
(Pro)Etale Cohomology

Lecture 13. Functoriality II

In this talk we compare the pro-étale site with the étale site. First we will
see that Shv(Xet) → Shv(Xproét) is fully faithful, and a sheaf is in the image if
and only if it “commutes” with filtered limits.

Image

(
Shv(Xet)→Shv(Xproét)

)
=

{
F : F (lim←−

λ∈Λ

Uλ) = lim−→
λ∈Λ

F (Uλ)

}
.

Similarly, a complex is in the image of D+(Xet)→ D+(Xproét) if and only if
its cohomology is in the image of Shvet(X).

Image

(
D+(Xet)→D+(Xproét)

)
=

{
K : HnK ∈ Shv(Xet) ∀ n

}
.

Then we see how the pro-étale site offers a technically simpler way to left
complete the étale site. There is a canonical identification of D̂(Xet) with the
subcategory of D(Xproét) of objects whose cohomology lies in the image of Xet.

D̂(Xet) ∼=
{
K ∈ D(Xproét) : HnK ∈ Shv(Xet) ∀ n

}
.

We also show how the pro-étale site can be used to recover the classical
derived category of l-adic sheaves,

D+
Ek(Xet,Z`) ∼=

{
K ∈ D+(Xproét,Z`) :

Hn(K/`) ∈ Shv(Xet) ∀ n, and

K ∼= R lim←−n(K
L
⊗ Z/`n)

}
.

and Jannsen’s continuous cohomology,

Hi
cont(Xet, (Z/`n)•) ∼= Hi(Xproét,Z`).
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1 From étale to pro-étale

Since every étale morphism is weakly étale, for any scheme X we have a canon-
ical fully faithful functor

ν : Xet → Xproét.

Remark 1. If X is the spectrum of a separably closed field, then (when re-
stricted to affines), ν is canonically identified with the inclusion of the category
of finite sets into the category of profinite sets.

As explained in “Lecture 5: Functoriality I”, such a functor leads to an
adjunction

νp : PreShv(Xet) � PreShv(Xproét) : νp

where (νpF )(Y )) = F (ν(Y )) and νp can be calculated as

(νpF )(U) = lim−→
U→V→X

F (V ),

for U ∈ Xproét where the colimit is indexed by factorisations U → V → X such
that V ∈ Xet.

Definition 2. In the last lecture we defined

Xaff
proét ⊆ Xproét

as the full subcategory of weakly étale X-schemes that can be written as Spec(A) =
lim←− Spec(Aλ) for some filtered system of affine étale X-schemes Spec(Aλ).

Remark 3. We note for later use that every morphism in Xaff
proét is also pro-étale

[BS, Lem.4.2.2]. In other words, for every V → U in Xaff
proét we have V ∈ U aff

proét.

Lemma 4. Let X be a scheme. A presheaf F is in the image of the composition

PreShv(Xet)
νp−→ PreShv(Xproét)

(−)|
Xaff

proét−→ PreShv(Xaff
proét)

if and only if
F (lim←−Uλ) = lim−→F (Uλ)

for every filtered system (Uλ)λ∈Λ of affine étale X-schemes Uλ.

Proof. (⇒) By [EGA IV-3, Prop.8.13.1]1, for any morphism V → X locally of
finite presentation, we have homX(lim←−Uλ, V ) = lim−→ homX(Uλ, V ), so the system
(Uλ)λ∈Λ is cofinal in the system of all factorisations lim←−Uλ → V → X through
V ∈ Xet.

(⇐) Given a presheaf F commuting with filtered limits as in the statement,
define G ∈ PreShv(Xet) by G(Y ) = lim←−Yµ→Y F (Yi) where the limit is over all

affine étale Y -schemes Yµ.2 If Y is affine, then it is initial in the system of
(Yµ → Y ), so G(Y ) = F (Y ). Hence, inserting the definitions, we find that
νp(G)|Xaff

proét
= F .

