
(Pro)Etale Cohomology

Lecture 11. Homological Algebra II

Reference: [BS] Bhatt, Scholze, “The pro-étale topology for schemes”.

In this lecture we consider replete topoi. This is a nice class of topoi that
include the pro-étale topos, in which inverse limits work well. In particular, for
any object K ∈ D(X ) in the derived category of a replete topos X , the chain
complex K is the derived inverse limit of its truncations

K ∼= R lim←− τ
−nK,

where τ−nK = (· · · → 0 → 0 → Kn/d(Kn−1) → Kn+1 → Kn+2 → . . . ). This
allows us to prove things about unbounded chain complexes using bounded
below chain complexes (e.g., we will do this in the proof of Proposition 34).

In Section 3 we will see that, for any topos X , there is a canonical way to
complete its derived category with respect to inverse limits D(X )→ D̂(X ). In
later lectures we will see that in the case X = Shvet, the left completion is
canonically equivalent to a subcategory of D(Shvproét)

D̂(Shvet) ⊆ D(Shvproét).

One of the motivations we gave at the beginning of the course for the
pro-étale topology was that it gives a better way of constructing the derived
categories of l-adic sheaves. Instead of an ad-hoc 2-limit D(Shvet(X,Zl)) :=
2- lim←−nD(Shvet(X,Z/ln)), we would like the derived category of l-adic sheaves
to be just that: the category of sheaves of Zl-modules on a site. If we con-
sider sheaves of Zl-modules on the pro-étale site, we get a bigger category than
D(Shvet(X,Zl)). In Section 4 we discuss the notion of derived complete ob-
jects in D(X ). It is the subcategory Dcomp(Shvproét(X,Zl)) of derived complete
objects which will be equivalent to D(Shvet(X,Zl)).

2- lim←−
n

D(Shvet(X,Z/ln)) ∼= Dcomp(Shvproét(X,Zl)) ⊆ D(Shvproét(X,Zl)).

1 Replete topoi

Definition 1. A topos is a category equivalent to a category of the form Shvτ (C)
for some category C and some Grothendieck topology τ on C. Given an object
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X ∈ C, we write hX for the sheaf represented by X. I.e., the sheafification of
the presheaf homC(−, X).

Example 2. Given a topos X , the category
∏

N X of sequences (. . . , F2, F1, F0)
of objects in X is also a topos.1 The category XN of towers (. . .→F2→F1→F0)
of morphisms in X is also a topos.2

Definition 3. Let X = Shvτ (C) be a topos. A morphism F → G of objects of
X is surjective if for every object X ∈ C and s ∈ G(X), there exists a covering
{Ui → X}i∈I such that s|Ui

is in the image of F (Ui)→ G(Ui) for each i ∈ I.

Remark 4. It can be shown that a morphism F → G of sheaves is surjective
if and only if for every sheaf H the induced map hom(G,H) → hom(F,H) is
injective. I.e., if and only if F → G is surjective in the categorical sense. Another
equivalent condition for F → G to be surjective is asking that im(F→G)→ G
become an isomorphism (of presheaves) after sheafification. Here, by im(F→G)
we mean the presheaf image, i.e., im(F→G)(U) = im(F (U)→G(U)) (this is not
necessarily a sheaf).

exer:epi Exercise 1. Note that:

(∗) For any presheaf F with sheafification aF , object X ∈ C, and section
s ∈ aF (X), there exists a covering {Ui → X}i∈I such that each s|Ui

is in
the image of F (Ui)→ aF (Ui).

Let {Vi → Y }i∈I be a covering family in a site C. Using the axioms of a
Grothendieck topology, and (∗) show that qi∈IhVi → hY is a surjective mor-
phism of sheaves.

Remark 5. In the SGA definition of a covering family, the converse is also true:
a family {Vi → Y }i∈I is a covering family if and only if the induced morphism
of sheaves qi∈IhVi

→ hY is a surjective.

Definition 6 ([BS, Def.3.1.1]). A topos is replete (充実した) if for every tower
of surjective morphisms · · · → F2 → F1 → F0 the induced morphisms

lim←−i≥0
Fi

## (( ** ++. . . // F2
// F1

// F0

are surjective for all n.

1It is the category of sheaves on the disjoint union qn∈NC equipped with the coarsest
topology such that the inclusions C → qn∈NC send covers to covers.

2It is the category of sheaves on the category N×C whose objects are pairs (n,X) consisting
of an n ∈ N and an object X ∈ C. Morphisms are hom((n,X), (m,Y )) = ∅ if n > m and
hom(X,Y ) otherwise. Again, the topology is the coarsest topology such that the inclusions
C → N× C send covers to covers.
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rema:limits Remark 7. Note: the inclusion Shvτ (C) ⊆ PreShv(C) preserves limits (but
not all colimits). That is, (lim←−i∈I Fi)(X) = lim←−i∈I(Fi(X)) for any diagram of

sheaves I → Shvτ (C) and X ∈ C (to calculate colimits of sheaves, one takes the
colimit in the category of presheaves and then sheafifies).

Exercise 2.

1. Show that the category of sets is replete. (Note, this is a topos: Set is the

category of sheaves on the category
idy∗ with only one object equipped with

the trivial Grothendieck topology).

2. Let C be a category equipped with the trivial Grothendieck topology,3 so
every presheaf is a sheaf. Show that PreShv(C) is replete.

3. Let G be a (discrete) group. Deduce that the category of G-sets is replete.
Note: G-sets is the category of presheaves on the category BG which has
one object, one morphism for every element of G, and composition is
defined by the multiplication in G.

exam:etNotReplete Example 8. Let k be a field such that ksep/k is not finite. Then the category
Shvet(k) of étale sheaves on k is not replete: Since ksep/k is not finite there
exists a tower . . . /L2/L1/L0 = k of nontrivial finite separable field extensions.
Since each Spec(Ln) → Spec(Ln−1) is a covering, each morphism in the tower
induces a surjective morphism of sheaves. However,

lim←−
i

hSpec(Li) → hSpec(k) (1) equa:idSurjEq

cannot be surjective.

