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1 Motivation

If X is a topological space and x ∈ X a point, then the fundamental group is
defined as

π1(X,x) =
hom((S1, 0), (X,x))

hom((S1×[0, 1], {0}×[0, 1]), (X,x))

the set of (pointed) morphisms from the circle

S1 ∼= [0, 1]/{0, 1} ∼= {z ∈ C : |z| = 1}

modulo homotopy.

−−−−− picture of a homotopy −−−
This measures how many “holes of dimension 1” are in X.

Example 1.

1. π1(S1 × · · · × S1) ∼= Zn.

2. π1(S2) ∼= 0.

3. π1(C \ {x1, . . . , xn}) ∼= Fn, the free group with n generators.

4. π1(Mg) ∼= 〈a1, b1, . . . , ag, bg : [a1, b1] · · · · · [ag, bg] = 1〉, where Mg is a
compact orientable genus g surface.

This definition does not work algebraically. We could try replacing [0, 1] with
A1, or {z ∈ C : |z| = 1} with C \ {0}, but S1 × S1 is the underlying topological
space of a compact elliptic curve E over C, but every morphism from Gm or A1

to E is constant.
However, if the topological space X is locally contractible, there is another

way to define the fundamental group.

Proposition 2 ([Szamuely, Thm.2.3.7]). Suppose X is a connected, locally sim-
ply connected topological space, and Y → X is a local homeomorphism with Y
contractible. Then π1(X) is isomorphic to Aut(Y/X).

−−−−− picture of helix covering the circle −−−
The fibres of Y → X are infinite in many cases, so we cannot hope to have

such a Y algebraically. However, we can hope to get its finite quotients.
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Definition 3. A local homeomorphism X ′ → X of connected topological spaces
with finite fibres of size n is called Galois if # Aut(X ′/X) = n.

Proposition 4. Suppose X is a connected, locally simply connected topological
space. For every Galois cover X ′ → X there exists a normal subgroup N ⊆
π1(X) ∼= Aut(Y/X) such that Y/N ∼= X ′ and Aut(X ′/X) ∼= π1(X)/N . In
particular,

π1(X)∨ ∼= lim←−
X′/X

Aut(X ′/X)

Example 5. If X = S1 = {z ∈ C : |z| = 1}, then Y ∼= R with the map
exp(2πi) : R→ S1; t 7→ e2πit. Then to a normal subgroup nZ ⊂ Z is associated
the Galois covering S1 → S1; z 7→ zn, with automorphism group z 7→ ωz where
ω = e2πi/n is a primitive nth root of unity.

−−−−− picture of helix covering the circle −−−
So this gives a good candidate for an algebraic definition of a (pro-finite)

fundamental group.
In fact, there is an even stronger relationship between π1(X) and local home-

omorphisms.

Theorem 6 ([Szamuely, Thm.2.3.4). Let X be a connected, locally simply con-
nected topological space and x ∈ X a point. Then

(f : X ′ → X) 7→ f−1(x)

induces an equivalence of categories between the category of local homeomor-
phisms X ′ → X and the category of left π1(X,x)-sets.

−−−−− draw action of π1(S1) on a fibre of a finite covering −−−

Of course, π1(X) can be recovered from the category π1(X)-Set as the largest
transitive π1(X)-set. Under the above equivalence, this corresponds to the
universal cover Y → X.

Remark 7. There are a number of other sources of categories which are equiv-
alent to finite G-sets for some group G.

1. The category of finite G-sets for some group G.

2. Let k be a field. Then the category of finite products of finite separable
extensions of k is equivalent to the category of finite Gal(ksep/k)-sets.

3. Let X be a connected compact Riemann surface. Then the category of
compact Riemann surfaces equipped with a holomorphic map onto X
is equivalent to the category of finite Gal(M(X)sep/M(X))-sets, where
M(X) is the field of meromorphic functions on X.

We are going to study the structure of such categories.
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2 Finite étale morphisms

Definition 8. Let FEtX denote the category of finite étale morphisms to X.

