In this lecture we show how the category $\mathsf{Shv}_{\mathsf{et}}(X)$ of étale sheaves on a scheme X can be reconstructed from $\mathsf{Shv}_{\mathsf{et}}(Z)$ sheaves on a closed subscheme $Z \subseteq X$ and $\mathsf{Shv}_{\mathsf{et}}(U)$ sheaves on its open complement U = X - Z, see Theorem 16.

For easy of exposition, all presheaves will be presheaves of abelian groups,¹ and all sites small.² All schemes are assumed to be quasi-compact quasi-separated (e.g., Noetherian and separated), and we recall that étale morphisms are by definition locally of finite presentation (this means finite type if working only with Noetherian schemes).³

1 Presheaf adjunctions

Y->X G TOP e.g. C= op(y) & op(x)=c'

Definition 1. Suppose that $\pi: C' \to C$ is a functor. We denote the functor induced by composition as

$$\pi_p: \mathsf{PreShv}(C) \to \mathsf{PreShv}(C'); \qquad F \mapsto F \circ \pi.$$

Exercise 1. If $\pi': C'' \to C'$ and $\pi: C' \to C$ are two functors, show that $(\pi \circ \pi')_p = \pi_p \circ \pi'_p$.

Definition 2. Give a presheaf $F \in \mathsf{PreShv}(C')$ and $X \in C$ define

$$(\pi^p F)(X) = \varinjlim_{X \to \pi(Y)} F(Y)$$

where the colimit is over the comma category $(X \downarrow \pi)$ whose objects are morphisms $X \to \pi(Y)$ in C, and $\hom(X \to \pi(Y), X \to \pi(Y')) = \{f : Y \to Y' \text{ s.t. the triangle } \bigwedge^{\pi(Y)} \nearrow^{\pi(Y')} \text{ commutes } \}.$

Remark 3. There is also a right adjoint to π_p defined in an analogous way, but we will not use it.

Exercise 2. Using the universal property of the colimit, show that a morphism $X \to X'$ in C induces a morphism $(\pi^p F)(X') \to (\pi^p F)(X)$, and that this makes $\pi^p F$ into a presheaf on C.

Exercise 3 (Advanced). Given an object $W \in C$ we write $h_W(-) = \text{hom}_C(-, W)$ for the presheaf represented by W.

- 1. Show that $\pi^p h_Y = h_{\pi Y}$ for any $Y \in C'$.
- 2. Show that there is canonical isomorphism $hom(\pi^p h_Y, G) \cong hom(h_Y, \pi_p G)$. Note: the right side is isomorphic to $(\pi_p G)(Y)$.

¹Sheaves of sets work just as well.

²This is to ensure that the colimits defining π^p are well-defined. In practice, there are many functors between large categories for which these colimits are still well-defined.

³These finiteness assumptions ensure that Et(X) are small (enough) categories (so that the left adjoints π^p existence is guaranteed), but otherwise are basically only used in the proof of Proposition 12.

- 3. Show that for any presheaf $F \in \mathsf{PreShv}(C')$, we have $F \cong \varinjlim h_Y$ where $h_Y = \hom_{C'}(-,Y)$ is the presheaf represented by Y, and the colimit is over the category $\int_C F$ whose objects are pairs (Y,s) with $Y \in C'$ and $s \in F$ and morphisms $(Y,s) \to (Y',s')$ are morphisms $Y \to Y'$ of C' such that $F(Y') \to F(Y)$ sends s' to s.
- 4. Show that π^p preserves any colimits of presheaves.
- 5. Deduce that for any $F \in \mathsf{PreShv}(C')$ (not just representable presheaves) there is a canonical isomorphism $\mathsf{hom}_{\mathsf{PreShv}(C)}(\pi^p F, G) \cong \mathsf{hom}_{\mathsf{PreShv}(C')}(F, \pi_p G)$.

Corollary 4. The pair (π^p, π_p) is an adjunction $PreShv(C) \rightleftharpoons PreShv(C')$.