Exercise 3. By evaluating on X = Spec(k) and considering s = idk prove the
claim that Example 8(1) is not surjective. Hint: recall that the coverings of
Spec(k) are of the form {Spec(Kj) → Spec(k)}j∈J with Kj/k finite separable
field extensions.

Example 9 ([BS, Example 3.1.7]). The category of affine schemes with the
fpqc topology4 is replete. Suppose · · · → F2 → F1 → F0 is a tower of surjective
morphisms, and consider some affine scheme X = Spec(A) and some s ∈ F0(X).
Since F1 → F0 is surjective, there is a faithfully flat morphism A→ B0 such that
s|B0 is in the image of F1(B0) → F0(B0). That is, there is some s1 ∈ F1(B0)
mapping to s|B0 . Repeating the argument, we find a tower of faithfully flat
morphisms A → B0 → B1 → B2 → . . . and elements si ∈ Fi(Bi−1) such
that si maps to si−1|Bi−1

. Set B = lim−→Bi. Now A → B is again a faithfully
flat morphism, and the sequence (sn ∈ Fn(Bn−1)) induces a sequence (tn ∈
Fn(B)) such that tn 7→ tn−1 for all n. In other words, it induces an element
t ∈ (lim←−Fi)(B). By construction, s|B = t, and so we deduce that lim←−Fi → F0

is surjective. The same argument shows each lim←−Fi → Fn is surjective.

3I.e., the only covering families are families of the form {X id→ X}.
4I.e., the topology whose coverings are families {Spec(Bi) → Spec(A)}i∈I such that each

A→ Bi is flat, and qSpec(Bi)→ Spec(A) is surjective.
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Remark 10. Note that the reason the fpqc site is replete and the étale site is
not replete is precisely because limits of coverings exist in the category, and are
still coverings.

Our first goal is to show that countable products are exact in replete topoi.
This is Proposition 14. Knowing that products are exact, makes derived limits
easy to calculate, cf. Remark 15. The first step is the following lemma.

lem:3.1.8 Lemma 11 ([BS, Lem.3.1.8]). Let

. . . // F2
//

��

F1
//

��

F0

��
. . . // G2

// G1
// G0

be morphisms in a replete topos, and suppose Fi → Gi and Fi+1 → Fi×Gi Gi+1

are surjective for all i. Then lim←−Fi → lim←−Gi is surjective.

Exercise 4. Prove Lemma 11 when the topos is the category of sets.

Exercise 5. This exercise shows that limits do not preserves surjections in
general. So the hypotheses of Lemma 11 are really necessary.

1. Show that (· · · → Z → Z → Z) → (· · · → Z/l3 → Z/l2 → Z/l) does not
satisfy the hypotheses of Lemma 11.

2. Show that the limit of the above morphism of towers is Z → Zl. Show
that this is not surjective.

exer:surjective Exercise 6. Suppose that (fi : Bi → Ci)i∈N is a sequence of surjections. Show
that the conditions of Lemma 11 are satisfied for Fn =

∏
0≤i≤nBi, and Gn =∏

0≤i≤n Ci. Note: X ×Y (Y × Y ′) ∼= X × Y ′ so

(B0 × · · · ×Bn)×(C0×···×Cn) (C0 × · · · × Cn+1) ∼= (B0 × · · · ×Bn × Cn+1)

Deduce that
∏
i∈N fi :

∏
i∈NBi →

∏
i∈N Ci is surjective.

exer:EpiLemma Exercise 7. Suppose that · · · → F2
t2→ F1

t1→ F0 is a tower of surjections in a
replete topos X .

1. Show that each map

n+1∏
i=0

Fi
t−id−→

n∏
i=0

Fi;

(sn+1, . . . , s2, s1, s0) 7→ (tn+1sn+1−sn, . . . , t2s2−s1, t1s1−s0)

is surjective.
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2. Using Bn =
∏n+1
i=0 Fi and Cn =

∏n
i=0 Fi and Exercise 6, show that∏

N
Fi

t−id−→
∏
N
Fi

is surjective where t−id is the morphism (. . . , c2, c1, c0) 7→ (. . . , tc3−c2, tc2−c1, tc1−c0).

Definition 12. If X = Shvτ (C) is a topos we write D(X ) = D(Shvτ (C,Ab))
for its derived category.

Recall that if X is a topos, then the category
∏

N X of sequences of objects
and the category XN of towers of morphisms are also topoi. We can this consider
the right derived functors associated to product and limit

RΠ : D(
∏
N
X )→ D(X ),

R lim←− : D(XN)→ D(X ).

We prove the following proposition in an appendix to this lecture.

prop:rlimDef Proposition 13 (See Proposition 43 below). Let A be a Grothendieck abelian

category with products and (. . .→C2
t→C1

t→C0) a tower of chain complexes (the
t’s are different, but we ommit the indices). Then there is a isomorphism in
D(A)

R lim←−Cn
∼= Cone

(
RΠCn

t−id−→ RΠCn

)
[−1]

where t− id is the morphism (. . . , c2, c1, c0) 7→ (. . . , tc3−c2, tc2−c1, tc1−c0).

One of the reasons we are interested in replete topoi is that limits work very
well.

prop:derivedProd Proposition 14. Let X be a replete topos. Then the functor Π :
∏

N X → X
preserves injections and surjections. In particular, Π preserves quasi-isomorphism
of chain complexes and so induces a well-defined functor

Π : D(
∏
N
X )→ D(X )

which is just Π on each object.

