In this lecture we define étale sheaves using the étale topology.

1 Sheaves

We begin with the general theory of Grothendieck sites. This is a generalisa-
tion of the notion of a topological space, which allows us to use more general
morphisms in place of open immersions.

Definition 1. A (Grothendieck) topology on a category C is the data of: for
every object U € C, a collection of families of morphisms {U; — U};cr. The
families in these collections are called coverings of U. This data is required to
satisfy the following axioms:

1. {U iq U} is a covering, for every object U.

2. If {U; = Ulier is a covering of U, and V' — U is a morphism, then each
fibre product U; xy V exists, and {U; Xy V. — V}ier is a covering of V.

3. If {U; = Ulier is a covering of U, and for each i € I we have a covering
{Uij = U;}jeq, of Ui, then {Uij — Utier,jes, is a covering of U.

A category equipped with a Grothendieck topology is called a site.

Exercise 1. Suppose that X is a topological space in the conventional senseﬂ
Define Op(X) to be the category whose objects are open sets of X, and mor-
phisms are inclusions. For U € Op(X), define the coverings of U to be the fam-
ilies {U; — U}ier such that U;e;U; = U. Show that this defines a Grothendieck
topology on Op(X). (Note that in this category V xg W =V NW.)

Exercise 2. Let X be a topological space, and define LH(X) to be the cat-
egory whose objects are local homeomorphismﬂ Y — X and morphisms are
Y' =Y
commutative triangles N\, . Show that this category has fibre products.
X

ForY € LH(X), define the coverings of Y to be the families {f; : Y; — Y }ies
such that U;er fi(Y:) = Y. Show that this defines a Grothendieck topology on
LH(X).

Exercise 3. Recall that a morphism f : Y — X of schemes is étale if it is locally
of finite presentation, and for every y € Y, the ring morphism Ox ) — Oy,
is étale. Let Ft(X) denote the category whose objects are étale morphisms
Y — X, and morphisms are commutative triangles. Do Exercise [2[ with Et(X)
instead of LH(X).

Definition 2. A presheaf F' on a category C is just a functor C°? — Set.
A morphism of presheaves F — G is just natural transformation of functors
F—aG.

e., a set equipped with a collection of subsets of X declared to be open, preserved by
finite intersection, arbitrary union, and containing X and &.

2A morphism f: Y — X is a local homeomorphism if for every point y € Y, there is an
open neighbourhood V' 3 y such that f: V — f(V) is a homeomorphism.




Definition 3. If C is equipped with a Grothendieck topology, then a presheaf F
is called a sheaf if for any object U and any covering {U; — U}ier we have

FU)=eq|[[FW) = [] FWU:i xv U;) | (1)
icl ijel
A morphism of sheaves is just a morphism of presheaves. A sheaf on Et(X) for

some scheme X is called an étale sheaf on X.

Remark 4. If A is a ring, we will write Ft(A) instead of Ft(Spec(A)) and
if A — B is an étale algebra, and F a presheaf on Ft(A) we will write F(B)
instead of F(Spec(B)).

Example 5. We have the following important examples of étale sheaves on
Et(k), cf. Exercise [10}

1. O:Ls (L,+).
2. O : L+ (L*, ).
3. pn: Lo {a€L*:a" =1}

Remark 6. If a presheaf takes values in the category of abelian groups, then
the sheaf condition (III)) is equivalent to asking that the sequence

0= FU) = [[FW) - [] FU: xv Uy)
iel ujel
be exact, where the last morphism is the difference of the two morphisms induced
by the two projections U; xy U; = Us;, U;.

Exercise 4. Let X be a topological space in the conventional sense. Consider
the Grothendieck topology defined on Op(X) in Exercise Show that a presheaf
on X is the same thing as a presheaf on Op(X), and a preseheaf on X is a sheaf
if and only if its associated presheaf on Op(X) is a sheaf. That is, Definition
is an honest generalisation of the classical notion of a sheaf.

Exercise 5. Let Spec(L) — Spec(L’) be a morphism in F¢(k) such that L/L’
is Galois with Galois group G = Aut(L/L’). Recall that there is a canonical
isomorphism

L®p L H L
G
where two morphisms L = L ®p/ L;a — 1 ® a,a ® 1 are identified with a +—
(a,a,...,a) and a — (a9,... ,a%) where g; are the elements of G. Show that

if F'is an étale sheaf on Spec(k), then F([[. L) = [[, F(L), and
F(L') = F(L)"

where F(L)Y = {s € F(L) : g*s = s V g € G}. Deduce that if I} — F; is a
morphism of étale sheaves such that Fy(L) & Fy(L) for every Galois extension
L/k}7 then F1 = FQ.



Remark 7. We will be able to show later on that a presheaf F on Et(k) is a
sheaf if and only if

1. F(W;erU;) 2 11, F(U;) for any collection U;, i € I, and

icl
2. F(L) = F(L)A“(Z'/L) for every Galois extension L'/L.

Theorem 8 (cf.Milne, Thm.I1.1.9). Suppose that k is a field, k*P [k is a sep-
arable closure, and G = Gal(k*P/k). Then there is a canonical equivalence
between the category G-set of discrettﬁ G—seteﬂ and the category Shv(Et(k) of
étale sheaves on k.

Remark 9. An easy case of the above theorem is £ = R. In this case the equiv-
alence Shv(Et(k)) — G-set is given by F — F(C). In general, however, k% /k
will not be finite, and therefore Spec(k*°?) is not in Et(k). This “problem” will
go away next quarter when we discuss the pro-étale topology.

Proof. For F € Shv(Et(k)) we define

Xp= lm F(L) (1)
kser /L /k

as the colimit over all subfields L of kP which are finite Galois extensions of k.