Exercise 1. Let A be a connected ring (i.e., the only elements e of A sat-
isfying e2 = e are 0 and 1), and φ :

∏n
i=1A →

∏m
i=1A a homomorphism

of A-algebras. Show that φ is of the form (φ(a1, . . . , an))j = af(j) for some
function f : {1, . . . ,m} → {1, . . . , n}. In other words, for each projection
πj :

∏m
i=1A → A; (a1, . . . , am) 7→ aj , show that the composition πj ◦ φ is

also a projection πf(j) :
∏n
i=1A → A; (a1, . . . , am) 7→ af(j). Hint: consider the

idempotents (0, . . . , 0, 1, 0, . . . , 0).

Exercise 2. Let Spec(A) be the spectrum of a strictly hensel local ring. Show
that

FinSet→ FEtSpec(A); T 7→
∏
t∈T

A

is an equivalence of categories from the category FinSet of finite sets using Exer-
cise 1, and Lec.2 Exer.12 (which says that this functor is essentially surjective).

Exercise 3. Let C be a category. Show that the following are equivalent.

1. C has all finite limits.

2. C has a terminal object and all fibre products.

3. C has all finite products and equalisers.

Hint 2 ⇒ 3.1 Hint 3 ⇒ 1.2

Theorem 9 (Stacks Project, Tags 0BNB, 0BMY). Let X be a connected scheme,
x ∈ X a geometric point, C = FEtX , and consider the functor

F : C → Set; Y 7→ |Yx|.

1. The category C has all finite limits and finite colimits.

2. Every object of C is a finite (possibly empty) coproduct of connected ob-
jects.

3. F (Y ) is finite for all Y ∈ C.

4. (a) F preserves all finite limits and colimits.

(b) A morphism f is an isomorphism if and only if F (f) is an isomor-
phism.

1If f, g : Y ⇒ X are two parallel morphisms, consider (f, g) : Y×Y→X×X and the
diagonal X → X×X.

2If X : I → C is a finite diagram, consider the “source” and “target” morphisms∏
Ob(I) Xi ⇒

∏
Mor(I) Xf from the product indexed by the objects of I and the product

indexed by the morphisms of I.
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Proof of Theorem 9. (1) By Exercise 3, the category FEtX has all finite limits
since it has fibre products and the terminal object X. By the dual of Exercise 3,
to have all finite colimits, it suffices to see that it has coequalisers (since it clearly
has finite coproducts). Via A 7→ Spec(A), finite X-schemes correspond to finite
OX -algebras. The category of finite OX -algebras has equalisers, so it suffices to
show that if φ, ψ : A ⇒ A′ are parallel morphisms between finite OX -algebras
such that Spec(A),Spec(A′) are étale, then Spec(Eq(φ, ψ)) is also étale. We
saw in Lecture 2, that a morphism is étale if and only if its pullback to each
strict henselisation OshX,x is étale. Since Spec(OshX,x) → X is flat, the pullback
is an exact functor, and in particular preserves equalisers of algebras. So we
can assume that X is the spectrum of a strictly hensel local ring A. But then
A ∼=

∏n
i=1A,A′ ∼=

∏m
i=1A, and φ, ψ are induced by maps f, g : {1, . . . ,m} →

{1, . . . , n}. Let T = Coeq(f, g). Then one checks that
∏
t∈T A

∼= Eq(φ, ψ), cf.
Exercise 2.

(2) and (3) are clear.
(4a) Preserving finite limits is clear, as is finite coproducts. For colimits,

note that F factors as FEtX → FEtSpec(Osh
X,x)

→ FEtx. The first functor is

seen to be exact (considering finite étale X-schemes as finite OX -algebras) since
Spec(OshX,x) → X is flat. The second functor is an equivalence by Exercise 2,
and therefore also exact.

(4b) Suppose that f : Y → Y ′ is a morphism in FEtX such that F (f) is
an isomorphism. Since F commutes with finite coproducts, and every object
of FEtX is a disjoint union of connected objects, we can assume that Y ′ is
connected. But then f is surjective, and therefore finite étale, and in particular,
f∗OY is a finite locally free OY ′ -algebra, and it suffices to show that f∗OY has
rank one. But this follows from F (f) being an isomorphism.

3 Galois categories

Definition 10. A category C equipped with a functor F : C → Set satisfying
the properties of Theorem 9 is called a Galois category. The automorphism
group Aut(F ) is called the fundamental group.

Remark 11. The automorphism group is canonically a subgroup

Aut(F ) ⊆
∏

Y ∈Ob(C)

Aut(F (Y )).