Proof. We want to show that if (fi : Fi → Gi)i∈N is a sequence of morphisms in
X which is injective (resp. surjective) then

∏
fi is injective (resp. surjective). It

is automatically injective because limits always preserve monomorphisms. The
surjective case is exactly Exercise 6.

rema:derivedLimCalc Remark 15. Proposition 14 (combined with Prop.13) shows that in a replete
topos, given a tower (· · · → K2 → K1 → K0) in Ch(Shvτ (C,Ab))N of chain
complexes of sheaves of abelian groups, we could define R lim←−Ki as

Cone(
∏

Ki →
∏

Ki)[−1]

(where the products take place termwise in Shvτ (C,Ab)). We will use this
description in the future.
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Proposition 16 ([BS, 3.1.10]). Let X = Shvτ (C) be a replete topos and suppose

· · · → F2
t→ F1

t→ F0 is a tower of surjective morphisms in Shvτ (C,Ab). Then
we have lim←−Fi

∼= R lim←−Fi in D(X ).

Proof. Since each Fi+1 → Fi is surjective, the morphism t− id is surjective by
Exercise 7. So, we have a short exact sequence

0→ lim←−Fi →
∏

Fi
t−id−→

∏
Fi → 0.

Since products are automatically derived by Proposition 13 and Lemma 14 , we
have

lim←−Fi
∼= Cone

(∏
Fi

shift− id−→
∏

Fi

)
[−1].

2 Locally weakly contractible topoi

coherentSite Definition 17 (Cf.[Johnstone, Topos theory, Thm.7.35]). A topos is said to be
coherent if there is a site (C, τ) such that C has finite limits and for every
covering {Ui → X}i∈I there is a finite set {i1, . . . , in} ⊆ I such that {Uij →
X}nj=1 is also a covering. We will call (C, τ) a coherent site of definition.

Exercise 8. Let SCH be the category of all schemes and AFF the category
of all affine schemes (both equipped with the Zariski topology).

1. Show that the canonical restriction functor ShvZar(SCH)→ ShvZar(AFF )
induces an equivalence of categories.

2. Show that (C, τ) = (AFF,Zar) satisfies the conditions of Definition 17.

3. Show that (C, τ) = (SCH,Zar) does not satisfy the conditions of Defini-
tion 17, but that none-the-less, ShvZar(SCH) is a coherent topos.

Definition 18 ([Bs, Def.3.2.1]). An object F of a topos X is weakly contractible
if every surjection G → F has a section. Suppose X is a coherent topos with
coherent site of definition (C, τ). We say that X is locally weakly contractible if
every object X ∈ X admits a surjection qi∈IYi → X with Yi weakly contractible
objects, which are representable by objects of C.

Exercise 9. 1. Suppose that X = Shvτ (C) is a topos such that C is small.
Show that for any sheaf F , the canonical morphism

qX∈C,s∈F (X) homC(−, X)→ F

is surjective.
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2. Suppose that X = Shvτ (C) is a topos such that C is small, and suppose
that C ′ ⊆ C is a full subcategory such that C ′ is a coherent site of defini-
tion for X (e.g., C = SCH,C ′ = AFF with the Zariski topology5). Show
that X is locally weakly contractible if and only if for each X ∈ C, there
is a covering family {Ui → X}i∈I such that each Ui is in C ′, and is weakly
contractible.

3. Let SchR be the category of schemes of finite presentation over a ring
R equipped with the Zariski topology. Using the results about w-local
spaces from the lecture on commutative algebra, show that ShvZar(SchR)
is locally weakly contractible.

Example 19. The pro-étale site that we define in the next lecture is locally
weakly contractible.

Proposition 20 ([BS, Prop.3.2.3). ] Let X be a locally weakly contractible topos.
Then X is replete, and for any object K ∈ D(X ) we have R limn τ

≥nK ∼= K
where

τ≥nK = (· · · → 0→ (Kn/dKn−1)→ Kn+1 → Kn+2 → . . . ).

Remark 21. The property R limn τ
≥nK ∼= K means that all the information of

K is contained in its truncations. This lets us deduce properties of unbounded
complexes from bounded below complexes.

Sketch of proof. Since X is locally weakly contractible, a morphism f in X is
an isomorphism (resp. surjection) if and only if evaluating on each weakly
contractible object of C is an isomorphism (resp. surjection). It follows that X
is replete.

Similarly, for any complex of sheaves K and weakly contractible object U
we have (HiK)(U) = Hi(K(U)). It follows that R limn τ

≥nK ∼= K.

3 Truncation completing derived categories
sec:TruncationCompletion

Recall that if X is a category, then XN is the category of towers (. . .→F2→F1→F0)
of morphisms in X . If X = Shvτ (C) is a topos, then D(XN) is the derived cate-
gory of the abelian category Shvτ (C,Ab)N.

Now that we are working with towers of chain complexes, we will have two
indices: an upper index for the terms in the chain complex, and a lower index
for the terms in the tower.

5The categories SCH and AFF are not small, but we can instead consider a variant such
as: choose an uncountable strong limit cardinal κ and only consider those schemes that can
be build using sets of size < kappa. Another alternative is to choose some base ring R,
and consider the categories SchR and AffR of R-schemes (resp. affine R-schemes) locally of
presentation.
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...
...

...

. . . // Ki+1
2

t //

d

OO

Ki+1
1

t //

d

OO

Ki+1
0

d

OO

. . . // Ki
2

t //

d

OO

Ki
1

t //

d

OO

Ki
0

d

OO

. . . // Ki−1
2

t //

d

OO

Ki−1
1

t //

d

OO

Ki−1
0

d

OO

...

OO

...

OO

...

OO

Here, the d’s and t’s should have indices too, but we did not write them. Note
that Ch(A)N = Ch(AN). That is, we can think about objects in this category as

towers of chain complexes
t2→
(

...