Exercise 4. Using Exercise 1, Corollary 4, and the uniqueness properties of adjunctions show that $\pi'^p \circ \pi^p = (\pi \circ \pi')^p$.

Exercise 5. Suppose that $f: Y \to X$ is a morphism of topological spaces, and let $\pi: \operatorname{Op}(X) \to \operatorname{Op}(Y); U \mapsto f^{-1}U$ be the induced functor between the categories of open subsets of X,Y. Show that π_p is the usual push-forward $\operatorname{PreShv}(Y) \to \operatorname{PreShv}(X)$ and π^p is the usual inverse image of presheaves functor $\operatorname{PreShv}(X) \to \operatorname{PreShv}(Y)$.

Exercise 6. Suppose that the category C has a final object X, and let $\pi : * \to C$ be the functor from the category with one morphism which sends the unique object to X. Show that π_p is the global sections functor $F \mapsto F(X)$, and π^p is the constant presheaf functor $(\pi^p A)(U) = A$ for $A \in Ab = \mathsf{PreShv}(*)$.

Exercise 7. Let $Y \to X$ be an étale morphism of schemes, and consider the functors

$$\pi : \text{Et}(X) \to \text{Et}(Y); \qquad U \mapsto Y \times_X U$$
 (1)

and

$$\gamma : \text{Et}(Y) \to \text{Et}(X); \qquad (V \to Y) \mapsto (V \to Y \to X)$$
 (2)

Show that (γ, π) is an adjunction. Show that $\gamma_p = \pi^p$.

2 Sheaf adjunctions

Definition 5. Suppose that C', C are sites, i.e., categories equipped with Grothendieck topologies. A functor $\pi: C' \to C$ is called continuous if for every sheaf F on C, the presheaf $\pi_p F$ is a sheaf.

Exercise 8. Suppose $\pi: C' \to C$ sends fibre products to fibre products. Show that π is continuous if it sends covers to covers. $(Y \xrightarrow{\Sigma} \times \in Top_{-} \text{ is } Continuous)$ sends opens to spens to spens.

Example 6. If $Y \to X$ is a morphism topological spaces then the induced morphism of sites $Op(X) \to Op(Y)$ is continuous.

Example 7. If $f: Y \to X$ is a morphism of schemes, then π from Equation 1 is continuous. If f is an étale morphism of schemes then γ from Equation 2 is also continuous.

Definition 8. Suppose $\pi: C' \to C$ is a continuous morphism of sites. The induced functor on sheaves is denoted

$$\pi_*: \mathsf{Shv}(C) \to \mathsf{Shv}(C').$$

The composition of π^p with sheafification $a: \mathsf{PreShv}(C) \to \mathsf{Shv}(C)$ is denoted

$$\pi^* = a \circ \pi^p : \mathsf{Shv}(C') \to \mathsf{Shv}(C).$$

Exercise 9. Suppose we are in the situation of Definition 8. Using the fact that sheafification $a: \mathsf{PreShv}(C) \to \mathsf{Shv}(C)$ is the left adjoint to the canonical inclusion $\iota : \mathsf{Shv}(C) \to \mathsf{PreShv}(C)$, show that

$$\pi^*: \mathsf{Shv}(C) \rightleftarrows \mathsf{Shv}(C') : \pi_*$$

is an adjunction.

Exercise 10. Using Exercise 1 and Exercise 4, show that if C, C', C'' are equipped with Grothendieck topologies, and π , π' are continuous, then $(\pi \circ \pi')_* =$ $\pi_* \circ \pi'_*$ and $\pi'^* \circ \pi^* = (\pi \circ \pi')^*$. T: EH(X) -> EH(Y)

Definition 9. If $f: Y \to X$ is a morphism of schemes, and π the pullback functor from Equation (1), we write

$$f^* := \pi^*, \qquad f_* := \pi_*.$$

If f is étale, so π has a left adjoint γ from Equation 2 then we write

$$f_! := \gamma^*$$

Note that since $\gamma_* = \pi^*$, cf. Exercise 7, in addition to the adjunction (f^*, f_*) , we have another adjunction $(f_!, f^*)$.