Since each F (Y ) is finite, the right hand side is canonically equipped with the
pro-finite topology. We give Aut(F ) the induced topology (also profinite).

Example 12. The categories in Remark 7 are all Galois categories.

The main theorem of Galois categories is the following.

Theorem 13 (Stacks Project, Tag 0BN4). Suppose that F : C → Set is a
Galois category. Then the canonical functor

C → Fin- Aut(F )-Set; Y 7→ F (Y )
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is an equivalence of categories.

Some ideas in the proof. Faithfullness: See Exercise 4.
Fullness: This uses the fact that F preserves decompositions into connected

components. A morphism φ : F (X) → F (Y ) can be identified with its graph
Γφ ⊆ F (X) × F (Y ) ∼= F (X × Y ), a sum of connected components. This
corresponds to a sum of connected components of X × Y , which one easily
shows is the graph of a morphism f satisfying F (φ) = f .

F preserves connected components: This uses the very important fact that
F is pro-representable. That is, there is a filtered inverse system X : I → C
such that for any Y ∈ C, we have F (Y ) ∼= lim−→i∈I hom(Xi, Y ). The motivation

for the system is the filtered system {G/N : N normal, cofinite3} in G-set of
finite quotients of G = Aut(F ). More concretely, one defines an object Y to
be Galois if |Aut(Y )| = |F (Y )|. Then choose a representative Xi of every
isomorphism class of Galois objects, choose for each i some si ∈ F (Xi), and
define a morphism i→ j in I to be a morphism Xi → Xj which sends si to sj .
With a bit of work one shows that Aut(F ) is isomorphic to lim←−Aut(Xi), and
that every Y ∈ C is dominated by a Galois object X ′ →→ Y . It follows that
Aut(F ) acts transitively on F (Y ) whenever Y is connected, or in other words,
F preserves connected objects.

Essentially surjective: This is, in essence, done using Galois descent. Any
finite Aut(F )-set is isomorphic to the set of cosets Aut(F )/H for some cofinite
subgroup H. Using the profinite topology on Aut(F ), with a little bit of work,
one finds a cofinite normal subgroupN ⊆ H corresponding to some Galois object
Y ∈ C. Then Aut(F )/H is a categorical quotient of Aut(F )/N , and since C
has finite colimits and F preserves them, there is a corresponding categorical
quotient X ′ of Y with F (X ′) ∼= Aut(F )/H.

Exercise 4. Using the fact that F preserves equalisers and reflects isomor-
phisms, show that F is faithful.

Definition 14. Let X be a connected scheme and x → X a geometric point.
The fundamental group of X is defined as

πet1 (X) = Aut(F : FEtX → Set).

Remark 15. As seen in the proof of Theorem 13, an alternative way to define
the fundamental group is

πet1 (X) = lim←−
x→X′→X

Aut(X ′x)

where the inverse limit is over those finite étale X ′ → X such that we have
|X ′x| = |Aut(X ′/X)|.

3Cofinite means the quotient is finite.
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4 Examples

Exercise 5. Suppose that k is a field. Using the description in Remark 15 show
that πet1 (k) ∼= Gal(ksep/k).

Remark 16. Note that for any group G, every connected objects in Fin-G-Set
is isomorphic to a set of cosets G/H for some cofinite subgroup H. On the other
hand, for any field k, each connected object in FEt(k) is isomorphic to a finite
separable field extension L/k. Hence, in the case of X = Spec(k), Theorems 13
and 9 contain the classical Galois correspondence.{

finite separable
field extensions of k

}
∼=
{

connected objects
in FEt(k)

}
∼=
{

connected objects
in Fin-Gal(ksep/k)-Set

}
∼=
{

cofinite subgroups
of Gal(ksep/k)

}
Exercise 6. Using the fact that every connected finite étale morphism to
Spec(C[t, t−1]) is of the form Spec(C[t, t−1]) → Spec(C[t, t−1]); t 7→ tn, show
that

πet1 (Spec(C[t, t−1])) ∼= Ẑ.

Exercise 7. Suppose X is a smooth variety over C, and X(C) the topologi-
cal space of its associated complex analytic manifold. Note that for any local
homeomorphism M → X(C) there is an induced structure of smooth complex
analytic manifold on M . In fact:

Theorem 17 (Riemann Existence Theorem). The functor −(C) from FEtX to
finite local homeomorphisms X ′(C)→ X(C) is an equivalence of categories.

