In this talk we define the pro-étale site of a scheme, giving a number of
examples of pro-étale schemes. We discuss the case of a field in detail, and in
particular, mention the equivalence of categories

G-ProFinSet 2 Spec(k);g,ét.
We see that in general the pro-étale topos is locally weakly contractible, and
therefore is replete, and left complete. Finally, we observe that the pro-étale
topos gives a good setting to study the cohomology of compactly generated
topological abelian groups. In particular, for a large class of “nice” topological
groups, continuous cohomology agrees with the pro-étale cohomology
H! (G, M)=H .(G-ProFinSet, Fi).
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1 The pro-étale site

Recall that a morphism of schemes f : Y — X of finite presentation is étale, if
it is flat and the diagonal Y — Y xx Y is flat.!

Definition 1 (Def.4.1.1). A map f :Y — X of schemes is weakly étale if it
is flat, and the diagonal A :Y —Y xx Y is flat. The category of weakly étale
X -schemes is denoted Xprogt.

Example 2.

1. Suppose A — B is an ind-étale morphism of rings (so Spec(B) — Spec(A)
is pro-étale). Then we saw previously that A — B is a weakly étale
morphism of rings [Prop.2.3.3], so Spec(B) — Spec(A) is a weakly étale
morphism of schemes.

2. Bhatt, Scholze choose to work with weakly étale maps instead of pro-étale
morphisms of schemes in general because pro-étale morphisms of schemes
are not so well-behaved, cf. [Exa.4.1.12] reproduced below.

3. [Exa.4.1.9] Given a scheme X, and a profinite set S = lim S;, the morphism
X®S:= @iel(usesiX) — X is pro-étale. This defines a functor

ProFinSet x Xprost = Xprost; (S,Y)—» S®Y

IThe diagonal being flat is one of a number of equivalent definitions for a finite presentation
morphism to be unramified.
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4. [Exa.4.1.12] Consider the set?

1 on
S={e"1"2) i nezn>0u{e”®V:nezn<0}u{-1}CC

equipped with the translation function 7" induced by n +— n 4+ 1 on the
image of Z, and sending —1 € C to —1.

Note that this is a profinite set

2I.e., the one point compactification of Z considered as a discrete set.



Now let X;, X, C A% be two smooth curves meeting transversally at
points p and ¢, and X = X; U Xs.

Then consider the X-scheme Y which is S ® X; glued to S ® X using the
identity at p and the translation function 7" at q.

Then Y — X is locally pro-étale. Indeed, away from p (or ¢), it is just
S® (X \{p}) - (X \ {p}). However, Y — X is not globally pro-étale.



By closely considering the topology on Y, one can see that it cannot be
written as Y = %iLnY; for étale X schemes Y;.

5. [Exa.4.1.4] If k is a field, then a morphism Spec(R) — Spec(k) is weakly
étale if and only if k¥ — R is ind-étale.?

6. [Exa.4.1.5] For any scheme X, point « € X, and geometric point T — X,
the morphisms

Spec(Ox o) = X, Spec((’)&@) — X, Spec((’)ﬁfhj) - X
are all weakly étale.

Recall that flat morphisms are preserved by base change and composition.

Exercise 1 ([Lem.4.1.6]). Weakly étale morphisms are preserved by base change.
Show that if f: Y — X is weakly étale then X’ x x Y — X' is weakly étale for
any morphism X’ — X.

Exercise 2 ([Lem.4.1.6], [Lem.4.1.7]). Weakly étale morphisms are preserved
by composition, and all morphisms in Xy are weakly étale. Let g : W — Y
and f:Y — X, f/: Y’ — X be weakly étale morphisms, and h : Y’ — Y any
X-morphism.

1. Use the fact that W = (Y xx W) Xy« v)Y to show that W — Y xx W
is flat.

2. Use part (1), the fact that Y xx W xx W =2 (Y xx W) xy (Y xx W),
and a clever factorisation of W — W x x W to show that fog: W — X
is weakly étale. (Alternatively, use the isomorphism W xy W = (W x x

W) X(YXxY) Y)
3. As in part (1), show that Y/ — Y xx Y’ is flat.

