
In this lecture we define étale sheaves using the étale topology.

1 Sheaves

We begin with the general theory of Grothendieck sites. This is a generalisa-
tion of the notion of a topological space, which allows us to use more general
morphisms in place of open immersions.

Definition 1. A (Grothendieck) topology on a category C is the data of: for
every object U ∈ C, a collection of families of morphisms {Ui → U}i∈I . The
families in these collections are called coverings of U . This data is required to
satisfy the following axioms:

1. {U id→ U} is a covering, for every object U .

2. If {Ui → U}i∈I is a covering of U , and V → U is a morphism, then each
fibre product Ui ×U V exists, and {Ui ×U V → V }i∈I is a covering of V .

3. If {Ui → U}i∈I is a covering of U , and for each i ∈ I we have a covering
{Uij → Ui}j∈Ji

of Ui, then {Uij → U}i∈I,j∈Ji
is a covering of U .

A category equipped with a Grothendieck topology is called a site.

Exercise 1. Suppose that X is a topological space in the conventional sense.1

Define Op(X) to be the category whose objects are open sets of X, and mor-
phisms are inclusions. For U ∈ Op(X), define the coverings of U to be the fam-
ilies {Ui → U}i∈I such that ∪i∈IUi = U . Show that this defines a Grothendieck
topology on Op(X). (Note that in this category V ×U W = V ∩W .)

Exercise 2. Let X be a topological space, and define LH(X) to be the cat-
egory whose objects are local homeomorphisms2 Y → X and morphisms are

commutative triangles
Y ′→Y

↘↙
X

. Show that this category has fibre products.

For Y ∈ LH(X), define the coverings of Y to be the families {fi : Yi → Y }i∈I
such that ∪i∈Ifi(Yi) = Y . Show that this defines a Grothendieck topology on
LH(X).

Exercise 3. Recall that a morphism f : Y → X of schemes is étale if it is locally
of finite presentation, and for every y ∈ Y , the ring morphism OX,f(x) → OY,y

is étale. Let Et(X) denote the category whose objects are étale morphisms
Y → X, and morphisms are commutative triangles. Do Exercise 2 with Et(X)
instead of LH(X).

Definition 2. A presheaf F on a category C is just a functor Cop → Set.
A morphism of presheaves F → G is just natural transformation of functors
F → G.

1I.e., a set equipped with a collection of subsets of X declared to be open, preserved by
finite intersection, arbitrary union, and containing X and ∅.

2A morphism f : Y → X is a local homeomorphism if for every point y ∈ Y , there is an
open neighbourhood V 3 y such that f : V → f(V ) is a homeomorphism.
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Definition 3. If C is equipped with a Grothendieck topology, then a presheaf F
is called a sheaf if for any object U and any covering {Ui → U}i∈I we have

F (U) = eq

∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

 . (X)

A morphism of sheaves is just a morphism of presheaves. A sheaf on Et(X) for
some scheme X is called an étale sheaf on X.

Remark 4. If A is a ring, we will write Et(A) instead of Et(Spec(A)) and
if A → B is an étale algebra, and F a presheaf on Et(A) we will write F (B)
instead of F (Spec(B)).

Example 5. We have the following important examples of étale sheaves on
Et(k), cf. Exercise 10.

1. O : L 7→ (L,+).

2. O∗ : L 7→ (L∗, ∗).

3. µn : L 7→ {a ∈ L∗ : an = 1}.

Remark 6. If a presheaf takes values in the category of abelian groups, then
the sheaf condition (X) is equivalent to asking that the sequence

0→ F (U)→
∏
i∈I

F (Ui)→
∏
i,j∈I

F (Ui ×U Uj)

be exact, where the last morphism is the difference of the two morphisms induced
by the two projections Ui ×U Uj ⇒ Ui, Uj .

Exercise 4. Let X be a topological space in the conventional sense. Consider
the Grothendieck topology defined onOp(X) in Exercise 1. Show that a presheaf
on X is the same thing as a presheaf on Op(X), and a preseheaf on X is a sheaf
if and only if its associated presheaf on Op(X) is a sheaf. That is, Definition 3
is an honest generalisation of the classical notion of a sheaf.