Lemma 10. Let $f: Y \to X$ be a morphism of schemes. Then f^* preserves exact sequences.

Proof. It automatically commutes with colimits because it is a left adjoint. On the other hand, π^p commutes with finite limits because limits of presheaves are calculated object wise, and π^p is defined using filtered colimits, which commute with finite limits. To deduce that $f^* = \pi^*$ commutes with finite limits from π^p commuting, we just recall that sheafification is exact, so $\pi^* = a \circ \pi^p$ is a composition of two functors which commute with finite limits.

Lemma 11. Let $f: Y \to X$ and $X' \to X$ be morphisms of schemes. Let h'_X denote the étale sheaf of sets $h_{X'} = \text{hom}_X(-, X') \in \text{Shv}_{\text{et}}(X)$, and similarly, $h_{Y\times_X X'} = \text{hom}_Y(-, Y\times_X X') \in \text{Shv}_{\text{et}}(Y)$. We have

$$f^*h_{X'} = h_{Y \times_X X'}.$$

Proof. By Yoneda, it suffices to produce isomorphisms

$$\operatorname{hom}_{\mathsf{Shv}}(f^*h_{X'}, F) \cong \operatorname{hom}_{\mathsf{Shv}}(h_{Y \times_X X'}, F)$$

for each $F \in \mathsf{Shv}_{\mathsf{et}}(Y)$, which are natural in F. But we have

$$\begin{aligned} \hom_{\mathsf{Shv}}(f^*h_{X'}, F) &\cong \hom_{\mathsf{Shv}}(h_{X'}, f_*F) & \text{adjunction} \\ &\cong (f_*F)(X') & \text{Yoneda} \\ &\cong F(Y \times_X X') & \text{definition} \\ &\cong \hom_{\mathsf{Shv}}(h_{Y \times_X X'}, F) & \text{Yoneda}. \end{aligned}$$

Exercise 11. Using the same argument as in Lemma 11 show that if $f: Y \to X$ is an étale morphism of schemes, and $Y' \to Y$ any morphism then

$$f_! h_{Y'} = h_{Y'}$$

where the left Y' is considered as a Y-scheme, and the right one as an X-scheme.

Immersions 3

Exercise 12. Suppose that $j:U\to X$ is an open immersion. Show that in this case, $\gamma : \text{Et}(U) \to \text{Et}(X)$ from Equation 2 is the inclusion of a *full* subcategory. Show that since this subcategory is full, the functor $j^*: \operatorname{Shv}(X) \to \operatorname{Shv}(U)$ is none-other-than the restriction functor $j^*F = F|_{\operatorname{Et}(U)}.$

$$j^*F = F|_{\mathrm{Et}(U)}$$
.

Show that $j_!: \mathsf{Shv}(U) \to \mathsf{Shv}(X)$ is "extension by zero" in the sense that for any $H \in \mathsf{Shv}(U),$

$$(\underline{j_! H})(V) = \left\{ \begin{array}{cc} H(V) & V \in \operatorname{Et}(U) \\ 0 & V \not \in \operatorname{Et}(U) \end{array} \right.$$

Show that

$$(j_*H)(V) = H(V) \text{ if } V \in \text{Et}(U),$$

but give an example where
$$V \not\in \operatorname{Et}(U)$$
, and $(j_*H)(V) \neq 0$. Deduce that
$$j^*j_! = \operatorname{id} = j^*j_*.$$

Exercise 13. Let X be a scheme, and $\iota: \overline{x} \to X$ a geometric point. Show that $\iota^*F = F_{\overline{x}}$

$$\iota^* F = F_{\overline{x}}$$
separably
closed field

is the stalk of F at \overline{x} , where we implicitly use the identification $\mathsf{Shv}(\overline{x}) \cong \mathsf{Ab}$.

