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1 Motivation

Let i : Z → X be a closed immersion, and j : U → X the open complement.
Defining

j! := j∗ and i! := i∗,

we obtained, in addition to the adjunctions (j∗, j∗) and (i∗, i∗), adjunctions

(j!, j
!) and (i!, i

!). (1)

These were compatible in various ways such as

j∗i! = 0, i∗i! = id, i∗j! = 0, j∗j! = id . (2)

We defined cohomology with compact support as

Hr
c (U,F ) = RrΓ(X, j!F ) = RrπX∗j!F

where j : U → X is an open immersion of from a smooth curve to a projective
smooth curve over an algebraically closed field k, and πX : X → k is the
structural morphism. We saw that this fit into the long exact sequence

· · · → Hr
c (U,Z/n)→ Hr

et(X,Z/n)→ Hr
et(Z,Z/n)→ Hr+1

c (U,Z/n)→ . . . . (3)

When F was a locally constant sheaf of Z/n-modules with finite stalks, we also
had Poincaré Duality

hom(Hr
c (U,F ),Z/n) ∼= H2−r

et (U,hom(F, µn)). (4)

Generalising the definition i! := i∗ to f! := Rf∗ when f is proper, and writing

πU ! := RπX∗ ◦ j! (5)

for the quasi-projective morphism πU : U → k, the long exact sequence (3) and
Poincaré Duality (4) become

· · · → HrπU !Z/n→ HrπX!Z/n→ HrπZ!Z/n→ Hr+1πU !Z/n→ . . .

hom(πU !F,Λ) ∼= hom(F, µn[2]) (6)
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Since Shvet(k,Z/n) ∼= Z/n-mod, (6) says that πU ! has a right adjoint

π!
U := π∗U (−⊗ µn[2]),

which is a nice picture considering the adjunctions (1).

These facts fit into a larger framework.

One can define an adjunction of exceptional functors (f!, f
!) for any finite

type morphism between noetherian schemes f : Y → X generalising (1) and
(5). Moreover, the identities 2 generalise to base change theorems: If

X ′
g′ //

f ′

��

X

f

��
Y ′

f
// Y

is a cartesian square with f proper, or g smooth, then

Rg∗ ◦ f!
∼= f ′! ◦Rg′∗.

2 Notation and outline

In this lecture we write

D(X) = D(Shvet(X)), D(Λ) = D(Λ-mod), D(X,Λ) = D(Shvet(X,Λ))

where Λ is a ring. We have Λ = Z/n in mind here. To make the statements nicer
we work with noetherian schemes. Since we are always working with derived
categories and derived functors, we write f∗ = Rf∗, ⊗ = ⊗L, etc.

3 Constructible complexes

We are interested in Hr
c (−, µ⊗rn ). However, in order to effectively use the six

operations f∗, f∗, f!, f
!,⊗,hom and the operations on complexes ⊕ and Cone,

we end up having to deal with a larger class of objects.

Definition 1 ([Stacks Project, Tag 0657]). An object K ∈ D(Λ) is perfect if it
is isomorphic to a bounded complex of finite projective Λ-modules.

Exercise 1. Show that if K,L are perfect, then so is K ⊕L. Use the fact that
homD(Λ)(K,L) = homK(Λ)(K,L) if K,L are bounded complexes of projectives
to show that for any map K → L between perfect complexes, Cone(K → L) is
also a perfect complex.
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Lemma 2 ([Stacks Project, Tag 0ATI]). The category Dperf(Λ) ⊆ D(Λ) of
perfect objects is the smallest subcategory closed under cone, (de)shift, and direct
summand containing Λ.

Proposition 3 ([Stacks Project, Tag 07LT]). A complex K ∈ D(Λ) is perfect
if and only if

homD(Λ)(K,
⊕

Li) ∼=
⊕

homD(Λ)(K,Li)

for any family {Li}i∈I .

Remark 4. An object in any additive category satisfying the above property
is called compact. So the proposition says that the compact objects of D(Λ)
are exactly the perfect ones. Being compact means that an object is small in a
certain sense.

Definition 5. An object K ∈ D(X,Λ) is constant (with perfect values) if it is
the image under D(Λ) → D(X,Λ) of a (perfect) object in D(Λ). It is locally
constant (with perfect values) if there exist an étale cover {Ui → X} such that
K|Ui is constant (with perfect values) for each i.

Exercise 2. Suppose that f : Y → X is a finite étale Galois1 morphism, and
p, q : Y ×X Y → Y the two projections. Use the fact that f∗ ◦ f∗ ∼= p∗ ◦ q∗ to
show that f∗K is locally constant for any constant complex K ∈ D(Yet,Λ).

Definition 6 ([BS, Def.6.3.1]). A complex K ∈ D(Xet,Λ) is called constructible
if there exists a finite sequence of closed subschemes ∅ = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆
Zm = X such that i∗Zj\Zj−1

K is locally constant with perfect values.