Exercise 5. Let Spec(L) → Spec(L′) be a morphism in Et(k) such that L/L′

is Galois with Galois group G = Aut(L/L′). Recall that there is a canonical
isomorphism

L⊗L′ L ∼=
∏
G

L

where two morphisms L ⇒ L ⊗L′ L; a 7→ 1 ⊗ a, a ⊗ 1 are identified with a 7→
(a, a, . . . , a) and a 7→ (ag1 , . . . , agn) where gi are the elements of G. Show that
if F is an étale sheaf on Spec(k), then F (

∏
G L) ∼=

∏
G F (L), and

F (L′) = F (L)G

where F (L)G = {s ∈ F (L) : g∗s = s ∀ g ∈ G}. Deduce that if F1 → F2 is a
morphism of étale sheaves such that F1(L) ∼= F2(L) for every Galois extension
L/k, then F1

∼= F2.
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Remark 7. We will be able to show later on that a presheaf F on Et(k) is a
sheaf if and only if

1. F (qi∈IUi) ∼=
∏

i∈I F (Ui) for any collection Ui, i ∈ I, and

2. F (L) = F (L′)Aut(L′/L) for every Galois extension L′/L.

Theorem 8 (cf.Milne, Thm.II.1.9). Suppose that k is a field, ksep/k is a sep-
arable closure, and G = Gal(ksep/k). Then there is a canonical equivalence
between the category G-set of discrete3 G-sets4 and the category Shv(Et(k) of
étale sheaves on k.

Remark 9. An easy case of the above theorem is k = R. In this case the equiv-
alence Shv(Et(k))→ G-set is given by F 7→ F (C). In general, however, ksep/k
will not be finite, and therefore Spec(ksep) is not in Et(k). This “problem” will
go away next quarter when we discuss the pro-étale topology.

Proof. For F ∈ Shv(Et(k)) we define

XF = lim−→
ksep/L/k

F (L) (1)

as the colimit over all subfields L of ksep which are finite Galois extensions of k.
XF is a discrete G-set. For any Galois L/k and any σ ∈ G we have

σ(L) = L so σ restricts to a (finite) automorphism of L/k (and hence an au-
tomorphism of F (L)) via the canonical map G → Gal(L/k) ∼= G/Aut(ksep/L)
where Aut(ksep/L) = {g ∈ G : g(a) = a ∀ a ∈ L}. These actions are compatible
with inclusions L ⊆ L′ (and hence, the morphisms F (L)→ F (L′)), hence we get
an action of G on XF . Moreover, every x ∈ XF is the image of some y ∈ F (L),
so XF is a discrete G-set. The assignment F 7→ XF is clearly natural in F , that
is, it defines a functor.

For future reference, we note that since F is an étale sheaf, for each extension
L′/L, the morphism F (L)→ F (L′) is injective, and moreover, for any two Galois
extensions L′/L/k of k, by Exercise 5 we have F (L) = F (L′)Aut(L′/L). Since
the action of G commutes with the colimit (1), we get

X
Aut(ksep/L)
F = lim−→

ksep/L′/L/k

F (L′)Aut(ksep/L) = lim−→
ksep/L′/L/k

F (L′)Aut(L′/L)

= lim−→
ksep/L′/L/k

F (L) = F (L).

Now suppose we have a discrete G-set X. Recall that every étale k-algebra
is of the form

∏n
i=1 Li for some finite separable field extensions Li. We define a

presheaf on Et(k) as

FX(U) = homG

(
homSpec(k)

(
Spec(ksep), U

)
, X

)
,

3Here discrete means that for every x ∈ X, there is a finite Galois extension L/k with
stabiliser Stab(L) ⊆ G such that x ∈ XStab(L).

4That is, a set X equipped with an action of G.
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where homG meansG-equivariant morphisms, andG = Gal(ksep/k) = homk(ksep, ksep)
acts on homSpec(k)(Spec(ksep), U) by composition.

FX is an étale sheaf. Cf. Milne, Lem.I.1.8. By Remark 7, to show FX is a
sheaf, it suffices to check that

FX(L) = FX(L′)Aut(L′/L)

for finite Galois extensions L′/L. Note that for any Galois extension L′/k and
any subextension L′/L/k we have

homk(L′, ksep)Aut(L′/L)
∼→ homk(L, ksep).

it follows from this that FX(L) = FX(L′)Aut(L′/L). Note that for any fi-
nite Galois subextension ksep/L/k we have homSpec(k)(Spec(ksep),Spec(L)) =
Gal(L/k). So

FX(L) = homG(Gal(L/k), X) = XAut(ksep/L). (2)

Combining (1) and (2) we get

XFX
= lim−→

L

FX(L) = lim−→
L

XAut(ksep/L) = X.

On the other hand, by (2) we get

FXF
(L) = X

Aut(ksep/L)
F = F (L)

for Galois extensions L/k. Then by Exercise 5 we have FXF
= F .

So the assignements X 7→ FX and F → XF are inverse equivalences.