Proposition 12 (Milne Cor.II.3.5). Let $i: Z \to X$ be the inclusion of a closed immersion, $\overline{x} \to X$ a geometric point, and $G \in \mathsf{Shv}(Z)$. Then

$$(i_*G)_{\overline{x}} = \left\{ \begin{array}{ll} G_{\overline{x}} & \operatorname{im}(\overline{x}) \in Z \\ 0 & \operatorname{im}(\overline{x}) \notin Z \end{array} \right. \text{``doesn'd change on 2''}$$

If $j: U \to X$ is the open complement of Z, then we have $j^*i_* = 0$.

Remark 13. We are abusing the notation a bit here in the case $\operatorname{im}(\overline{x}) \in Z$. When writing $(i_*G)_{\overline{x}}$, we are considering \overline{x} as a geometric point of X, so the colimit is over factorisations through $\operatorname{Et}(X)$. But when writing $G_{\overline{x}}$, we are considering \overline{x} as a geometric point of Z, and so the colimit is over factorisations through $\operatorname{Et}(Z)$.

Easy parts of the proof (Omitted from the lecture). The second claim follows from the first claim, since a sheaf is zero if and only if all its stalks are zero, and the stalks of j^*i_* are all zero by Exercises 10, 12, and 13.

Certainly, if $\operatorname{im}(\overline{x}) \not\in Z$, then $(i_*G)_{\overline{x}} = \varinjlim_{\overline{x} \to V \to X} G(V) = 0$, since each $\overline{x} \to V \to X$ is refinable by some $\overline{x} \to V' \to X$ with $Z \times_X V' = \varnothing$ (e.g., $V' = U \times_X V$), and for such V' we have $(i_*G)(V') = G(Z \times_X V') = G(\varnothing) = 0$.

The difficult part is to show that for any $\overline{x} \to V \to Z$ with $V \in \text{Et}(Z)$, there is some $\overline{x} \to V' \to X$ and a factorisation $\overline{x} \to Z \times_X V' \to V \to Z$. If we know this, then the system defining $(i_*G)_{\overline{x}}$ is cofinal in the system defining $G_{\overline{x}}$, and the colimits will be the same.

The proof of this claim is omitted. See Milne Thm.II.3.2(b) for details. Really, check it out. Its a very neat argument using properties of limit schemes from EGA, in particular, EGA IV, Part 3, Cor.8.13.2. \Box

Exercise 14. Suppose that $F \in \mathsf{Shv}_{\mathsf{et}}(U)$ is a constant sheaf (that is, there is an abelian group such that for each connected $V \in \mathsf{Et}(U)$, we have F(V) = A). If $i: Z \to X$ is a nowhere dense closed immersion with open complement $j: U \to X$, using the fact that étale morphisms send generic points to generic points, show that j_*F and i^*j_*F are constant sheaves on X and Z respectively.

4 The localistion sequences

Definition 14. Let $i: Z \to X$ be a closed immersion of schemes, and $j: U \to X$ the open complement. Define T(X) to be the category⁴ whose objects are triples (F_1, F_2, ϕ) consisting of two objects $F_1 \in \mathsf{Shv}(Z), F_2 \in \mathsf{Shv}(U)$, and a morphism $\phi: F_1 \to i^*j_*F_2$. Morphisms $(F_1, F_2, \phi) \to (F_1', F_2', \phi')$ are pairs of morphisms

⁴This is just the comma category (Shv(Z) $\downarrow i^*j_*$).

 $(F_1 \xrightarrow{\psi_1} F_1', F_2 \xrightarrow{\psi_2} F_2')$ such that the square commutes.

$$F_{1} \xrightarrow{\phi} i^{*}j_{*}F_{2}$$

$$\downarrow^{\psi_{1}} \qquad \qquad \downarrow^{i^{*}j_{*}\psi_{2}}$$

$$F'_{1} \xrightarrow{\phi'} i^{*}j_{*}F'_{2}$$

We define a functor $t: \mathsf{Shv}(X) \to T(X)$ by

$$F \mapsto (i^*F, \qquad j^*F, \qquad i^*(F \xrightarrow{\eta} j_*j^*F))$$

where $\eta : id \to j_*j^*$ is the unit of the adjunction (j^*, j_*) .

