
In this talk we compare the pro-étale site with the étale site. First we will
see that a sheaf is in the image of Shv(Xet) → Shv(Xproét) if and only if it
“commutes with limits”.

Image

(
Shv(Xet)→Shv(Xproét)

)
=

{
F : F (lim←−Ui) = lim−→F (Ui)

}
.

Similarly, a complex is in the image of D+(Xet)→ D+(Xproét) if and only if
its cohomology is in the image of Shvet(X).

Image

(
D+(Xet)→D+(Xproét)

)
=

{
K : HnK ∈ Shv(Xet) ∀ n

}
.

Then we see how the pro-étale site offers a technically simpler way to left
complete the étale site. There is a canonical identification of D̂(Xet) with the
subcategory of D(Xproét) of objects whose cohomology lies in the image of Xet.

D̂(Xet) ∼=
{
K ∈ D(Xproét) : HnK ∈ Shv(Xet) ∀ n

}
.

We also show how the pro-étale site can be used to recover the classical
derived category of l-adic sheaves.

D+
Ek(Xet,Z`) ∼=

{
K ∈ D+(Xproét,Z`) :

Hn(K/`) ∈ Shv(Xet) ∀ n, and

R lim←−(· · · `→ K
`→ K) ∼= 0

}
.

1 From étale to pro-étale

Since every étale morphism is weakly étale, we have a canonical functor

ν : Xet → Xproét.

Moreover, this functor sends covering families to covering families and therefore
induces an adjunction

ν∗ : Shv(Xet) � Shv(Xproét) : ν∗

(F |Xet
)← [ F

The left adjoint sends F ∈ Shv(Xet) to the sheafification of the presheaf

U 7→ lim−→
U→V→X

F (V ) (1)

where the colimit is over those factorisations with V ∈ Xet.

Lemma 1 ([Lem.5.1.1]). For F ∈ Shv(Xet) and U ∈ Xaff
proét with presentation

U = lim←−i Ui, we have (ν∗F )(U) = lim−→i
F (Ui). In other words, the presheaf

(1) already satisfies the sheaf condition on Xaff
proét before sheafification, and the

colimit can be calculated using any presentation for U .
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Sketch of proof. It suffices to treat the case X is affine. In this case we have
Shv(Xproét) ∼= Shv(Xaff

proét), [Lem.4.2.4]. Now we use the lemma that we men-
tioned last time, that a presheaf is a sheaf if and only if it satisfies the sheaf
condition for Zariski covers, and affine pro-étale morphisms. Both of these kind
of covers (up to refinement) descend through filtered colimits. For example, if
B = lim−→Bi is an ind-étale algebra and B → C is an étale morphism, then there
is some i, and étale algebra Bi → Ci such that C = B ⊗Bi Ci. Then the sheaf
condition for B → C is the filtered colimit of the sheaf conditions for Bi → Ci

F (B) //

∼=
��

F (C)

∼=
��

//// F (C ⊗B C)

∼=
��

lim−→i
F (Bi) // lim−→j

F (Ci) // // lim−→j
F (Ci ⊗Bi

Ci)

Since filtered colimits preserve exact sequences, exactness of the top line follows
from exactness of the lower line.

Exercise 1. Prove the claim that filtered colimits preserve exact sequences.
That is, suppose that Λ is a filtered category, and A,B,C : Λ → Ab are func-
tors from Λ to the category of abelian groups, and A → B → C are natural
transformations such that for each λ ∈ Λ, the sequence

0→ Aλ → Bλ → Cλ → 0

is exact. Then show that

0→ lim−→
λ

Aλ → lim−→
λ

Bλ → lim−→
λ

Cλ → 0

is an exact sequence.

Example 2. Suppose k is a field with separable closure ksep such that ksep/k is
not a finite extension. Then consider the sheaf F (−) = hom(−,Spec(ksep)) on
the category Spec(k)proét. For any Spec(A) ∈ Spec(k)proét we have F (Spec(A)) =
∅. However, Spec(ksep) ∈ Spec(k)aff

proét and we have F (Spec(ksep)) 6= ∅ =
lim−→k⊆L⊆ksep F (Spec(L)) where the limit is over finite subextensions of ksep/k.

So F is not in the image of ν∗.

Lemma 3 ([Lem.5.1.2]). The functor ν∗ : Shv(Xet)→ Shv(Xproét) is fully faith-
ful. Its essential image consists of those sheaves F such that F (U) = lim−→i

F (Ui)

for any U ∈ Xaff
proét with presentation U = lim←−i Ui.