4. Use part (3) and the fact that Y’ = (Y' xy Y') X(y/x y7) (Y') to show
that Y’ — Y is weakly étale.

Exercise 3 ([Lem.4.1.8]). Use Exercise 1 and Exercise 2 to show that Xpros
has fibre products. Deduce that Xpoe has all finite limits. (Recall, that an
exercise earlier in the course was to show that a category has all finite limits if
and only if it has fibre products and a terminal object).

3By [BS, Thm.2.3.4], for every weakly étale morphism A — B there is a faithfully flat
ind-étale morphism B — C' such that A — C is ind-étale. In particular, B is a sub-A-algebra
of an ind-étale A-algebra. But for fields k, every sub-k-algebra B of an ind-étale k-algebra C
is again an ind-étale k-algebra: Indeed, write C' = li_r}niel C'; where the C; are étale k-algebras,
and recall that this means that each C; is a finite product of finite separable k-field extensions.
Replacing each C; with its image in C, we can assume all morphisms C; — C are injective.
Then taking B; = C; N B, we produce a system (B;);es such that each B; is an étale k-algebra
and B = li_r)niel B;.



Definition 3. A family {Y; — Y }ier in Xproet 15 a covering, if for every open
affine U C Y, there is a finite subset J C I and open affines V; CY; for each
Jj € J such that ;e ;V; — U is surjective.

The finiteness in the above definition is important, and affects the topology:

Example 4 ([Exa.4.1.13]). Consider Spec(Z). If pi,...,p, are finitely many
primes, then

{spec(ngl)),...,spec( fgn)),Spec(Z[p%,...,z%nD}
is a weakly étale cover. However,
{Spec(ng)) : p is prime }

is not a weakly étale cover.
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2 The pro-étale site of a field

Example 5. In this example we study affine pro-étale schemes over a separably
closed field in great detail, giving a concrete description of them as locally ringed
spaces.



Suppose that k is a separably closed field, and R is an ind-étale algebra
k— R= @R,\.

So each Ry is a finite product Ry = ][], 1, k. Moreover, every morphism
HieIA k=Ryx— R\ = Hjelg k is induced by morphisms of sets ¢ n : I§ — Iy.
Since the underlying topological space of Spec of a filtered colimit of rings is
the inverse limit of the underlying topological spaces, [EGAIV, §8], we see that
the underlying topological space of Spec(R) is the profinite set I = @1[ A-

Spec(R)op = 1.

For any profinite set lim Sy, and any discrete set X, one can see that we have*
hom oy (l&n Sy, X) = ﬂn hom(Sy, X). Hence,

F(SpeC(R)7 OSpec(R)) = homcont. (Ia k)

is the set of continuous morphisms where k£ is given the discrete topology. More-
over, for any open subset of the form Uy ; = (b;l(z') where 1 € I and ¢y : I — I
is the canonical projection, Uy ; is again ind-étale, and so I'(Ux i, Ospec(r)) =
homeont. (Un s, k). Finally, if U C I is any open subset, and {U; C U} an open
covering, we have

F(U? OSpec(R)) = Eq(HF(Ulv OSpec(R))) = H F(U’L N Uj7 OSpeC(R))))
icl ijel

By definition, every open of I is covered by opens of the form U ; so we deduce
that in general,
F(U; OSpec(R)) = homcont.(U7 k)

Given any point « € I, and any open x € U, there is a smaller open containing
x of the form U} ;. For any continuous function f : U — k, there is a refinement
xz € Uy; C U. But Uy, is profinite, and therefore quasicompact, so the image
f(Ux,) is finite, so there is a further refinement x € V' C U, ; such that f : V —
k is constant. It follows that all local rings of Spec(R) are isomorphic to k.

OSpec(R),w = k.