)
t1→
(

...

)
t0→
(

...

)
or chain complexes of towers

(. . . )

di+1

OO

(. . . )

di
OO

OO

Definition 22 ([BS, 3.3.1]). Let X = Shvτ (C) be a topos. We define the left-

completion D̂(X ) of D(X ) as the full subcategory of D(XN) spanned by the
projection systems (. . .→K2→K1→K0) in Ch(Shvτ (C,Ab)N) such that

1. Kn ∈ D≥−n(X ). That is, HiKn = 0 for i < −n.

2. The canonical map τ≥−nKn+1 → Kn is an equivalence. In other words,
the map HiKn+1 → HiKn is an isomorphism for all i ≥ −n.

We say that D(X ) is left-complete if the map

τ : D(X )→ D̂(X ); K 7→ {τ≥−nK}

is an equivalence.

Remark 23. The definition is equivalent to asking that when we take coho-
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mology, we get the following picture:

...
...

...

. . .
∼= // H2K2

∼= // H2K1

∼= // H2K0

. . .
∼= // H1K2

∼= // H1K1

∼= // H1K0

. . .
∼= // H0K2

∼= // H0K1

∼= // H0K0

. . .
∼= // H−1K2

∼= // H−1K1
// 0

. . .
∼= // H2K2

// 0 // 0

. . . // 0 // 0 // 0

...
...

...

Remark 24. The inclusion D̂(X ) ⊆ D(X ) is not an inclusion of triangulated

categories (because D̂(X )) is not preserve by the deshift [−1] from D(X ).

We just state the main facts about completions without giving too many
details.

Theorem 25. Let X = Shvτ (C) be a topos.

1. [BS, Lem.3.3.2] The functor R lim←− : D̂(X )→ D(XN)→ D(X ) is the right

adjoint of τ . In particular, if D(X ) is left-complete, then K ∼= R lim←− τ
−nK

for any K ∈ Ch(Shvτ (C,Ab)).

2. [BS, Prop.3.3.3] If X is a replete topos then D(X ) is left-complete.

3. [BS, Exam.3.3.5] If k = C(x1, x2, . . . ), then D(Spec(k)et) is not left-
complete.

4. [BS, Prop.3.3.7] If U ∈ C is an object such that Γ(U,−) is exact then for
any K ∈ D(X ) we have RΓ(U,K) ∼= R lim←−RΓ(U, τ−nK).

5. [BS, Prop.3.3.7] If for each K ∈ D(X ) and U ∈ C there exists some d ∈ N
such that Hp(U,HqK) = 0 for p > d, then D(X ) is left-complete.

Example 26. The finiteness condition of [BS, Prop.3.3.7] above is satisfied for
the étale sites of Spec(Fq), and X when X is a smooth affine variety over an
algebraically closed field.

Example 27 ([BS, 3.3.4, 3.3.5]). Let k := C(x1, x2, x3, . . . ) be a field of count-
able transcendence degree over C. Then D(Shv(ket,Ab)) is not left complete.
We discuss this example at length in Section B at the end of this pdf.
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4 `-adically completing objects
sec:l-adic

Prior to the pro-étale cohomology, the most widely spread triangulated category
to work with the six functors f∗, f∗, f!, f

!,⊗,hom on constructible `-adic étale
cohomology was developed by Ekedahl. Ekedahl’s category corresponds to a full
subcategory of derived complete complexes of proétale sheaves of Z`-modules
satisfying a certain finiteness condition. In this section we discuss this notion
of derived completeness.

Through-out this section we work with the discrete valuation ring Z`. We
also fix a replete topos X = Shvτ (C), and now our derived category will always
be the derived category of sheaves of Z`-modules

D(X ,Z`) = D(Shvτ (C,Z`)).

Definition 28. We say that M ∈ ModZ`
is classically complete if M ∼=

lim←−M/`nM . We write ModZ`,comp ⊆ ModZ`
for the full subcategory of clas-

sically complete modules.

Exercise 10. Suppose that M ∈ ModZ`
is `-torsion free. That is, the multipli-

cation by ` map ` : M →M ; m 7→ `m is injective.

Show that M ∼= lim←−M/`nM if and only if both lim−→(. . .
`→M `→M) and

lim−→
1(. . .

`→M `→M) are zero,6

Hint: Consider the short exact sequences 0→M `n→M→M/`n→0.

Exercise 11. Show that Zl and Z/ln are classically complete Zl-modules but Q`
and Q`/Z` ∼= lim−→(Z/`Z → Z/`2Z → . . . ) are not. (The group homomorphisms

Z/`nZ→ Z/`n+1Z in the colimit send 1 to `).

Definition 29. Given a complex K ∈ D(X ,Z`) we define

T (K) := R lim←−(. . .
`→ K

`→ K
`→ K).

We say K is derived complete if T (K) ∼= 0 in D(X ,Z`) where the transition
maps are multiplication `. We use the notation Dcomp(X ,Z`) ⊆ D(X ,Z`) for
the full subcategory of derived complete objects.

Remark 30. Since we are assuming that X is replete, by Proposition 14 we
have

T (K) = Cone

(∏
N
K

id−`−→
∏
N
K

)
[−1].

Remark 31. Later on we will see that T (K) = 0 if and only if the canonical
map K → R lim←−(K ⊗LZ`

Z/`n) is a quasi-isomorphism.

6Recall that lim−→
1 is a functor such that for any short exact sequence of towers 0→ (An)→

(Bn) → (Cn) → 0 induces a long exact sequence 0 → lim←−An → lim←−Bn → lim←−Cn →
lim←−

1 An → lim←−
1Bn → lim←−

1 Cn → 0
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exer:derivedCompleteCone Exercise 12.

1. Show that if K is derived complete then so is K[n] for any n.

2. Suppose that 0 → A → B → C → 0 is a short exact sequence of chain
complexes in Ch(Shvτ (C,Z`)). Using the fact that products in a replete
topos are exact, show that 0 → TA → TB → TC → 0 is also a short
exact sequence. Deduce that if two of A,B,C are derived complete, then
so is the third.