1Or [Stacks project, 01ZC].
2That is, we right Kan extend from Xaff

proét to Xproét then apply νp.
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Since ν sends étale covering families to proétale coverings families (cf. Ex-
ercise 9 in “Lecture 5: Functoriality I”), there adjunction (νp, νp) induces an
adjunction

ν∗ : Shv(Xet) � Shv(Xproét) : ν∗

such that ν∗ = νp and ν∗ = a ◦ νp where a : PreShv(Xproét)→ Shv(Xproét) is the
sheafification functor.

Exercise 1. Show that ν∗ is exact. That is, show that it preserves finite colimits
and finite limits of sheaves. Hint: Look at the proof of Lemma 10 in “Lecture
5. Functoriality I”.

Exercise 2 (Advanced). Following the strategy of Exercise 9 from “Lecture 3.
Topology I” from last quarter show that a presheaf on Xaff

proét is a sheaf if and
only if:

1. For any surjection V→U in Xaff
proét, the sequence F (U)→F (V )⇒F (V ×UV )

is exact.

2. F |Op(Y ) is a Zariski sheaf for each Y ∈ Xaff
proét.

Lemma 5 ([Lem.5.1.1]). For F ∈ Shv(Xet) and U ∈ Xaff
proét with presentation

U = lim←−λ Uλ, we have (ν∗F )(U) = lim−→λ
F (Uλ). In other words, νpF already

satisfies the sheaf condition on Xaff
proét before sheafification.

Proof. We want to show that the presheaf νpF on Xaff
proét is a sheaf. It suffices to

check the two conditions in Exercise 2. We check the first one, since the second
one is similar. First suppose that V → U is a surjective étale (i.e., not a general
pro-étale) morphism of finite presentation in Xaff

proét, and let U = lim←−Uλ be a
presentation for U . Then for some λ, there exists a surjective étale morphism
Vλ → Uλ such that V = U ×Uλ Vλ,3 [Stacks project, 01ZM, 07RP, 081D]. Then
the sheaf condition for V → U is the filtered colimit of the sheaf conditions for
Vµ := Uµ ×Uλ Vλ → Uµ for µ ≥ λ

νpF (U) // νpF (V ) //// νpF (V ×U V )

lim−→µ≥λ F (Uµ) // lim−→µ≥λ F (Vµ) //// lim−→j
F (Vµ ×Uµ Vµ)

Here the vertical equalities are Lemma 4. Since F is an étale sheaf, the lower
row is a filtered colimit of exact sequences. Filtered colimits preserve finite
limits, so the lower row is exact, and therefore the upper row is exact.

3Note, any morphism between affines that is locally of finite presentation, is in fact, of
finite presentation.
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Now let V = lim←−Vλ → U be a presentation for a general surjective morphism

in Xaff
proét. Then, again, the sheaf condition for V → U is the filtered colimit of

the sheaf conditions for the Vλ → U .

νpF (U) // νpF (V ) //// νpF (V ×U V )

νpF (U) // lim−→λ
νpF (Vλ) //// lim−→λ

νpF (Vλ ×U Vλ)

Again, the vertical equalities are Lemma 4. We have just shown that the lower
line is a filtered colimit of exact sequences (because each Vλ → U is surjective
étale of finite presentation), so it follows that the upper line is exact.

For the Zariski case, since affine schemes are quasicompact, and basic opens
Spec(A[a−1]) ⊆ Spec(A) form a base for the Zariski topology, it suffices to check
the sheaf condition for coverings of the form {Spec(A[a−1

i ])→ Spec(A)}ni=1.4 If
A = lim−→Aλ is a presentation for the ind-étale algebra A, then we descend the

covering {Spec(A[a−1
i ])→ Spec(A)}ni=1 to some Aλ as in the previous case, and

argue as in the previous case.