Proof. A left adjoint is fully faithful if and only if the unit id → ν∗ν
∗ is an

isomorphism.1 Isomorphisms of sheaves can be detected locally, cf. Exercise 2,
and in Xet every scheme is locally affine. For any affine étale U → X, the

1This is because the composition hom(X,Y ) → hom(LX,LY ) ∼= hom(X,RLY ) induced
by the unit Y → RLY .
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constant diagram (U) is a presentation for U . So then by [Lem.5.1.1] we have
F (U) ∼= ν∗ν

∗F (U) for any F ∈ Shv(Xet).
For the second part, suppose G ∈ Shv(Xproét) satisfies the conditions of the

lemma. To show that G is in the image of ν∗, we will show that ν∗ν∗G → G
is an isomorphism. Since Shv(Xproét) ∼= Shv(Xaff

proét), [Lem.4.2.4], it suffices to

show that ν∗ν∗G(U)→ G(U) is an isomorphism for every U ∈ Xaff
proét. But this

follows from [Lem.5.1.1] and the hypothesis.

Exercise 2. Prove the claim in the above proof that a morphism of sheaves
φ : F → G on a site (C, τ) is an isomorphism if and only if for every X ∈ C, there
is a τ -covering family {Ui → X}i∈I such that F (Ui)→ G(Ui) is an isomorphism
for all i.

Hint: The hypothesis is for every X ∈ C, in particular, for any cover {Ui →
X} with φ an isomorphism on each Ui, there are also covers {Wijk → Ui ×X
Uj}k∈Kij

with φ an isomorphism on each Wijk.

Definition 4. The sheaves in the image of Shv(Xet) ⊆ Shv(Xproét) are called
classical.

Lemma 5 ([Lem.5.1.4]). Suppose that F ∈ Shv(Xproét). If there is a pro-étale
covering {Yi → X}i∈I such that F |Yi is classical for all i ∈ I, then F is classical.

Sketch of proof. We just treat the affine pro-étale case here. That is we assume
{Yi → X}i∈I is of the form {Spec(B)→ Spec(A)} for some ind-étale morphism
of rings A→ B. We need to check that for any other ind-étale A-algebra A→ C
(so C = lim−→j

Cj for some filtered system of étale algebras A → Cj), we have

F (C) = lim−→F (Cj). We have the following diagram

F (C) //

��

F (C ⊗B)

��

//// F (C ⊗B ⊗B)

��
lim−→j

F (Cj) // lim−→j
F (Cj ⊗B) // // lim−→j

F (Cj ⊗B ⊗B)

The the left vertical morphism is an isomorphism since the middle and right
one is, and F is a sheaf.

Definition 6. Suppose that R is a ring equipped with the discrete topology. We
write LocXet(X) (resp. LocXproét

(X)) for the category of sheaves of R-modules
on Xet which are locally free of finite rank. That is, those sheaves F such that
there exists a covering {Ui → X}i∈I and isomorphisms F |Ui

∼= Rn for each i
and some n, where Rn is the constant sheaf associated to the R-module Rn.

Exercise 3. Show that every sheaf in LocXproét
(R) is classical.

Exercise 4. Show that for any U ∈ Xet and F ∈ Shv(Xet) we have ν∗(F |Uet)
∼=

(ν∗F )|Uproét
. Deduce that for any F ∈ LocXet(R), the sheaf ν∗F is in LocXproét

(R).
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Corollary 7 ([Cor.5.1.5]). Suppose that R is a ring equipped with the discrete
topology. Then ν∗ defines an equivalence of categories LocXet(R) ∼= LocXproét

(R).

Proof omitted.

Corollary 8 ([Cor.5.1.6]). For any K ∈ D+(Xet), the map K → ν∗ν
∗K is

an equivalence (here ν∗ and ν∗ are derived now). Moreover, if U ∈ Xaff
proét has

presentation U = lim←−i Ui then RΓ(U, ν∗K) = lim−→i
RΓ(Ui,K).

The proof is omitted. It uses the Čech cohomology spectral sequence (hence
the boundedness hypothesis).

Corollary 9 ([Cor.5.1.9]). Consider a short exact sequence 0 → F ′ → F →
F ′′ → 0 in Shv(Xproét,Ab). Then F is in Shv(Xet,Ab) if and only if F ′ and F ′′

are in Shv(Xet,Ab).

Proof omitted. It is not long, and it uses neat standard homological algebra
tricks.