3. Consider a morphismK → L in Ch(Shvτ (C,Z`)) and define C = Cone(K →
L). Use the second part above to show that if two of K,L,C are derived
complete then the third is also derived complete.

exer:derivedCompleteLim Exercise 13. Using the fact that for any double sequence of chain complexes
(Kn,m) we have a canonical isomorphismR lim←−nR lim←−mKn,m

∼= R lim←−mR lim←−nKn,m,

show that if (. . .→K2→K1→K0) is a sequence of derived complete chain com-
plexes then R lim←−Kn is derived complete.

The relationship between classical complete and derived complete is the
following.

Proposition 32 ([BS, Prop.3.4.2]). An Z`-module M ∈ ModZ`
is classically

complete if and only if it is `-adically separated7 and derived complete.

Constructing derived complete modules which are not classically complete
is not so easy, however they do arise quite naturally.

Example 33 ([Stacks project, 0G3F], [SAG]). Let Z`〈t〉 be the `-adic comple-
tion of the Z`-module Z`[t]. Then the cokernel of the ring homomorphism

λ : Z`〈t〉 → Z`〈t〉; t 7→ `t

is derived complete, but not `-adically separated.
Indeed, Z`〈t〉 is classically complete by definition, so it is derived complete,

and derived complete-ness is preserved under cokernels, so coker(λ) is derived
complete. On the other hand, the element

∑
n≥0 `

ntn ∈ Z〈t〉 is not in the image
of λ, so it is non-zero in coker(λ). For every m, the element 1 + `t+ · · ·+ `mtm

is in the image of λ, so
∑
n≥0 `

ntn ∼
∑
n>m `

ntn in coker(λ), so
∑
n≥0 `

ntn ∈
∩m≥0`

mcoker(λ).

In particular, for classical Z`-modules, classical completeness is strictly stronger
than derived completeness.

We omit the proof of 3.4.2 as it is not used elsewhere.

BS344 Proposition 34 ([BS, Prop.3.4.4]). An Z`-complex K ∈ D(X ,Z`) is derived
complete if and only if each HiK ∈ Shvτ (C,Z`) is derived complete.

7`-adically separated means that ∩n∈N`nM = 0.
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Recall that for a chain complex K we define

τ≥nK = [· · · → 0→ 0→ (Kn/dKn−1)→ Kn+1 → Kn+2 → . . . ]

τ≤nK = [· · · → Kn−2 → Kn−1 → (ker d)→ 0→ 0→ . . . ]

Exercise 14. Show that Hiτ≤nK = HiK for i ≤ n and Hiτ≤nK = 0 for i > n.
Similarly, show that Hiτ≥nK = HiK for i ≥ n and Hiτ≥nK = 0 for i < n.

Proof. Suppose that each HiK is derived complete. We will show that K is
derived complete. For any i ∈ N, n ∈ Z we have

Cone
(
τ≤n+iτ≥nK → τ≤n+i+1τ≥nK

) q.i.→
∼
Hi+1K

so by induction on i, and Exercise 12, each τ≤n+iτ≥nK is derived complete.
Now we are assuming that X is replete, so in particular, we have

τ≤mK ∼= R lim←−
n∈N

τ−nτ≤mK.

So by Exercise 13, we find that τ≤mK is derived complete. Now consider the
short exact sequence of complexes

0→ K → Cone
(
τ≤mK→K

)
→ τ≤mK[1]→ 0

By Exercise 12 the functor T takes short exact sequence to short exact sequences.
Since τ≤mK is derived complete, we deduce that

TK
q.i.→ T Cone

(
τ≤mK → K

)
But

Cone
(
τ≤mK → K

) q.i.→ τ≥m+1K

so
TK

q.i.→ Tτ≥m+1K

Finally, from the definition we see that (Tτ≥m+1K)i = 0 for i < m. Since this
is valid for any m, we deduce that HiTK = 0 for all i.

Definition 35. Suppose that K ∈ Ch(Shvτ (C,Z`)) is a chain complex. Then
we define

K
L
⊗Z`

Z`/`n := Cone(K
`n→ K).

Remark 36. The functor −
L
⊗Z`

Z`/`n that we defined above actually calcu-
lates the left derived functor of −⊗Z`

Z`/`n where here ⊗Z`
is the usual tensor

product. Since we only need the derived product in this case, we just take this
as the definition.

exer:derCompletion Exercise 15.
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1. Show that there is a canonical morphism of sequences of chain complexes

from (. . .
`→K `→K `→K) to (. . .

id→K id→K id→K)

2. Deduce that there is a canonical morphism from (. . .
id→K id→K id→K) to

(. . .→K
L
⊗Z`

Z`/`2→K
L
⊗Z`

Z`/`→K).

3. Show that there is a short exact sequence

0→ K → K̂ → TK → 0

where

K̂ := R lim←−(K
L
⊗Z`

Z`/`n).

Deduce that K is derived complete if and only if the morphism K → K̂
is a quasi-isomorphism.

Proposition 37 ([BS, Lem.3.4.9, Prop.3.5.1]). The functor sending K to K̂
defines a left adjoint to the inclusion Dcomp(X ,Z`) ⊆ D(X ,Z`).

Sketch of proof. By Exercise 15 we see that K̂ is derived complete. Suppose
that L ∈ D(X ,Z`) is also derived complete. Then we want to show that

homD(X ,Z`)(K̂, L)→ homD(X ,Z`)(K,L)

is an isomorphism. By the short exact sequence in Exercise 15(3) it suffices to
show that

homD(X ,Z`)(TK,L) = 0

(this uses some homological algebra that we have not covered, but it is not
difficult homological algebra). Now we make two claims.