Conversely, if (X, Ox) is a locally ringed space such that X = lim X, is profinite,
and Ox (U) = homeont. (U, k) for some separable closed field k, then (X, Ox) =
Spec(li_ng [Ix, k), ie,, (X,Ox) is the affine scheme associated to an ind-étale
k-algebra.

4If f : lim Sy — X is a continuous morphism, then for every point z € X, f !z is open, and
by definition of the limit topology, admits a covering of the form %, = {Ux s : A € Az, s € Sy}
where Uy s = ¢~ 1(s) is the preimage of s under the canonical projection ¢ : S — Sy. Since
S is profinite, it is quasicompact, so the coverling family U, ¢ x %, admits a finite subcovering
{Vx;,s 11 <4 <n,s € S;}. Then by construction any X with A < A1,..., An, has the property
that f is constant on the fibres of S — S). Hence, f factors as S — S\ — X.



Proposition 6. Suppose k is a separable closed field and X € Spec(k)proet- The
following are equivalent.

1. X is affine.

2. X 1is the spectrum of an ind-étale algebra.

3. X s qcgs.

4. X is of the form Spec(k) ® S for a profinite set S.

Proof. (1 <= 2) We have seen, Exa.2(5) that the affine schemes in Spec(k)proet
are precisely the spectra of ind-étale k-algebras.

(2 <= 3) All affine schemes are qcgs, so consider the other direction.
Suppose that X is qcgs. A scheme is qcgs if and only if it admits a finite open
affine cover {U; — X}, such that each U; NU; for 1 <14,j < n is also affine.
Since affines in Spec(k)prost have profinite underlying topological space (i.e.,
compact, Hausdorff, totally disconnected topological space), it follows that any
qcgs X also has profinite underlying topological space (see the lemma below).
Moreover, the structure sheaf of X has the form V +— hom . (V, k) since those
of the U; and U; N U; have this form. Hence, it follows from Example 5 that if
X is qegs, it is the spectum of an ind-étale algebra.

(2 <= 4) This follows from the definition of — ® S and the equivalence
between the category of finite sets and the category of étale k-algebras. O

Lemma 7. Suppose that X is a topological space admitting a finite open cover
{U; = X}, such that all U; and U; NU; are compact, Hausdorff, totally
disconnected topological spaces. Then show that X is also compact, Hausdorff,
and totally disconnected.

Proof. X is compact: Suppose that {V; — X },c s is an open covering. then each
{V; NU;} is an open covering. But each U; is compact, so for each i = 1,...,n,
there is a finite subset J; C J such that U; = U;jc;,U; NV, It follows that
X = Uiy Ujer, V5

X is Hausdorff: Suppose that « # y € X are two points. Choose i,, i, such
that z € U;, and y € U;, and set U, = U;,,U, = U;,,Uyy = Uy, NU,,. If,
say, y € Upyy C Uy, then since U, is Hausdorff, we can find opens z € V,y € W
such that VN W = @. So suppose that z,y ¢ U,,. Since Uy, is compact, and
U,,U, are both profinite, U,, is both closed and open in both U, and U,. In
particular, V = (Uy \ Uzy) € Uy and W = (U, \ U,y) C Uy are also both closed
and open in U, U, respectively. This means that V' and W are both open in
X. By construction, x € Vand y € W and VNW = &, so we are done.

X is totally disconnected: First recall that a subset W C X is open (resp.
closed) if and only if W NU; is open (resp. closed) for all i. Let us write Y € W
to indicate that Y is both open and closed in W. Suppose that W C X is a
subset containing more than one point. We want to find a proper nonempty
Y € W. If WNU; has a single point, say w, for some i, then {w} is open in
W. But all U; are totally disconnected, so {w} is closed in all U;, and therefore
closed in X, and therefore closed in W. Hence, Y = {w} € W works.