2 From pro-étale to étale

We now start working with the derived categories (cf. Remark 11). Functors
between derived categories are always derived (for example ν∗ : D(Xet) →
D(Xproét)), even if we don’t explicitly write it.

Definition 10 ([Def.5.2.1]). A complex L ∈ D(Xproét) is called parasitic (寄
生) if RΓ(U,L) = 0 for all U ∈ Xet. We write Dp(Xproét) ⊆ D(Xproét) for the
full subcategory of parasitic complexes.

Remark 11. The category Dp(Xproét) is closed under shift, cone, and direct
sum. However, if we try and define parasitic sheaves (outside of the derived
category) we do not get a nice subcategory. For example, it is not closed under
quotient.

Example 12 ([Rem.5.2.4]). LetX = Spec(Q), and Ẑl(1) := lim←−µ`n ∈ Shv(Xproét,Ab).
Then there is a short exact sequence

1→ Ẑl(1)
l→ Ẑl(1)→ µl → 1.

For all U ∈ Xet, we have Ẑl(1)(U) = 0 (because there is no finite separable field
extension of Q which contains all `nth roots of unity). However, µl 6= 0. So the
category of “parasitic” sheaves of abelian groups is not closed under quotients.

Lemma 13 ([Lem.5.2.3]). We have:

1. A complex is in Dp(Xproét) if and only if it is sent to zero by the derived
functor ν∗ : D(Xproét)→ D(Xet).

2. The inclusion i : Dp(Xproét)→ D(Xproét) has a left adjoint L.
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Proposition 14 ([Prop.5.2.6]). Consider the adjunctions (where ν∗, ν∗ are de-
rived functors).

D+
p (Xproét)

L

�
i
D+(Xproét)

ν∗

�
ν∗

D+(Xet)

1. ν∗ is fully faithful.

2. The essential image of ν∗ are those complexes whose cohomology sheaves
lie in Shvet(X,Ab) ⊆ Shvproét(X,Ab).

3. For every K ∈ D+(Xproét) we have

Cone(iLK → K) ∼= ν∗ν∗K.

4. We have hom(i(K ′), ν∗(K ′′)) = 0 for all K ′ ∈ D+
p (Xproét),K

′′ ∈ D+(Xet).

In other words, the above adjunctions define a semi-orthogonal decomposi-
tion of triangulated categories.

Remark 15 ([Rema.5.2.8]). In the case thatD(Xet) is left-complete (cf.[Prop.3.3.7])
then the above proposition extends to the unbounded categories.

Remark 16 ([Prop.5.2.9]). Another way to extend the above proposition to
unbounded categories is to replace D+(Xet) with the smallest subcategory of
D(Xproét) containing ν∗(D(Xet)), closed under cones, shift, and filtered colimits.

3 Left completion via the pro-étale site

Recall that the left completion D̂(Xet) of D(Xet) is the subcategory of D(XN
et)

consisting of those sequence of chain complexes (· · · → K2 → K1 → K0) in
Ch(Shv(Xet)

N) such that

1. Kn ∈ D≥−n(Xet). That is, the sheaves HiKn are zero for i < −n.

2. τ≥−nKn+1 → Kn is an equivalence. That is the map HiKn+1 → HiKn

is an isomorphism of étale sheaves for i ≥ −n.

The left completion D̂(Xproét) is defined similarly, however, since Shv(Xproét)
is replete [Prop.4.2.8], D(Xproét) is left complete. That is, the canonical adjoints

D̂(Xproét) � D(Xproét)

are both equivalences of categories.
Left completion is functorial, so we get a commutative square of functors

D(Xet)
ν∗
//

��

D(Xproét)

∼=
��

D̂(Xet)
ν∗
// D̂(Xproét)
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Then, since D(Xproét) is left complete, we end up with an adjunction

ν∗ : D̂(Xet) � D(Xproét)

This functor is full faithful, and its essential image admits the following simple
description.

Definition 17 ([Def.5.3.1]). Let Dcc(Xproét) be the full subcategory of D(Xproét)
consisting of complexes whose cohomology sheaves lie in Shv(Xet,Ab) ⊆ Shv(Xproét,Ab).
That is, those complexes with classical cohomology.

Proposition 18 ([Prop.5.3.2]). There is an adjunction

D(Xet) � Dcc(Xproét)

induced by ν∗, ν∗ which is isomorphic to the left-completion adjunction

τ : D(Xet) � D̂(Xet) : R lim←− .

In particular
D̂(Xet) ∼= Dcc(Xproét).

