $D^+(X_{et}^{\mathbb{N}}, \mathbb{Z}_{\ell})$ consisting of those sequences $(\cdots \to M_2 \to M_1 \to M_0)$ of complexes such that each M_n is a complex of sheaves of \mathbb{Z}/ℓ^n -modules, and the induced maps¹⁰

$$M_n \overset{L}{\otimes}_{\mathbb{Z}/\ell^n} \mathbb{Z}/\ell^{n-1} \to M_{n-1}$$

are quasi-isomorphisms for all n.

The category $D_{Ek}^+(X_{et}, \mathbb{Z}_{\ell})$ (and its unbounded version) is what was used classically to access *l*-adic cohomology in a derived category setting.

Recall from Exercise 15(3) from "Lecture 11. Homological Algebra II", that a complex K is *derived complete* if and only if

$$K \cong R \varprojlim (K \overset{L}{\otimes}_{\mathbb{Z}_{\ell}} \mathbb{Z}_{\ell} / \ell^{n}).$$

Proposition 13 (BS, Prop.5.5.4). There is a fully faithful embedding

 $(R \underline{\lim}) \circ \nu^* : D^+_{Ek}(X_{\mathsf{et}}, \mathbb{Z}_\ell) \subseteq D^+(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_\ell).$

The essential image consists of those bounded below complexes K such that

- 1. K is derived complete.
- 2. the cohomology sheaves of $K \overset{L}{\otimes}_{\mathbb{Z}_{\ell}} (\mathbb{Z}/\ell)$ are classical.

Proof. Again, most of the proof is formal. The main non-formal ingredient is Cor.10. $\hfill \Box$

Remark 14. If there is an integer N such that for all affine $Y \in X_{et}$ and sheaves of κ -vector spaces F we have $H^n(Y, F) = 0$ for n > N, then the above proposition is true for unbounded complexes too.

Remark 15. Notice that $D_{Ek}^+(X_{et}, \mathbb{Z}_{\ell})$ is defined by adding structure to $D(X_{et}, \mathbb{Z}_{\ell})$, whereas $D_{Ek}^+(X_{\text{pro\acute{e}t}}, \mathbb{Z}_{\ell})$ is defined via properties of objects in $D^+(X_{\text{pro\acute{e}t}}, \mathbb{Z}_{\ell})$. So one would expect that the latter is easier to work with.

4 Jannsen's continuous cohomology via the proétale site

Given a tower $(\dots \to F_2 \to F_1 \to F_0) \in \mathsf{Shv}(X_{\mathsf{et}})^{\mathbb{N}}$ of étale sheaves of abelian groups, we can consider the functor

$$\gamma : \operatorname{Shv}(X_{\operatorname{et}})^{\mathbb{N}} \to \operatorname{Ab}; \qquad (F_n) \mapsto \varprojlim F_n(X).$$

¹⁰Since $\mathbb{Z}/\ell^{n-1} \cong l\mathbb{Z}/\ell^n$ and $0 \to l\mathbb{Z}/\ell^n \to \mathbb{Z}/\ell^n \to \mathbb{Z}/\ell^n \to 0$ is a short exact sequence of \mathbb{Z}_{ℓ} -modules the functor $-\bigotimes_{\mathbb{Z}/\ell^n} \mathbb{Z}/\ell^{n-1}$ can be calculated as $\operatorname{Cone}(-\stackrel{\ell}{\to} -)[-1]$ for chain complexes of sheaves of \mathbb{Z}/ℓ^n -modules. Similarly, $-\bigotimes_{\mathbb{Z}_{\ell}}^{L}(\mathbb{Z}/\ell)$ can be calculated by $\operatorname{Cone}(-\stackrel{\ell}{\to} -)$ for complexes of sheaves of \mathbb{Z}_{ℓ} -modules.

We can left derive this to obtain a functor

$$R\gamma: D(X_{et}^{\mathbb{N}}) \to D(Ab)$$

Definition 16. The continuous étale cohomology of a tower $(F_n) \in Shv(X_{et}, Ab)$ of étale sheaves of abelian groups is the cohomology

$$H^i_{cont}(X, (F_n)) = H^i R \gamma((F_n))).$$

Proposition 17 ([BS, Prop.5.6.2]). Let (F_n) be a tower of étale sheaves of abelian groups on X_{et} with surjective transition maps. Then

$$H^i_{cont}(X_{et}, (F_n)) \cong H^i(X_{pro\acute{e}t}, \underline{\lim} \nu^* F_n).$$

In particular, in the case $F_n = \mathbb{Z}/\ell^n$ we have

$$H^i_{cont}(X_{\text{et}}, (\mathbb{Z}/\ell^n)) \cong H^i(X_{\text{pro\acute{e}t}}, \mathbb{Z}_\ell).$$

Proof. Again, most of the proof is formal. The main non-formal ingredient is Prop.9. The hypothesis that the $F_{n+1} \to F_n$ are surjective implies that $\varprojlim F_n \cong R \varprojlim F_n$, cf.Exercise 6 below.

$$R\gamma((F_n)) \cong R\Gamma_{\mathsf{et}}(X, R \varprojlim F_n)$$
$$\cong R \varprojlim R\Gamma_{\mathsf{et}}(X, F_n)$$
$$\stackrel{\text{Prop.9}}{\cong} R \varprojlim R\Gamma_{\mathsf{pro\acute{e}t}}(X, \nu^*F_n)$$
$$\cong R\Gamma_{\mathsf{pro\acute{e}t}}(X, R \varprojlim \nu^*F_n)$$
$$\stackrel{\text{Ex.6}}{\cong} R\Gamma_{\mathsf{pro\acute{e}t}}(X, \varprojlim \nu^*F_n)$$

Exercise 6. Using Exercise 7 of "Lecture 11. Homological Algebra II", show that if (F_n) is a tower of étale sheaves of abelian groups on X_{et} with surjective transition maps, then $\varprojlim F_n \cong R \varprojlim F_n$.