Remark 15. Given $V \in \text{Et}(X)$, we have $j_*j^*F(V) = F(U \times_X V)$, and η is the canonical morphism $F(V) \to F(U \times_X V)$ induced by the canonical morphism $U \times_X V \to V$.

Theorem 16 (Milne Thm.II.3.10). The functor $t : \mathsf{Shv}(X) \to T(X)$ is an equivalence of categories.

Proof. Given a triple (F_1, F_2, ϕ) in T(X) define

$$s(F_1,F_2,\phi) := \ker \left(i_*F_1 \oplus j_*F_2 \stackrel{i_*\phi}{\longrightarrow} \stackrel{\eta}{\longrightarrow} i_*i^*j_*F_2 \right).$$

Here, $\eta: \mathrm{id} \to i_*i^*$ is the unit of the adjunction (i^*, i_*) . Notice that every morphism of T(X) induces a morphism in $\mathsf{Shv}(X)$ in a way that defines a functor

$$s: T(X) \to \mathsf{Shv}(X).$$

So it suffices to check that $st\cong id$ and $ts\cong id$. Consider stF. By definition, this is

$$stF = \ker \left(i_* i^* F \oplus j_* j^* F \xrightarrow{i_* \phi} {}^{\eta} i_* i^* j_* j^* F \right).$$

This comes equipped with a canonical morphism $F \to stF$. This morphism is an isomorphism if and only if the sequence

$$0 \to F \to i_* i^* F \oplus j_* j^* F \xrightarrow{i_* \phi} {}^{+} \eta \ i_* i^* j_* j^* F$$

is exact. One can check exactness on stalks, so consider a geometric point $\overline{x} \to X$. If $\operatorname{im}(\overline{x}) \in U = X \setminus Z$ then our sequence becomes

$$0 \to F_{\overline{x}} \to 0 \oplus F_{\overline{x}} \longrightarrow 0.$$

If $\operatorname{im}(\overline{x}) \in Z = X \setminus U$ then our sequence becomes

$$0 \to F_{\overline{x}} \to F_{\overline{x}} \oplus (j_* j^* F)_{\overline{x}} \longrightarrow (j_* j^* F)_{\overline{x}}.$$

Hence, we have confirmed exactness, and $F \xrightarrow{\sim} stF$. Now consider $ts(F_1, F_2, \phi)$. We have

$$i^*s(F_1, F_2, \phi) = i^* \ker \left(i_* F_1 \oplus j_* F_2 \longrightarrow i_* i^* j_* F_2 \right)$$

$$= \ker \left(i^* i_* F_1 \oplus i^* j_* F_2 \longrightarrow i^* i_* i^* j_* F_2 \right)$$

$$= \ker \left(F_1 \oplus i^* j_* F_2 \longrightarrow i^* j_* F_2 \right)$$

$$= F_1$$

One similarly checks that $j^*s(F_1, F_2, \phi) \cong F_2$, and that the canonical morphism $i^*s(F_1, F_2, \phi) \to i^*j_*j^*s(F_1, F_2, \phi)$ is none-other-than ϕ , under these identifications. Hence, $ts(F_1, F_2, \phi) = (F_1, F_2, \phi)$.

Theorem 17 (Milne Prop.II.3.14). Its possible to define six functors

$$\mathsf{Shv}_{\mathsf{et}}(Z) \xrightarrow[\stackrel{i^*}{\underset{i_*}{\longleftarrow}} \mathsf{Shv}_{\mathsf{et}}(X) \xrightarrow[\stackrel{j_!}{\underset{j_*}{\longleftarrow}} \mathsf{Shv}_{\mathsf{et}}(U)$$

such that under the identification $\mathsf{Shv}_{\mathsf{et}}(X) \cong T(X)$, they correspond to:

- 1. Each functor is left adjoint to the one below it.
- 2. The functors $i^*, i_*, j^*, j_!$ preserve exact sequences; $j_*, i^!$ preserve monomorphisms.
- 3. The composites $i^*j_!, i^!j_!, i^!j_*, j^*i_*$ are zero.
- 4. The functors i_*, j_* are fully faithful.
- 5. The functors $j_*, j^*, i^!, i_*$ map injective objects to injective objects.