Claim 1. [BS, Lem.3.4.7] We have that hom(M,L) = 0 for all M ∈ D(X ,Q`).
Claim 2. [BS, Lem.3.4.8] We have that TK is in the essential image of the

canonical functor D(X ,Q`)→ D(X ,Z`).
The proof of these claims is not difficult, but is omitted.

Definition 38. We define a tensor product on Dcomp(X ,Z`) using the tensor
product on D(X ,Z`):

K⊗̂Z`
L :=

̂
K

L
⊗Z`

L.

Here,
L
⊗Z`

is the derived tensor product on D(X ,Z`).

A Derived limits

In this subsection we consider a Grothendieck abelian category A that admits
products (in other words, satisfies Grothendieck’s axiom (AB3*)). We are con-
cerned with the derived functors

RΠ : D(
∏
N
A)→ D(A)

13



R lim←− : D(AN)→ D(A)

associated to product Π :
∏

NA → A and limit lim←− : AN → A. Note that∏
NA and AN are again Grothendieck abelian categories (since they are functor

categories from a small category to a Grothendieck abelian category).
Recall from the lecture Homological Algebra I that for a general left exact

functor between Grothendieck abelian categories F : B → B′, the derived func-
tor RF : D(B) → D(B′) can be calculated as follows. If C ∈ Ch+(B) is a
bounded below chain complex, then there exists a quasi-isomorphism C → I
with I a bounded below chain complex of injective objects,8 and RF (C) ∼= F (I)
in D(B′). More generally, for any chain complex C ∈ Ch(B), there exists a
quasi-isomorphism C → Q to a fibrant chain complex,9 and RF (C) ∼= F (Q) in
D(B′).

lemm:injProd Lemma 39. An object (Ii)i∈N in
∏

NA is injective if and only if each Ii is
injective in A.

Exercise 16. Prove Lemma 39.

lemm:injectiveSequences Lemma 40. An object (· · · → A2 → A1 → A0) in AN is injective if and only
if each Ai is injective and each Ai+1 → Ai is a split surjection.

Proof. Suppose I• = (· · · → I2 → I1 → I0) is an injective object in AN. Let

λn : A → AN be the functor sending A ∈ A to (· · · → 0→ A
id→ . . .

id→ A︸ ︷︷ ︸
n morphisms

). Then

λn is exact and a left adjoint to the “evaluation at n” functor Evn (which sends
(· · · → B2 → B1 → B0) to Bn). Since Evn has an exact left adjoint it sends
injectives to injectives, and hence, each In = EvnI• is injective in A. To see
that each In+1 → In is split surjective, consider the canonical monomorphism
λnIn → λn+1In. Since I• is injective, the canonical morphism λnIn → I•
factors as λnIn → λn+1In → I•. The degree n + 1, n, n − 1 piece of this

8Recall that an object I ∈ B is injective if for every monomorphism A→ B, every morphism
A→ I factors through A→ B.

9Recall that a chain complex Q ∈ Ch(B) is fibrant if for every monomorphic quasi-
isomorphism A→ B of chain complexes, every morphism A→ Q factors through A→ B.
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factorisation is
...

��

...

��

...

��
0

��

// In //

id

��

In+1

��
In

id

��

// In
id //

id

��

In

��
In

id ��

// In //

id ��

In−1

��
...

...
...

So In+1 → In is split surjective.
Conversely, suppose that I• = (· · · → I2 → I1 → I0) is an object of AN such

that each In is injective in A, and each In+1 → In is split surjective. Suppose
that A• = (. . .→A2→A1→A0) → (. . .→B2→B1→B0) = B• is a monomor-
phism in AN, and that A• → I• is some morphism. We will show by induction
that it factors through A• → B•. In degree 0, this follows from the fact that I0
is injective: A0 → B0 is a monomorphism and I0 injective so A0 → I0 factors
as A0 → B0 → I0. Suppose that we have factorisations Ai → Bi → Ii for all
0 ≤ i < n which are compatible with the transition morphisms of A•, B•, I•
respectively. In particular, we have the following diagram

An // ((

��

Bn //

��

In

��
An−1

// Bn−1
// In−1

and we are looking for the dashed morphism which makes the diagram commute.
By hypothesis, In → In−1 is split surjective. That is, In ∼= In−1⊕J for some J ,
which is also injective as it is a direct summand of the injective object In. As J is
injective, the induced morphism An → J factors as An → Bn

a→ J . On the other
hand, we have the morphism b : Bn → Bn−1 → In−1 from the above diagram.
Then we define the dashed morphism to be (b, a) : Bn → In−1 ⊕ J ∼= In. On
checks that this makes the diagram commute.

Now that we consider chain complexes in
∏

NA and AN we will have two
indices, (an upper) one for the chain complex direction, and (a lower) one for
the

∏
NA, AN direction. We will implicitly use the canonical equivalences of

categories Ch(
∏

NA) ∼=
∏

N Ch(A) and Ch(AN) ∼= Ch(A)N.
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注意 Beware, however, that the canonical inclusions Ch+(
∏

NA) ⊆
∏

N Ch
+(A)

and Ch+(AN) ⊆ Ch+(A)N are not essentially surjective.

Lemma 41. A chain complex (Q•i )i∈N in Ch(
∏

NA) is fibrant if and only if
each Q•i is fibrant in Ch(A).

Proof. It suffices to note that a morphism (A•i )i∈N → (B•i )i∈N is a monomor-
phic quasi-isomorphism if and only if each A•i → B•i is a monomorphic quasi-
isomorphism.

lemm:seqFibrant Lemma 42. If a chain complex (Q•i )i∈N in Ch(AN) is fibrant then each Q•i is
fibrant in Ch(A).