Exercise 6 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {Ui → U}i∈I and
{Uij → Ui}j∈Ji are coverings. Using the diagram

F (U) // ∏F (Ui) ////

��

∏
F (Ui ×U Ui′)

��
F (U) // ∏F (Uij) ////

∏
F (Uij ×U Ui′j′)

show that if F satisfies the sheaf condition (X) for {Uij → U}i∈I,j∈Ji
and

each F (Ui) →
∏

Ji
F (Uij) is injective, then F satisfies the sheaf condition for

{Ui → U}i∈I .
Deduce that a presheaf F on LH(X) from Exercise 2 is a presheaf if and

only if F |Op(Y ) is a sheaf on Op(Y ) from Exercise 1 for every Y ∈ LH(X).

Exercise 7 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {V → U} and {U →
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X} are coverings consisting of single morphisms. Using the diagram

F (V ×X V )

��

∏
F (U ×X U)oo

∏
F (V ×U V )

∏
F (V )

gggg

oooo F (U)oo

OOOO

F (X)

OOgg

show that if F satisfies the sheaf condition (X) for {V → U} (cf.middle row)
and {U → X} (cf.right column), and each F (U×XU)→ F (V ×X V ) is injective
(cf. top row), then F satisfies the sheaf condition for {V → X} (cf. diagonal).

Exercise 8 (Advanced. Omitted from lecture). Do Exercise 7 for coverings
{Ui → X}i∈I and {Vij → Ui}j∈Ji

containing more than one element.

Exercise 9 (Advanced). Let X be a scheme. Deduce from Exercises 6 and
Exercise 8 that a presheaf F on Et(X) is a sheaf if and only if F |Op(Y ) is a
sheaf for every Y ∈ Et(X), and F satisfies the sheaf condition (X) for every
covering {Yi → Y }i∈I such that Y and each Yi are affine schemes.

Exercise 10. Recall that for any faithfully flat ring morphism A → B the
sequence 0 → A → B → B ⊗A B is exact. Deduce from this and Exercise 9
that for any scheme X and any affine scheme T , the presheaf hom(−, T ) is a
sheaf on Et(X). (Actually, its also true without the affine hypothesis, and for
the category Fppf(X)).

Corollary 10. The following representable presheaves are étale sheaves.

1. hom(−,A1); X 7→ Γ(X,OX),

2. hom(−,Gm); X 7→ Γ(X,O∗X),

3. µn = hom(−,Spec( Z[T ]
Tn−1 )); X 7→ {a ∈ Γ(X,O∗X) : an = 1},

4. GLn = hom(−,Spec
(

Z[U,Tij :1≤i,j≤n]
U ·detTij−1

)
); X 7→ GLn(Γ(X,OX)),

2 Sheafification

Definition 11. A presheaf F on a category equipped with a Grothendieck topol-
ogy is called separated if the morphism F (U) →

∏
i∈I F (Ui) is injective for

every covering {Ui → U}i∈I .

Remark 12. Every sheaf is separated.
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Exercise 11. Suppose that C is a category equipped with a Grothendieck topol-
ogy, and let F be a presheaf. For U ∈ C define F s(U) as the quotient group

F s(U) = F (U)

/⋃
ker

(
F (U)→

∏
i∈I

F (Ui)

)

where the union is over all covering families {Ui → U}i∈I . Show that for any
morphism V → U in C, there is an induced morphism F s(U) → F s(V ), that
is, F s is a presheaf. Show that F s is separated. Show that if F → G is any
morphism from F to a separated presheaf G, there exists a unique factorisation
F → F s → G. In particular, this is true for every sheaf G.

Proposition 13. Let C be a category equipped with a Grothendieck topology.
For every presheaf F on C, there exists a universal morphism F → F a to a
sheaf. That is, a morphism towards a sheaf such that for any other morphism
F → G towards a sheaf, there is a unique factorisation F → F a → G.

In other words, the (fully faithful) inclusion Shv(C) → PreShv(C) admits a
left adjoint (−)a : PreShv(C)→ Shv(C).

Proof. By Exercise 11 it suffices to consider the case that F is separated. For
U ∈ C define

Ȟ0(U,F ) = lim−→ eq

∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

 .

Omitted from lecture: Note that this is functorial in F , and if F is a sheaf we
have Ȟ0(U,F ) = F (U) by the sheaf condition. It follows from this (with a little
bit of work) that we get a unique factorisation F → Ȟ0F → G for any sheaf G.
So it suffices to show that Ȟ0F is a sheaf. For simplicity we assume that F is a
sheaf of abelian groups, and all covers have a single element. The general case
is the same proof, just more confusing chasing indices around.