So suppose each W N U; has more than one point. Since the U are totally
disconnected, for each i there is some proper nonempty Y; € W N U,. For any
other j, we then have that Y;NU; € (WNU;)NU;. Now as above, since U; NU;
is quasicompact, U; NU; € U;, so, WNU; NU; € W NUj, and we find that in
fact, ;NU; e WNU;NU; € WNU;. Now define T; inductively by setting
To=W. Ifoneof T;_1NY; or T,_1 N (W NU; \Y;) are nonempty then choose
one and set T; to be this nonempty intersection. If both are empty, then define
T =T ;. Now note that since Y; NU; € W NU; for every ¢, j, it follows that
each T; € WNU;j for every 1 < j <1i. In particular, T, € W NU; for all j, and
therefore T, € W. It is nonempty and proper by construction. O

Write Spec(k)2 .. for the fullsubcategory of Spec(k)poe of those objects

proét
satisfying the equivalent conditions of the previous lemma.

Corollary 8. Ifk is a separably closed field, there is an equivalence of categories
ProFinSet = Spec(k);izét
S+ Spec(k) ® S

X(k)+—X

Under this identification, coverings of Spec(k) ® S are precisely the jointly sur-
jective families of profinite sets {S; — St}ier that admit a jointly surjective finite
subfamily {Si; — S}tj_;.

Example 9. If S is any nonfinite profinite set then the family {s — S}scs of
inclusions of its points is not a covering family.

The following is basically a version of the equivalence we saw in Galois theory
between étale k-algebras and finite G-sets.

Proposition 10. Let k be any field, choose a separable closure k*¢P [k, and let

G = Gal(k*?/k). There is an equivalence of categories between profinite sets

equipped with a continuous G-action and the affine objects in Spec(k)proet -
G-ProFinSet = Spec(k)3

proét

Under this identification, coverings are precisely the jointly surjective families{S;
Stier that admit a jointly surjective finite subfamily {S;;, — S}7_;.

Sketch of proof. In one direction, we use the functor

Spec(k)afr AU Spec(/csel’)aff

proét proét

and the equivalence

Spec(k“p);ﬁ,ét = ProFinSet
The G-action is induced by the canonical G-action on Spec(k°P). In the other
direction, given a pro-finite set S equipped with a continuous G-action, we
take Spec(hom, o (S, k%¢P)¥), i.e., the spectrum of the ring of those continuous

functions which are invariant for the action of G acting via its action on S. [



3 The pro-étale topos

Definition 11 ([Def.4.2.1])). Let X be a scheme. An object U € Xproar is called
a pro-étale affine if it is of the form U = lim U; for some small filtered diagram
(Ui)ier of (absolutely) affine schemes U; = Spec(A;) in Xet. The expression
U= I'LnUi is called a presentation of U. The full subcategory of Xorost sSpanned

by pro-étale affines is denoted X2 We make it a site by saying a family in

proét
Xaff aff

proét 15 @ covering in X5l if it is a covering in Xprost-

Lemma 12. For X a scheme, every scheme Y € Xpoar admits a pro-étale
covering {Y; — Y’} such that each Y; is in X2

proét *
Proof. Choose an open affine covering {Spec(A;) — X }ier of X, and for each
i, choose an open affine covering {Spec(B;;) — Spec(4;) xx Y}icy, of the
preimage of Spec(4;) in Y. Now by [Thm.2.3.4], since the morphisms A; — B;;
are weakly étale for each 7, j, there is a faithfully flat ind-étale morphism B;; —
C;j such that A, — C;; is ind-étale. Consequently, {Spec(C;;) — Y }tier jeu, is
a covering of the desired form. O

Corollary 13 ([Lem.4.2.4, Rem.4.2.5). For any scheme X, the canonical re-
striction functor induces an equivalence of categories of sheaves

Shv(Xproer) — Shv(X27 ).

proét

Proof. This is a general fact about Grothendieck sites. Consider any site (C, )
and full subcategory D C C equipped with the induced topology. If every object

of C has a covering by objects of D, then there is an equivalence Shv(C) 2
Shv(D). O

Proposition 14 ([Prop.4.2.8]). For any scheme X, the topos Shv(Xproet) is
locally weakly contractible [Def.8.2.1]. In particular, it is replete [Def.53.1.1],
and so D(Xproat) 15 left-complete [Def.3.3.1].