Proof. As in the proof of Lemma 40, the “evaluation at n” functor Evn :
Ch(AN) → Ch(A) has a left adjoint λn : Ch(A) → Ch(AN) which preserves
monomorphisms and quasi-isomorphisms. Consequently, Evn sends fibrant ob-
jects to fibrant objects.

prop:limTriangle Proposition 43. Suppose that A is a Grothendieck abelian category with prod-
ucts. Then for any object (. . .→C•2→C•1→C•0 ) in Ch(AN), there is an isomor-
phism

R lim←−C
•
n
∼= Cone

(
RΠC•n

id−shift−→ RΠC•n

)
in D(A).

Proof. In order to calculate R lim←−C
•
n, replace (. . .→C•2→C•1→C•0 ) with a quasi-

isomorphic fibrant complex (. . .→Q•2→Q•1→Q•0) in Ch(AN). Recall that every
fibrant chain complex is a chain complex of injective objects (the converse is
true if the complex is bounded below). In particular, for each i the sequence
(. . .→Qi2→Qi1→Qi0) is injective in AN, and therefore by Lemma 40, the mor-
phisms Qin+1 → Qin are split surjective. We will use this fact later.

Now by Lemma 42 each Q•n is fibrant. Hence, (Q••) can also be used to
calculate the derived products as well. That is,

R lim←−C
•
n
∼= lim←−Q

•
n, RΠC•n

∼= ΠQ•n

So it suffices to show that the canonical morphism

lim←−Q
•
n → Cone

(
ΠQ•n

id−shift−→ ΠQ•n

)
[−1]

is a quasi-isomorphism. But since each Qin+1 → Qin is split surjective, it follows

that each ΠQin
id−shift−→ ΠQin is surjective. So the sequence

0→ lim←−Q
•
n → ΠQ•n

id−shift−→ ΠQ•n → 0

is exact, and therefore the left term is quasi-isomorphic to the shifted cone of
the right morphism.
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B A worked example
example

Example 44 ([BS, 3.3.4, 3.3.5]). Let k := C(x1, x2, x3, . . . ) be a field of count-
able transcendence degree over C. We will show that Shv(ket,Ab) is not left
complete.

First we describe a setup in a general topos Shvτ (C). Let F1, F2, . . . be a
sequence of sheaves. Define K = ⊕n≥1Fn[n]. That is, K is the chain complex
of sheaves

K = (· · · → Fn
0→ . . .

0→ F1 → 0→ . . . )

with all differentials zero. We will find a criterion for K → K̂ to not be a
weak equivalence and then give a concrete choice of Fn in the case Shv(ket,Ab)
fulfilling this criterion.

First notice that the completion K̂ of K is (R
∏

)Fn[n]. This can be seen by
noticing that τ≥−nK = ⊕ni=1Fn[n] =

∏n
i=1 Fn[n], taking injective resolutions

Fn → I•n, and noticing that the sequence

∏
i≥1

I•i [i]
φ→
∏
n≥1

n∏
i=1

I•n[n]
id−shift→

∏
n≥1

n∏
i=1

I•n[n]

is a short exact sequence of chain complexes of sheaves.10

So our claim is that

K = ⊕n≥1Fn[n]→ (R
∏
n≥1

)Fn[n] = K̂

is not a weak equivalence for well chosen Fn. To prove this choose a filtered
system of objects (Pλ)λ∈Λ in the site C such that the functor

Φ : PreShv(C)→ Ab

defined by
Φ : F 7→ lim−→

Λ

F (Pλ)

factors through PreShv(C) → Shv(C). That is, choose a fibre functor. (In the
case of Shv(ket), the system (Pλ) will be the system (Spec(L))k⊆L⊆ksep of all
finite Galois sub-extensions of ksep/k.)

Note also that since Φ is defined by a filtered colimit, it commute with
finite limits and all colimits, and in particular, preserves quasi-isomorphisms.
So, extending Φ to chain complexes in the obvious way, there is a canonical
factorisation

Comp(Shvτ (C,Ab))→ D(Shvτ (C,Ab))→ D(Ab).

10Here, shift is the map induced by the projection
∏n
i=1 →

∏n−1
i=1 , the map φ is the

product (in n) of the projections
∏
i≥1 →

∏n
i=1. The map φ has retraction ρ :

∏
n≥1

∏n
i=1 →∏

n≥1

∏n
i=n
∼=

∏
i≥1. The induced section to id−shift is id +deshift where deshift is induced

by the inclusions
∏n−1
i=1 →

∏n
i=1 adding zero in the nth component.
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To show that K → K̂ is not an equivalence in D(Shvτ (C,Ab)) it suffices to show

that Φ(K)→ Φ(K̂) is not a weak equivalence in D(Ab). For this, it suffices to

show that H0Φ(K) → H0Φ(K̂) is not an isomorphism. Since H0Φ(K) is zero
(because Φ does not need to be derived and commutes with all sums) it suffices

to produce a nonzero element in H0Φ(K̂) = H0Φ((R
∏
n≥1)Fn[n]). First let’s

get a description of it.
We claim that

H0Φ((R
∏
n≥1

)Fn[n]) = lim−→
Λ

∏
Hn
τ (Pλ, Fn).

To see this, choose injective resolutions for the Fn. These can be used to cal-
culate R

∏
. Then we have the following. We write Hn

Ab to emphasise that we
are taking the cohomology of an object of D(Ab). Note also that product of
sheaves commutes with evaluation at an object. So we don’t need brackets for
expressions such as

∏
I•n[n](Pλ).