Exercise 3. Prove the claim that filtered colimits preserve exact sequences.
That is, suppose that Λ is a filtered category, and A,B,C : Λ → Ab are func-
tors from Λ to the category of abelian groups, and A → B → C are natural
transformations such that for each λ ∈ Λ, the sequence

0→ Aλ → Bλ → Cλ → 0

is exact. Then show that

0→ lim−→
λ

Aλ → lim−→
λ

Bλ → lim−→
λ

Cλ → 0

is an exact sequence.

Example 6. Suppose k is a field with separable closure ksep such that ksep/k is
not a finite extension. Then consider the sheaf F (−) = hom(−,Spec(ksep)) on
the category Spec(k)proét. For any Spec(A) ∈ Spec(k)proét we have F (Spec(A)) =
∅. However, Spec(ksep) ∈ Spec(k)aff

proét and we have F (Spec(ksep)) 6= ∅ =
lim−→k⊆L⊆ksep F (Spec(L)) where the limit is over finite subextensions of ksep/k.

So F is not in the image of ν∗.

Lemma 7 ([Lem.5.1.2]). The functor

ν∗ : Shv(Xet)→ Shv(Xproét)

is fully faithful. Its essential image consists of those sheaves F which satisfy:

4This reduction can be proven in a similar way to Exercise 9 from “Lecture 3. Topology
I”.
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(Cla) F (U)= lim−→λ
F (Ui) for any U ∈ Xaff

proét with presentation U = lim←−λ Uλ.

Proof. A left adjoint is fully faithful if and only if the unit id → ν∗ν
∗ is an

isomorphism.5 Isomorphisms of sheaves can be detected locally, cf. Exercise 4
below, and in Xet every scheme is locally affine. For any affine étale U → X,
the constant diagram (U) is a presentation for U . So then by Lemma 5 above
we have F (U) ∼= ν∗ν

∗F (U) for any F ∈ Shv(Xet).
For the second part, suppose G ∈ Shv(Xproét) satisfies the conditions of the

lemma. To show that G is in the image of ν∗, we will show that ν∗ν∗G →
G is an isomorphism. Since every weakly étale X-scheme can be covered by
affine proétale X-schemes [BS, Thm.2.3.4] (← this is a difficult theorem), it
suffices to show that ν∗ν∗G(U)→ G(U) is an isomorphism for every U ∈ Xaff

proét,
cf. Exercise 4 below. But this follows from Lemma 5 and the hypothesis.

Exercise 4. Prove the claim in the above proof that a morphism of sheaves
φ : F → G on a site (C, τ) is an isomorphism if and only if for every X ∈ C, there
is a τ -covering family {Ui → X}i∈I such that F (Ui)→ G(Ui) is an isomorphism
for all i.

Hint: The hypothesis is for every X ∈ C, in particular, for any cover {Ui →
X} with φ an isomorphism on each Ui, there are also covers {Wijk → Ui ×X
Uj}k∈Kij with φ an isomorphism on each Wijk.

Definition 8. Sheaves in the image of Shv(Xet) ⊆ Shv(Xproét), that is sheaves
satisfying the condition (Cla) in Lemma 7 called classical.

The recognition of classical sheaves can be used to show that

D+(Xet)→ D+(Xproét)

is also fully faithful.

Proposition 9 ([Cor.5.1.6]). For any K ∈ D+(Xet), the map K → Rν∗ν
∗K

is an equivalence. Moreover, if U ∈ Xaff
proét has presentation U = lim←−λ Uλ then

RΓproét(U, ν
∗K) = lim−→λ

RΓet(Uλ,K).

Proof. (Probably omitted from lecture). The first part follows from the second
part. Indeed, to prove the first part, it suffices to show that the morphism of
presheaves RΓet(U,K) → RΓet(U,Rν∗ν

∗K) is an isomorphism for every affine
étale X-scheme U , cf.Ex.4. But if the second part is true, then for every such
U , we have RΓet(U,K) = RΓproét(U, ν

∗K) = RΓet(U,Rν∗ν
∗K).6

For the second part, it suffices to consider the case that K is concentrated
in degree zero. Indeed, if its true for K concentrated in degree zero, then its
true for K concentrated in any one degree. Then by the truncation triangles
τ≤n−1K → τ≤nK → HnK[n]→ τ≤n−1K[1] it is true for any bounded complex.