So suppose that {V → U} is a covering of U . We want to show that

0→ Ȟ0(U,F )→ Ȟ0(V, F )→ Ȟ0(V ×U V, F )

is exact. Let (U ′, s ∈ F (U ′)) represent an element of Ȟ0(U,F ) and suppose that
it gets sent to zero in V . Putting in the definitions, we see that this means that
there is a refinement V ′ → V ×U U ′ → V of the covering V ×U U ′ → V such
that s|V ′ = 0. But this is also a refinement of {U ′ → U}, so (U ′, s ∈ F (U ′))
and (V ′, 0 ∈ F (V ′)) represent the same element of Ȟ0(U,F ).

Showing exactness in the middle is fiddly and not very informative, so we
omit it. It can be found in [Artin, Grothendieck topologies, 1962, Lemma.2.1.2(ii)].

Definition 14. The sheaf F a in Proposition 13 is called the sheafification or
associated sheaf of F .
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Corollary 15. Let C be a category equipped with a Grothendieck topology. Then
the category Shv(C, Ab) of sheaves of abelian groups is an abelian category.

Sketch of proof. Limits (i.e., products and kernels) can be calculated section-
wise. E.g., ker(F → G)(U) = ker(F (U)→ G(U)). Colimits (i.e., sums and cok-
ernels) are calculated sectionwise, and then sheafified. E.g., the sheaf cokernel
of F → G is the sheafification of the presheaf U 7→ coker(F (U)→ G(U)).

3 Stalks

Definition 16. A geometric point of a scheme X is a morphism x→ X such
that x = Spec(Ω) for some separably closed field Ω.

Definition 17. Let F be a presheaf on Et(X). For a geometric point x → X
we define the stalk at x as

Fx = lim−→
x→Y→X

F (Y )

where the colimit is over factorisations of x→ X via some Y ∈ Et(X).

Remark 18. If X is a topological space, F is a sheaf on X, and x ∈ X is a
point, then classically, the stalk of F at x is defined as the colimit

Fx = lim−→
x∈U⊆X

F (U)

over open subsets of X containing x. The above definition is the étale analogue
of this classical definition.

Remark 19. If F is a presheaf defined on all schemes that commutes with
filtered colimits, then Fx = F (Osh

X,x) where x = im(x) ∈ X and Osh
X,x is the

strict henselisation of OX,x defined by the separably closed extension k(x)/k(x).
In particular, if F = O : Y 7→ Γ(Y,OY ), then Fx = Osh

X,x.

Remark 20. If ksep/k is a separable closure, then x = Spec(ksep) → Spec(k)
is a geometric point, and Fx is the G-set XF defined above.

Proposition 21. Suppose that F is a sheaf of abelian groups on Et(X) and
Y ∈ Et(X). Then a section s ∈ F (Y ) is zero if and only if for any geometric
point x→ Y its image in each Fx is zero.

Proof. Since all sheaves are separated, it suffices to show that for every s ∈
F (Y ), there exists a covering {Ui → Y }i∈I such that s|Ui

= 0 for all i ∈ I. For
every point x ∈ Y , choose a separable closure k(x)s/k(x), and let x→ X be the
corresponding geometric point. Since the image of s in Fx is zero, there is some
x→ V → Y such that s|V = 0. Since V is associated to x, let us write Vx = V .
We do this for every point x ∈ Y , and obtain a family {Vx → Y }x∈Y of étale
morphisms indexed by points of Y . Since x ∈ im(Vx → Y ) for each x ∈ Y , the
family is surjective, and therefore is a covering. By construction s|Yx

= 0 for
each Yx, so s = 0.
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Corollary 22. A sheaf of abelian groups F on Et(X) is zero if and only if
Fx = 0 for each x ∈ X.

Proof. (Omitted from lecture). We want to show that s = 0 for every Y ∈
Et(X), s ∈ F (Y ). By Proposition 21, it suffices to show that Fx = 0 for
every geometry point x→ Y . We claim that Fx→Y = Fx→Y→X . Indeed, there
is a canonical morphism

Fx→Y→X = lim−→
x→U→X

F (U)→ lim−→
x→V→Y

F (V ) = Fx→Y

defined by sending a representative (U, s ∈ F (U)) to (U×Y V, s|U×Y V ). Injec-
tivity is straight-forward. For surjectivity, note that any representative (V, s ∈
F (V )) of Fx→Y can be considered as a representative of an element s′ ∈
Fx→Y→X . Then due to the factorisation V → V ×X Y → Y , the image of
s′ is precisely the element represented by (V, s ∈ F (V )).

Corollary 23. A morphism of sheaves of abelian groups φ : F → G is a
monomorphism, (resp. epimorphism, resp. isomorphism) if and only if φx :
Fx → Gx is for each geometric point x→ X.

Proof. (Omitted from lecture). Since the definition of (−)x is defined by a fil-
tered colimit, it commutes with kernels and cokernels. Applying Corollary 22
to kerφ and cokerφ gives the result.
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