H0
AbΦ

(
(R
∏

)Fn[n]
)

= H0
AbΦ

(∏
I•n[n]

)
= H0

Ab lim−→
Λ

∏
I•n[n](Pλ)

= lim−→
Λ

H0
Ab

(∏
I•n[n](Pλ)

)
= lim−→

Λ

(∏
H0

Ab(I•n[n](Pλ))
)

= lim−→
Λ

(∏
Hn

Ab(I•n(Pλ))
)

= lim−→
Λ

∏
Hn
τ (Pλ, Fn)

Without loss of generality, we can assume Λ has an initial object 0. Here are
our criterion:

(1) There exist classes αn ∈ Hn
τ (P0, Fn) which are exactly pn-torsion. That

is, pnαn = 0 but (pn−1)αn 6= 0.

(2) There exist “transfer” maps Hn
τ (Pλ, Fn) → Hn

τ (P0, Fn) such that for all
n ≥ 1, the composition

Hn
τ (P0, Fn)→ Hn

τ (Pλ, Fn)→ Hn
τ (P0, Fn)

is dλ times the identity for some dλ ∈ N.

Lemma 45. If the above criterion (1) and (2) are satisfied, then K → K̂ is
not a weak equivalence.

Proof. As discussed above, it suffices to show that H0Φ((R
∏
n≥1)Fn[n]) is

nonzero. The sequence α = (α1, α2, . . . ) ∈
∏
Hn
τ (P0, Fn) determines an ele-

ment of
H0Φ((R

∏
n≥1

)Fn[n]) = lim−→
Λ

∏
Hn
τ (Pλ, Fn).
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This element α becomes zero in the colimit if and only if there is some λ such
that α is sent to zero under

∏
Hn
τ (P0, Fn)→

∏
Hn
τ (Pλ, Fn). Using the transfer

maps (2) we see that dλα = 0. So dλαn = 0 for all n. but this contradicts (1),
since for any pn − 1 > dλ we have (pn − 1)αn 6= 0.

Now we discuss a way to construct Fn, αn in the case that our topos is
Shvτ (C) = Shv(C(x1, x2, . . . )et). The sheaves Fn will be the constant sheaves
associated to the abelian groups Z/pn.

To construct the αn, recall from the first part of this course that Shv(ket,Ab)
is canonically equivalent to the category of continuous G-modules where G :=
Gal(ksep/k). In particular, we can calculate étale cohomology of ket as the
group cohomology of G. Note that there is a canonical surjection11

Gal(ksep/k)→
∏
N

Zp.

We will use the following facts. Given an abelian group A (with trivial
G-action and discrete topology), we have H1(G,A) ∼= homcont.(G,A) [Weibel,
6.1.5, 6.4.1, 6.4.2, 6.11.15]. In particular, for each n ≥ 1 we have a canonical
class α′n ∈ H1(Zp,Z/pn) which is exactly pn-torsion.

Next, given a product of groups G1×G2 and abelian groups A1, A2, we have
a cohomology cross-product [Brown, Cohomology of groups Section V.2],

Hi(G1, A1)⊗Hi(G1, A1)→ Hi+j(G1 ×G2, A1 ⊗A2).

So our classes α′n can be combined to a class α′′n ∈ Hn(Zp × · · · × Zp,Z/pn)
where there are n copies of Zp. Using the surjection Gal(ksep/k)→

∏
i≥1 Zp →∏n

i=1 Zp we get a class

αn ∈ Hn(Gal(ksep/k),Z/pn) = Hn
et(k,Z/pn).

As we mentioned above, we take (Pλ) to be the system (Spec(L))k⊆L⊆ksep

of all finite Galois sub-extensions of ksep/k. The transfer morphisms can be
deduced from the theory of group cohomology [Brown, Cohomology of groups,
Prop.III.9.5] or from the étale theory as follows: Given a finite Galois extension
L/k, since Spec(L)→ Spec(k) is an étale covering, for every sheaf F there is an
exact sequence

0→ F (k)→ F (L)→ ⊕Gal(L/k)F (L)

where we use the fact that L ⊗k L ∼=
∏
Gal(L/k) L. So F (k) ⊆ F (L) is the set

of Galois invariant sections. Sending a section s ∈ F (L) to the Galois invariant

11Indeed, for each m ∈ N and i = (i1, . . . , im) ∈ Nm consider the field extension ki :=

C(x
1/pi1

1 , . . . , x
1/pim
m , xm+1, . . . ) of k. This is an abelian Galois extension with group Z/pi1 ×

· · · × Z/pim (the group Z/pij acts by sending x
1/p

ij

j to ζa
p
ij
x
1/p

ij

j for a ∈ Z/pij where

ζ
p
ij = e2πi/p

ij
is a primitive pij th root of unity). Hence, by the Fundamental Theorem of

Profinite Galois Theory [Weibel, 6.11.5], there exist a sequence of surjections Gal(ks/k) →
Z/pi1 × · · · × Z/pim fitting together into a tower. Taking the limit over i gives the surjection
Gal(ks/k)→ lim←−m,i Z/p

i1 × · · · × Z/pim ∼=
∏
n∈N Zp.
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section
∑
g∈Gal(L/k) g

∗s defines a map F (L)→ F (k) such that the composition

F (k) → F (L) → F (k) is [L : k] times the identity. This is natural in F , so by
Yoneda, it induces a map ZSpec(k)→ ZSpec(L) of representable étale sheaves
of abelian groups. More directly, hom(ZSpec(k),ZSpec(L)) = (ZSpec(L))(k),
each k-automorphism g ∈ Gal(L/k) determines a k-morphism g : L → L, and
our transfer map Z Spec(k) → ZSpec(L) corresponds to the Galois invariant
section

∑
g ∈ (ZSpec(L))(L).

In any case, since Hn
et(−, F ) ∼= homD(ket)(Z−, F [n]), we obtain the desired

transfer maps.
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