5This is because the composition hom(X,Y ) → hom(LX,LY ) ∼= hom(X,RLY ) induced
by the unit Y → RLY .

6The second equality comes from the fact that Γet(−, ν∗−) = Γproét(−,−), and R(F ◦G) =
RF ◦RG for composable left exact functors.
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Finally, since K ∼= lim−→n
τ≤nK, if it’s true for bounded complexes, it’s true for

bounded below complexes.
So now we are trying to prove that for any F ∈ Shv(Xet,Ab) we have

Hn
proét(U, ν

∗F ) = lim−→λ
Hn

et(Uλ, F ) when U = lim←−Uλ with Uλ ∈ Xet affine. When
n = 0 this is just Lemma 5. Now choose a short exact sequence 0→ F → I →
G→ 0 in Shv(Xet) with I injective, and use induction on n. By the morphism
of long exact sequences7

. . . // Hn
et(Uλ, I) //

��

Hn
et(Uλ, G) //

��

Hn+1
et (Uλ, F ) //

��

Hn+1
et (Uλ, I) //

��

. . .

. . . // Hn
proét(U, ν

∗I) // Hn
proét(U, ν

∗G) // Hn+1
proét(U, ν

∗F ) // Hn+1
proét(U, ν

∗I) // . . .

and the fact that since I is injective Hn
et(Uλ, I) = 0 for all n > 0,8 it suffices to

show that Hn
proét(U, ν

∗I) = 0 for n > 0.

To show Hn
proét(U, ν

∗I) = 0 for n > 0, by the Čech-to-sheaf cohomology
spectral sequence [Milne, Prop.III.2.3]

Ȟp(U,Hq
proétν

∗I)⇒ Hp+q
proét(U, ν

∗I)

and induction on n, it suffices to show that the Čech cohomology Ȟp(U, ν∗I)
vanishes.9

Similar to what happened in the proof of Lemma 5, to calculate this Čech
cohomology, it suffices to take the colimit over coverings of U the form V :=
U ×Uλ Vλ for λ ∈ Λ and étale coverings Vλ → Uλ in Xaff

et . By Lemma 5, for such
a covering we have

Ȟn(V/U, ν∗I) = lim−→
µ≥λ

Ȟn(Vµ/Uµ, I)

where Vµ := Uµ ×Uλ Vλ. The right hand side vanishes for n > 0 because I is
injective in Shv(Xet).

Corollary 10 ([BS, Prop.5.2.6(1),(3)]). Let X be a scheme. Then the functor

ν∗ : D+(Xet)→ D+(Xproét)

is fully faithful, and its essential image consists of those complexes K whose
cohomology sheaves are classical.

Proof. Fully faithfulness follows from Prop.9, since a left adjoint L is fully faith-
ful if and only if the unit id→ RL is a natural isomorphism.

7Note ν∗ is exact, so 0→ ν∗F → ν∗I → ν∗G→ 0 is again a short exact sequence.
8One quick way to see this is to note that I is its own injective resolution.
9N.B. We automatically have Ȟ0(U,Hq

proétν
∗I) = 0 for q > 0 and Ȟ0(U,H0

proétν
∗I) =

H0
proét(U, ν

∗I).
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For the essential image, we use an argument that appeared in the proof of
Prop.9. Certainly, by definition, if a complex K ∈ D+(Xproét) has only one
nonzero cohomology sheaf, and that cohomology sheaf is classical, i.e., in the
image of ν∗ : Shv(Xet) → Shv(Xproét), then K is in the image of ν∗. By the
truncation triangles τ≤n−1K → τ≤nK → HnK[n]→ τ≤n−1K[1] and induction
on the number of non-zero cohomology sheaves, it is true for any bounded
complex. Finally, since K ∼= lim−→n

τ≤nK, if it’s true for bounded complexes, it’s
true for bounded below complexes.