Remark 18. Heuristically, j_* "fills in the gaps" over Z in a canonical way, and $i^!$ isolates the part of F which cannot be recovered from $F|_{\text{Et}(U)}$ by this "filling in the gaps" process.

Exercise 15 (Not advanced). Prove Theorem 17 using what we have seen so far. Note that if a functor has a left adjoint preserving monomorphisms then it preserves injectives.

Exercise 16 (Not advanced). In the situation of Theorem 17 show that there are short exact sequence

$$0 \to j_! j^* \to \mathrm{id} \to i_* i^* \to 0$$
$$0 \to i_* i^! \to \mathrm{id} \to j_* j^* \to 0$$

Remark 19. Sometimes one defines $j^* := j^!$ and $i_! := i_*$ so that the short exact sequences can be written as

$$0 \to j_! j^! \to \mathrm{id} \to i_* i^* \to 0$$
$$0 \to i_! i^! \to \mathrm{id} \to j_* j^* \to 0$$

5 Curves

Example 20 (Milne, Exam.II.3.12). Let A be a discrete valuation ring (e.g., $\mathbb{C}[[z]], \mathbb{F}_p[[z]], \mathbb{Z}_p, \dots$). Let

1.
$$K = \operatorname{Frac}(A)$$
,

$$2. \ k = A/\mathfrak{m},$$

1.
$$K = \operatorname{Frac}(A)$$
,

2. $k = A/\mathfrak{m}$,

3. $G_K = \operatorname{Gal}(K^{\operatorname{sep}}/K)$,

 $C_K = \operatorname{Frac}(A)$

Spec $A = \operatorname{Em}(A) = \operatorname{Em}(A)$

shears on the open point

4.
$$G_k = Gal(k^{sep}/k)$$
, \longrightarrow closed point

Since A is a discrete valuation ring, $X = \operatorname{Spec}(A)$ has one open point, and one closed point. Let $U = \operatorname{Spec}(K), Z = \operatorname{Spec}(k)$ be the corresponding open and closed subschemes. Recall that the category of étale sheaves over a field is equivalent to the category of discrete Galois modules. That is, $\mathsf{Shv}_{et}(Z) \cong$ G_k -mod and $\mathsf{Shv}_{et}(U) \cong G_K$ -mod. We can give an analogous description of $\mathsf{Shv}_{et}(X)$ using a similar construction to $\overline{T}(X)$. It suffices to work out what

functor G_K -mod $\to G_k$ -mod corresponds to i^*j_* : $\mathsf{Shv}_{et}(U) \to \mathsf{Shv}_{et}(Z)$. Let A^h be the henselisation of A, and A^{sh} a strict henselisation. Since K^{sep} is separable closed, there are factorisations $A \to A^h \to A^{sh} \to K^{sep}$ which are actually inclusions. The choice of A^{sh} and the inclusion define subgroups I = $\operatorname{Gal}(K^{sep}/\operatorname{Frac}(A^{sh}))$ and $D = \operatorname{Gal}(K^{sep}/\operatorname{Frac}(A^{h}))$, with $I \subseteq D \subseteq G_K$, and it turns out that D/I is canonically isomorphic to $Gal(k^{sep}/k)$ where we identify $k^{sep} = A^{sh}/\mathfrak{m}_{A^{sh}}$. Then we claim that the functor $i^*j_*: \mathsf{Shv}_{et}(U) \to \mathsf{Shv}_{et}(Z)$ corresponds to the functor of *I*-invariants.

$$(-)^I: G_K\operatorname{-mod} \to G_k\operatorname{-mod}.$$

Hence, the category Shv_{et} is equivalent to the category of triples (M_1, M_2, ϕ) where $M_1 \in G_k$ -mod, $M_2 \in G_K$ -mod, and $\phi: M_1 \to M_2$ is compatible with the actions of $G_k \cong D/I$ and G_K .

Example 21. Example 20 can be generalised to any normal curve, see Milne Exer.II.3.16 for details.