Exercise 3. Let i : Z → X be a closed immersion with open complement
j : U → X show that j!Λ (resp. i∗Λ) is constructible. Note that j! and i∗ are
exact, so just like j∗ and i∗ they are their own derived functors. In particular,
the relations j∗j! = id, i∗i∗ = id, j∗i∗ = 0, j!i

∗ = 0 continue to hold at the
derived category level.

Lemma 7 ([BS, Lem.6.3.11]). For any open immersion j : U → X, the functor
j! : D(Uet)→ D(Xet) preserves constructibilty.

Exercise 4. Let j : U → X be an open immersion. Using the adjunc-
tion (j!, j

∗) and the fact that f∗ preserves direct sums, show that j! preserves
compact objects. That is, if K ∈ D(Uet,Λ) is compact, then for any family
Li ∈ D(Xet,Λ); i ∈ I we have

hom(j!K,
⊕

Li) ∼=
⊕

hom(j!K,Li).

Proposition 8 ([BS, Prop.6.4.8]). An object of D(Xet,Λ) is constructible if
and only if it is compact.

Remark 9. The categories Dcons(Xet,Z/n) of constructible objects are the
smallest collection of subcategories closed under (de)shift, cone, the operations
f∗, f∗, f!, f

!, and containing each µ⊗rn .
1I.e., Y ×X Y ∼= qGY
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4 Six operations

In this section we assume that all schemes are Z[ 1
n ]-schemes.

As in the curves case, we define f! as f ◦j! for some factorisation into an open

immersion Y
j→ Y and a proper morphism f : Y → X. However, in dimension

higher than one, such factorisations are highly non-cannonical, so we must check
that this is well-defined. This uses the first Proper Base Change theorem. The
functor f ! is then defined as the right adjoint. In the case that f is smooth of
constant relative dimension d, we can identify f ! as (f∗−)⊗ µ⊗dn [2d].

Theorem 10 (Grothendieck, [BS, Thm.6.7.1], [SGA§XIV]). Let f : X → Y be
a proper morphism of schemes. Then f∗ : D(Xet,Z/n)→ D(Yet,Z/n) preserves
constructibility.

Theorem 11 (Proper Base Change I [SGA73, §XII.Thm.5.1]). Suppose that

X ′

f ′

��

g′ // X

f

��
Y ′

g
// Y

(7)

is a cartesian square with f proper. Then for any object K of D(X,Z/n), the
canonical morphism is an isomorphism.

g∗f∗K
∼→ f ′∗g

′∗K.

Theorem 12 ([SGA73, §XVI]). Suppose that (7) is a cartesian square with
f finite type, g smooth. Then for any object K of D(X,Z/n), the canonical
morphism is an isomorphism.

g∗f∗F
∼→ f ′∗g

′∗F.

Exercise 5. Prove the base change theorem(s) when f is a closed immersion
and g is the open complement.

Definition 13. Let f : Y → X be a separated finite type morphism. Choose
a factorisation f = f ◦ j where j : Y → Y is a dense open immersion and
f : Y → X is proper. Define

f! := f∗ ◦ j!.

Lemma 14. The above definition is well-defined.

Proof. Given two compactifications Y
j→Y 1

f→X and Y→Y 2→X, the closure Y 3

of Y in fibre product Y 1 ×X Y 2 induces a third compactification Y
k→Y 3

g→X.
So it suffices to show that f∗j! = g∗k!.

Note that Y 3 → Y ε is proper2 (for ε = 1, 2). But since j, k are dense,
Y 3 → Y ε sends generic points isomorphically to generic points, so Y×Y εY 3 → Y

2This follows from the basic fact that if
u→ v→ are composeable morphisms of schemes with

v separated and vu proper, then u is also proper.
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is a proper birational morphism of schemes with a section. This implies it is an
isomorphism (cf. Exercise 6). So we have cartesian squares

Y
j // Y 3

π

��

Y 3 \ Y
ioo

θ

��
Y

k
// Y 1 Y 1 \ Y

h
oo

Consider the canonical morphism

k! → k!j
∗j! = k! id∗ j

∗j!
PBC∼= k!k

∗π∗j! → π∗j!.

It suffices to show that this is an isomorphism. A morphism in D(Y 1et,Λ) is
an isomorphism if and only if it is an isomorphism after applying k∗ and h∗.
Applying k∗ gives

id ∼= k∗k! → k∗π∗j!
PBC∼= j∗j! ∼= id

and applying h∗ gives

0 = h∗k! → h∗π∗j!
PBC∼= θ∗i

∗j! = 0.

Exercise 6. Suppose that f : W → V is a proper morphism which maps generic
points of W isomorphically to generic points of V , and such that there is a
morphism s : V →W with f ◦ s = idV . Show that f is an isomorphism. (Hint:
s is automatically proper, and any proper immersions is a closed immersion.)