2 Left completion via the pro-étale site

Recall that the left completion D̂(Xet) of D(Xet) is the subcategory of D(XN
et)

consisting of those sequence of chain complexes (· · · → K2 → K1 → K0) in
Ch(Shv(Xet)

N) such that

1. HiKn = 0 for i < −n,

2. HiKn+1 = HiKn for i ≥ −n.

Here HiK is the ith cohomology sheaf of K.

Proposition 11 ([Prop.5.3.2]). Let X be a scheme. The functor

D̂(Xet)→ D(Xproét)

(· · · → K2 → K1 → K0) 7→ R lim←− ν
∗Kn

is fully faithful. It’s essential image is the full subcategory of those K ∈ D(Xproét)
such that each cohomology sheaf HiK is classical.

Notes about the proof. Most of the proof is formal. The main non-formal ingre-
dients are Cor.10, the fact shown in Exercise 1 that ν∗ : Shv(Xet)→ Shv(Xproét)

is exact, and of course the equivalence D(Xproét) ∼= D̂(Xproét) coming from the
fact that Shv(Xproét) is replete.

3 Ekedahl’s l-adic sheaves via the pro-étale site

Suppose l is a prime, and X is a Z[1/l]-scheme. The l-adic cohomology is
classically defined as

Hi
et(X,Z`) := lim←−

n

Hi
et(X,Z/`n).

On the other hand, it is useful to have a description of cohomology in terms of
derived categories. We have

homD(Xet,Z/`n)(Z/`n,Z/`n[i]) = Hi
et(X;Z/`n)
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but to extend this to l-adic cohomology, we would need to consider something
like

lim←−
n

D(Xet,Z/`n)

but categories are only well-defined up to equivalence, so limits of categories are
technically complicated to define.

Exercise 5. In this exercise we show that näıve inverse limits of categories are
not well-defined up to equivalence of categories. Let · · · → C2 → C1 → C0 be
a system of functors of small categories. Define lim←−Cn to be the category with
set of objects

Oblim←−Cn = lim←−ObCn .

Given objects x = (. . . , x2, x1, x0) and y = (. . . , y2, y1, y0) in lim←−Cn define

homlim←−Cn(x, y) = lim←− homCn(xn, yn).

1. For an abelian group A, let BA be the category of one object, ∗, and
homBA(∗, ∗) = A with composition in BA given by addition in A. Note
that any group homomorphism A → A′ induces a functor BA → BA′.
Show that

lim←−
n

B(Z/`n) = BZ`.

2. Now define Cn to be the category whose objects are Ob Cn = {i ∈ Z :
i ≥ n}, morphisms are homCn(i, j) = Z/`n for every i, j, and composi-
tion is given by addition in Z/`n. Note that there are canonical functors
Cn+1 → Cn induced by the group homomorphisms Z/`n+1 → Z/`n and
the inclusions Ob Cn+1 ⊂ Ob Cn. Show that

lim←−
n

Cn = ∅.

3. Show that for every n, the canonical functor Cn → BZ/`n is fully faith-
ful, and essentially surjective. That is, it is an equivalence of categories.
Deduce that lim←−, as defined above, does not preserve equivalences of cat-
egories.

There is a notion of 2-limit of categories defined by keeping track of isomor-
phisms, which does preserve equivalences.

One could also use∞-categories which not only invisibly keep track of chain
homotopies, but homotopies between homotopies, and homotopies between ho-
motopies between homotopies, etc. However, since there are now infinitely many
compatibility conditions, ∞-categories are not well-suited to concrete calcula-
tions.