4 l-adic sheaves via the pro-étale site

Suppose l is a prime, and X is a Z[1/l]-scheme. The l-adic cohomology is
classically defined as

Hi
et(X,Z`) := lim←−

n

Hi
et(X,Z/`n).

On the other hand, it is useful to have a description of cohomology in terms of
derived categories. We have

homD(Xet,Z/`n)(Z/`
n,Z/`n[i]) = Hi

et(X;Z/`n)

but to extend this to l-adic cohomology, we would need to consider something
like

lim←−
n

D(Xet,Z/`n)

but categories are only well-defined up to equivalence, so limits of categories are
technically complicated to define.

Exercise 5. In this exercise we show that näıve inverse limits of categories are
not well-defined up to equivalence of categories. Let · · · → C2 → C1 → C0 be
a system of functors of small categories. Define lim←−Cn to be the category with
set of objects

Oblim←−Cn
= lim←−ObCn

.

Given objects x = (. . . , x2, x1, x0) and y = (. . . , y2, y1, y0) in lim←−Cn define

homlim←−Cn
(x, y) = lim←− homCn

(xn, yn).
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1. For an abelian group A, let BA be the category of one object, ∗, and
homBA(∗, ∗) = A with composition in BA given by addition in A. Note
that any group homomorphism A → A′ induces a functor BA → BA′.
Show that

lim←−
n

B(Z/`n) = BZ`.

2. Now define Cn to be the category whose objects are Ob Cn = {i ∈ Z :
i ≥ n}, morphisms are homCn

(i, j) = Z/`n for every i, j, and composi-
tion is given by addition in Z/`n. Note that there are canonical functors
Cn+1 → Cn induced by the group homomorphisms Z/`n+1 → Z/`n and
the inclusions Ob Cn+1 ⊂ Ob Cn. Show that

lim←−
n

Cn = ∅.

3. Show that for every n, the canonical functor Cn → BZ/`n is fully faith-
ful, and essentially surjective. That is, it is an equivalence of categories.
Deduce that lim←−, as defined above, does not preserve equivalences of cat-
egories.

There is a notion of 2-limit of categories defined by keeping track of isomor-
phisms, which does preserve equivalences, but the following is a better way of
dealing with this problem.

Definition 19 ([Def.5.5.2]). Define D+
Ek(Xet,Z`) as the full subcategory of

D+(XN
et,Z`) consisting of those sequences (· · · → M2 → M1 → M0) of com-

plexes such that each Mn is a complex of sheaves of Z/`n-modules, and the
induced maps2

Mn ⊗Z/`n Z/`n−1 →Mn−1

are quasi-isomorphisms for all n.

The category D+
Ek(Xet,Z`) (and its unbounded version) is what was used

classically to access l-adic cohomology in a derived category setting.
Recall thatK ∈ D(Xproét,Z`) is derived complete if T (K) is quasi-isomorphic

to zero, where T (K) = R lim←−(· · · `→ K
`→ K

`→ K) ∼= Cone
(∏

NK
id−`−→

∏
NK

)
[−1].

Definition 20 ([Def.5.5.3]). Define D+
Et(Xproét,Z`) ⊆ D(Xproét,Z`) for the full

subcategory of bounded below complexes K such that

1. K is derived complete, cf.[Def.3.4.1].

2Recall that all functors in the derived setting are derived, even if the notation does not

expicitely say it. In particular, since Z/`n−1 ∼= lZ/`n and 0 → lZ/`n → Z/`n l→ Z/`n → 0
is a short exact sequence of Z`-modules the functor − ⊗Z/`n Z/`n−1 can be calculated as

Cone(− `→ −)[−1] for chain complexes of sheaves of Z/`n-modules. Similarly, − ⊗Z`
(Z/`)

can be calculated by Cone(− `→ −) for complexes of sheaves of Z`-modules.
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2. K ⊗Z`
(Z/`) ∈ Dcc(Xproét).

Proposition 21. There is a natural equivalence

D+
Ek(Xproét,Z`) ∼= D+

Ek(Xet,Z`).

Remark 22. If there is an integer N such that for all affine Y ∈ Xet and
sheaves of κ-vector spaces F we have Hn(Y, F ) = 0 for n > N , then the above
proposition is true for unbounded complexes too.

Remark 23. Notice thatD+
Ek(Xet,Z`) is defined by adding structure toD(Xet,Z`),

whereas D+
Ek(Xproét,Z`) is defined via properties of objects in D+(Xproét,Z`).

So one would expect that the latter is easier to work with.
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