Proof. [Prop.3.2.3] says that a locally weakly contractible topos is replete. [Prop.3.3.3]
says that the derived category of a replete topos is left-complete. It suffices to
show that for every scheme Y € X there is a covering {Y; — Y }ier with
Y; € X;ff)ét locally weakly contractible. Lemma 12 says that every scheme ad-
mits a pro-étale affine covering. So it remains only to see that affine schemes
have locally weakly contractible coverings. This was the main result of the

Algebra II lecture. O

On the pro-étale site, one can define interesting “constant” sheaves associ-
ated to topological spaces.

Lemma 15 ([Lem.4.2.12]). Suppose X is a scheme and T is a topological space.
Then the presheaf

Fr: X%  — Set; U — Mapeont (U, T)

proét

which sends a scheme U to the set of continuous maps from the underlying
topological space of U to T is a sheaf.



Sketch of proof. This uses [Lem.4.2.6] which we did not do. It says that a
presheaf F' on Xpoe is a sheaf if and only if it satisfies the sheaf condition
for Zariski covers, and surjective maps in X;rff)ét. In the category of topologi-
cal spaces, any representable presheaf is a sheaf for the topology generated by
usual open coverings of topological spaces, and surjective morphisms ¥ — X
such that X has the quotient topology induced from Y. Hence, in our setting,
it suffices to check that for any surjective morphism f : Spec(B) — Spec(4)
in X;fgét a subset U C Spec(A) is open if and only if f=! is open. This is
proved in a really neat way using the constructible topology, and the fact that
a subset of a scheme is open if and only if it is constructible and closed under

generisation. O

4 Addendum

We did not have time for the following comments. There are of course many
more details in Bhatt, Scholze.

Let k be a field, k%P a separable closure, and G = Gal(k*°?/k). Recall that
we had an equivalence of categories

Shv(ket, Ab) = G-mod

between the category of étale sheaves on k, and discrete G-modules. A conse-
quence of this was that for any discrete G-module M with associated sheaf F);,
the group cohomology of M is isomorphic to the étale sheaf cohomology of Fy,

HL(k,Fy) =2 H' (G, M).

The pro-étale site allows us to upgrade this, although things become more
technical and complicated.
Recall that we have already seen an equivalence of categories

k2 =~ G-ProFinSet

proét —
between the subcategory of affine objects in Kpro¢r and the category of profinite

sets equipped with a continuous action. The covering families in the left side
are just surjective families.

Definition 16. Given an arbitrary profinite group G, we define a topology on
the category G-ProFinSet whose covering families are surjective families.

Definition 17. Let G-Spc be the category of topological spaces equipped with a
continuous G-action. Let G-Spc,, C G-Spc be the full subcategory of X € G-Spc
whose underlying topological space can be written as a quotient of a disjoint
union of compact Hausdorff spaces. These spaces are called compactly gener-
ated.

Lemma 18 ([Lem.4.3.2]). The association T +— homcont.c(—, 1) produces a
functor G-Spc — Shv(G-ProFinSet). This functor is fully faithful on G-Spcey;
admits a left adjoint (everywhere), and its essential image generates Shv(G-ProFinSet)
under colimits.
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Definition 19. We write G-Mod for the category of topological abelian groups
equipped with a continuous G-action. We write G-Mod., for the full subcategory
whose underlying space is compactly generated (i.e., lies in G-Spc., ).

As above, given M € G-Mod, we get an abelian sheaf Fis : X +— homeons,g(—, M)
on G-ProFinSet.

We did not define continuous cohomology, but the main result about it is
the following.

Lemma 20 ([Lem.4.3.9]). For a large class of “nice” M € G-Mod we have

H" (G, M) = H" . (G-ProFinSet, Fy).

proét
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