Theorem 15 (Proper Base Change II. [BS, Prop.6.7.10]). Suppose that (7) is
a cartesian square with f separated and finite type. Then for any object K of
D(Xet,Z/n), the canonical morphism is an isomorphism.

g∗f!K
∼→ f ′! g

′∗K.

Proof. From the definition of f!, f
′
! , Proper Base Change I, and the case that

f, f ′ are open immersions. For the open immersion case, it suffices to check the
isomorphism on the (underived) sheaf categories. Note all functors in question
are left adjoints, so it suffices to check that the adjoints are isomorphic f∗g

∗ ∼=
g′∗f ′∗. But by definition, these are composition with the functors

Et(X ′) // Et(X)

Et(Y ′) //

−×Y ′X
′

OO

Et(Y )

−×YX

OO

So the result follows from the identity −×Y ′X ′ = −×Y ′Y ′×Y X ∼= −×Y X.

Proposition 16 (SGA, §XVIII, Thm.3.1.4). Let f be a finite type morphism.
The functor f! admits a right adjoint, f !.
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Theorem 17 (SGA, §XVIII, Thm.3.2.5). If f is smooth of relative dimension
d, then f ! ∼= (f∗−)⊗ µ⊗dn [2d].

Remark 18. Note that any quasi-projective morphism f : Y → X factors (by

definition) as a closed immersion Y
i→ P and a smooth morphism P

p→ X. The
above theorem allows us to calculate f ! as i! ◦ (p∗(−) ⊗ µ⊗dn [2d]) where in the
derived world, i! = i∗Cone(id→ j∗j

∗)[−1] for j the open complement.

5 Ql-coefficients

Recall that the original motivation for étale cohomology was the Weil conjec-
tures. We wanted a collection of vector spaces over a characteristic zero field
with certain nice properties. In particular, for any curve C, the first cohomol-
ogy group H1(C,Q) should be a vector space of dimension 2g, the genus of the
curve.

Theorem 19 (Serre). There is no Weil cohomology theory for smooth projective
varieties over Fp2 such that dimQH

1(C,Q) = 2 for every curve of genus 1.

Proof. Recall that an elliptic curve E is a curve of genus 1, and an elliptic curve
over a field of positive characteristic p is called supersingular if it has no p-
torsion points. In this case, End(E)Q is a quaternion algebra, and in particular,
dimQEnd(E)Q = 4, and all non-zero elements are invertible. Supersingular
elliptic curves exist over every field Fp2 .

Since all elements of End(E)Q are invertible, every homomorphism to a
nonzero ring must be injective. On the other hand, since H1(−,Q) is functorial,
we have a canonical morphism End(E)Q → H1(E,Q). But if dimQH

1(E,Q) =
2, then End(H1(E,Q)) ∼= M2×2(Q). Since dimQM2×2(Q) = 4 = dimQEnd(E)Q,
the morphism must be an isomorphism, which is a contradiction because there
are nonzero noninvertible elements of M2×2(Q).

Consequently, Hr
et(−,Q) is no good (for the Weil conjectures). However,

we saw that Hr
et(C,Z/n) had the “correct” ranks for smooth curves C over

algebraically closed fields. It follows that for any l prime to the characteristic,
lim←−mH

r
et(C,Z/lm) also has the correct ranks. But these are Zl = lim←−Z/lm

modules, and so we can make them into Ql-vector spaces, and still have the
correct ranks.

So this leads us to the following definition.

Definition 20. For l a prime, and X a Z[ 1
l ]-scheme, define

Hr
et(X,Ql) := (lim←−H

r
et(X,Z/lm))⊗Zl Ql.

A problem with this definition is that since Hr
et(X,Ql) is not the cohomology

of a sheaf, it is not the cohomology of Rf∗F for some sheaf F . Instead, to have
access to the functors f∗, f∗, f!, f

! we must use limits of categories.
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Definition 21 ([BS, Def.3.5.3]). For a scheme X, define Shvet(X)N to be the
category of N-indexed projective systems in Shvet(X). So an object is a sequence
of morphisms F• = (· · · → F2 → F1) and a morphism F• → F ′• is a sequence
of morphisms Fm → F ′m making the obvious squares commute. This is an
abelian category, and we can consider its derived category D(XN

et). Given a
prime l, we write D(Xet, (Zl)•) ⊆ D(XN

et) for the full subcategory of those objects
(· · · → K2 → K1) such that Km ∈ D(Xet,Z/lm) and Km⊗Z/lmZ/lm−1 → Km−1

is a quasi-isomorphism. Here, ⊗ is the left derived tensor product.

Theorem 22 (Ekedahl). The functors f∗, f∗, f!, f
!,⊗,hom can be extended to

the categories D(Xet, (Zl)•) in a sensible way.

In the second half of this course we will see how the pro-étale topology allows
us to avoid this mess, by “moving” the limits from the categories of sheaves into
the underlying category of schemes.

7


	Motivation
	Notation and outline
	Constructible complexes
	Six operations
	Ql-coefficients