Using these facts, and Theorem 6 show that

πet1 (X) ∼= π1(X(C))∨.

5 Local systems

The equivalence FEtX ∼= π1(X)-set has a linear version.

Definition 18. Let R be a ring. A local system (with R-coefficients) on a
scheme X (resp. topological space) is an étale (resp. usual) sheaf of R-modules
F such that there exists a covering {fi : Ui → X}i∈I for which each f∗i F

∼= Rn

for some n. The category of local systems is written LocX(R).

Remark 19. This is the underived version of objects which are locally constant
with perfect values from last week.

Remark 20. The functor FEtX → Shvet(X);Y 7→ homX(−, Y ) induces an
equivalence

FEtX ∼= LocX(FinSet)
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between FEtX and the subcategory LocX(FinSet) of locally constant sheaves on
Et(X) with finite fibres. From this point of view, Theorem 13 is an equivalence

LocX(FinSet) ∼= Fin- Aut(F )-Set

In this section we are “R-linearising” this equivalence. For the topological ver-
sion of this, replace FEtX with finite local homeomorphism.

Proposition 21. Suppose that X is a path connected, locally simply connected
topological space, and K a field. Then there is an equivalence of categories,

LocX(K) ∼=
{

finite dimensional
K-linear representations of π1(X)

}
.

Remark 22. Let Y → X be the universal covering space of X so that π1(X) ∼=
Aut(Y/X), let φ : Aut(Y/X) → GLn(K) be a group homomorphism, and

consider the constant sheaf F̃ = Kn on Y . This constant sheaf sends an open
V ⊆ Y to the product

∏
π0(V )K

n indexed by the set of connected components

π0(V ) of V . Notice that if V = U ×X Y for some U ⊆ X, then Aut(Y/X)

permutes the components in π0(V ), and therefore acts on F̃ (V ). On the other
hand, via φ : Aut(Y/X) → GLn(K) and the diagonal action of GLn(K) on∏
π0(V )K

n. We define a sheaf on X by sending U ⊆ X to

F (U) = {s ∈ F̃ (U ×X Y ) : g(s) = φ(g)(s) ∀g ∈ Aut(Y/X)}.

For normal connected schemes, this proposition also works in algebraic ge-
ometry.

Proposition 23. If X is a connected locally noetherian Z(l)-scheme, then there
is an equivalence of categories

LocX(Ql) ∼=
{

continuous finite dimensional
Ql-linear representations of πet1 (X)

}
.

Remark 24. Note that we now require the representations to be continuous.

Remark 25. The notation is being abused here. By LocX(Ql) we actually mean
sheaves of the form Ql ⊗Zl

lim←−(· · · → F2 → F1) such that Fn ∈ LocX(Z/ln),

and each Fn ⊗Z/ln Z/ln−1 → Fn−1 is an isomorphism. So each Fn must admit
some trivialising cover, but we do not require a single cover which trivialises all
Fn at once. For example, the sheaf µl∞ := lim←−µln of ln roots of unity (for all n
at once) is a Zl-local system, but (over Fp for example) is not trivialised by an
étale covering.

However, the representations must be continuous:

Example 26 (See Grétar Amazeen’s Master’s Thesis4 Examples 5.62, 6.38 for
more details). Let X = P1/{0,∞} be the projective line (over an algebraically

4 http://page.mi.fu-berlin.de/lei/finalversion%20(1).pdf
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closed field) with 0 and ∞ identified. Let Y = . . . 0 t∞ P1
0 t∞ P1

0 t∞ . . . be
an infinite chain of P1’s joining ∞ of each P1 to the 0 of the next one, and
f : Y → X the canonical morphism. Consider the trivial rank on local system
Ql on Y , and define an equivariant automorphism Ql → Ql using multiplication
by l.

−−−− draw picture −−−−

Then this descends to a local system on X. However, it cannot come from
a representation of πet1 (X) ∼= Ẑ, because by compactness, such representations
correspond to homorphisms πet1 (X)→ Z∗l .

Next quarter we will see how this is fixed using the pro-étale topology, in a
way where we can also take the näıve definition of LocX(Ql), that does not use
limits.
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