The following is a more concrete way of dealing with this problem, more
suited to calculations that might arise in Galois cohomology.
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Definition 12 ([Def.5.5.2]). Define D+
Ek(Xet,Z`) as the full subcategory of

D+(XN
et,Z`) consisting of those sequences (· · · → M2 → M1 → M0) of com-

plexes such that each Mn is a complex of sheaves of Z/`n-modules, and the
induced maps10

Mn

L
⊗Z/`n Z/`n−1 →Mn−1

are quasi-isomorphisms for all n.

The category D+
Ek(Xet,Z`) (and its unbounded version) is what was used

classically to access l-adic cohomology in a derived category setting.
Recall from Exercise 15(3) from “Lecture 11. Homological Algebra II”, that

a complex K is derived complete if and only if

K ∼= R lim←−(K
L
⊗Z` Z`/`n).

Proposition 13 (BS, Prop.5.5.4). There is a fully faithful embedding

(R lim←−) ◦ ν∗ : D+
Ek(Xet,Z`) ⊆ D+(Xproét,Z`).

The essential image consists of those bounded below complexes K such that

1. K is derived complete.

2. the cohomology sheaves of K
L
⊗Z` (Z/`) are classical.

Proof. Again, most of the proof is formal. The main non-formal ingredient is
Cor.10.

Remark 14. If there is an integer N such that for all affine Y ∈ Xet and
sheaves of κ-vector spaces F we have Hn(Y, F ) = 0 for n > N , then the above
proposition is true for unbounded complexes too.

Remark 15. Notice thatD+
Ek(Xet,Z`) is defined by adding structure toD(Xet,Z`),

whereas D+
Ek(Xproét,Z`) is defined via properties of objects in D+(Xproét,Z`).

So one would expect that the latter is easier to work with.

4 Jannsen’s continuous cohomology via the pro-
étale site

Given a tower (· · · → F2 → F1 → F0) ∈ Shv(Xet)
N of étale sheaves of abelian

groups, we can consider the functor

γ : Shv(Xet)
N → Ab; (Fn) 7→ lim←−Fn(X).

10Since Z/`n−1 ∼= lZ/`n and 0 → lZ/`n → Z/`n l→ Z/`n → 0 is a short exact sequence

of Z`-modules the functor −
L
⊗Z/`n Z/`n−1 can be calculated as Cone(− `→ −)[−1] for chain

complexes of sheaves of Z/`n-modules. Similarly, −
L
⊗Z` (Z/`) can be calculated by Cone(− `→

−) for complexes of sheaves of Z`-modules.
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We can left derive this to obtain a functor

Rγ : D(XN
et)→ D(Ab)

Definition 16. The continuous étale cohomology of a tower (Fn) ∈ Shv(Xet,Ab)
of étale sheaves of abelian groups is the cohomology

Hi
cont(X, (Fn)) = HiRγ((Fn))).

Proposition 17 ([BS, Prop.5.6.2]). Let (Fn) be a tower of étale sheaves of
abelian groups on Xet with surjective transition maps. Then

Hi
cont(Xet, (Fn)) ∼= Hi(Xproét, lim←− ν

∗Fn).

In particular, in the case Fn = Z/`n we have

Hi
cont(Xet, (Z/`n)) ∼= Hi(Xproét,Z`).

Proof. Again, most of the proof is formal. The main non-formal ingredient
is Prop.9. The hypothesis that the Fn+1 → Fn are surjective implies that
lim←−Fn

∼= R lim←−Fn, cf.Exercise 6 below.

Rγ((Fn)) ∼=RΓet(X,R lim←−Fn)

∼=R lim←−RΓet(X,Fn)

Prop.9∼= R lim←−RΓproét(X, ν
∗Fn)

∼=RΓproét(X,R lim←− ν
∗Fn)

Ex.6∼= RΓproét(X, lim←− ν
∗Fn)

Exercise 6. Using Exercise 7 of “Lecture 11. Homological Algebra II”, show
that if (Fn) is a tower of étale sheaves of abelian groups on Xet with surjective
transition maps, then lim←−Fn

∼= R lim←−Fn.
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