Xr is a discrete G-set. For any Galois L/k and any o € G we have
o(L) = L so o restricts to a (finite) automorphism of L/k (and hence an au-
tomorphism of F(L)) via the canonical map G — Gal(L/k) = G/Aut(k*? /L)
where Aut(k*?/L) ={g € G : g(a) = a ¥V a € L}. These actions are compatible
with inclusions L C L’ (and hence, the morphisms F(L) — F(L’)), hence we get
an action of G on Xp. Moreover, every € X is the image of some y € F(L),
so X is a discrete G-set. The assignment F' +— X is clearly natural in F', that
is, it defines a functor.

For future reference, we note that since F' is an étale sheaf, for each extension
L'/ L, the morphism F(L) — F(L’) is injective, and moreover, for any two Galois
extensions L'/L/k of k, by Exercise |5| we have F(L) = F(L')A“(Z'/L)  Since
the action of G commutes with the colimit , we get

Xﬁut(kSCp/L) _ li F(L/)Aut(k“”/L) _ li F(L/)Aut(L'/L)
kser JL//L/k kser /L' /L/k
= h_n} F(L)=F(L).
kser /L' /L/k
Now suppose we have a discrete G-set X. Recall that every étale k-algebra

is of the form H?:l L; for some finite separable field extensions L;. We define a
presheaf on Et(k) as

Fx(U) = homg (homspoc(k) (Spec(ksep)7 U) , X) ,

3Here discrete means that for every z € X, there is a finite Galois extension L/k with
stabiliser Stab(L) C G such that z € XStab(L),
4That is, a set X equipped with an action of G.



where homg means G-equivariant morphisms, and G = Gal(k*? /k) = homy, (k5P k5°P)
acts on homgpec(ry (Spec(k*?), U) by composition.

Fx is an étale sheaf. Cf. Milne, Lem.I.1.8. By Remark [7] to show Fy is a
sheaf, it suffices to check that

Fy(L) = Fy (L)@

for finite Galois extensions L'/L. Note that for any Galois extension L’/k and
any subextension L'/L/k we have

homy, (L', k°P) gs(rr /1) — homy (L, k°P).

it follows from this that Fx(L) = Fx(L')A“('/L) Note that for any fi-
nite Galois subextension k*”?/L/k we have homgpec (i) (Spec(k*“P), Spec(L)) =
Gal(L/k). So

Fx (L) = homg(Gal(L/k), X ) = X Aut(-""/L), (2)
Combining and we get
XFX — hﬂFX(L) — @XAUt(kSEP/L) - X.
L L

On the other hand, by we get
FXF (L) _ X?ut(kSep/L) _ F(L)

for Galois extensions L/k. Then by Exercise [5| we have Fx, = F.
So the assignements X — Fx and F' — X are inverse equivalences. O

Exercise 6 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {U; — U};er and
{Uij = U} ey, are coverings. Using the diagram

| |

FU) ——[[F(Uj) == [1 F(Uij xv Uijr)

show that if F' satisfies the sheaf condition for {U;; = U}icrjes, and
each F'(U;) — [[;, F(Ui;) is injective, then F satisfies the sheaf condition for
{UZ — U}ie].

Deduce that a presheaf F' on LH(X) from Exercise 2| is a presheaf if and
only if F|op(yy is a sheaf on Op(Y) from Exercise [1| for every Y € LH(X).

Exercise 7 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {V — U} and {U —



X} are coverings consisting of single morphisms. Using the diagram

F(VxxV) [[F(U xx U)

| S I

[[F(V xy V) ==]IF(V) F(U)
F(X)

show that if F' satisfies the sheaf condition for {V.— U} (cf.middle row)
and {U — X} (cf.right column), and each F(U xxU) — F(V xx V) is injective
(cf. top row), then F satisfies the sheaf condition for {V — X} (cf. diagonal).

Exercise 8 (Advanced. Omitted from lecture). Do Exercise [7] for coverings
{U; = X }ier and {Vi; — U} e, containing more than one element.

Exercise 9 (Advanced). Let X be a scheme. Deduce from Exercises [6] and
Exercise [§ that a presheaf F' on Et(X) is a sheaf if and only if F|opy is a
sheaf for every Y € Et(X), and F satisfies the sheaf condition for every
covering {Y; — Y };cr such that Y and each Y; are affine schemes.

Exercise 10. Recall that for any faithfully flat ring morphism A — B the
sequence 0 = A — B — B ®4 B is exact. Deduce from this and Exercise [9]
that for any scheme X and any affine scheme T, the presheaf hom(—,T) is a
sheaf on Ft(X). (Actually, its also true without the affine hypothesis, and for

the category Fppf(X)).

Corollary 10. The following representable presheaves are étale sheaves.
1. hom(—,A"); X — I'(X, Ox),
2. hom(—,G,,); X — I'(X,0%),

3. ppn = hom(—, Spec(TZ;[j_w]l)); X —{ael(X,0%) :a" =1},

4. GL, = hom(—, Spec (W)) X 3 GLo(D(X, Ox)),

2 Sheafification

Definition 11. A presheaf F' on a category equipped with a Grothendieck topol-
ogy is called separated if the morphism F(U) — [[;c; F(U;) is injective for
every covering {U; — Ulier.

Remark 12. Every sheaf is separated.



Exercise 11. Suppose that C is a category equipped with a Grothendieck topol-
ogy, and let F' be a presheaf. For U € C define F*(U) as the quotient group

F3(U) = F(U)/Uker <F(U) — HF(UQ)

iel

where the union is over all covering families {U; — U};er. Show that for any
morphism V' — U in C, there is an induced morphism F*(U) — F*(V), that
is, F'* is a presheaf. Show that F'* is separated. Show that if FF — G is any
morphism from F' to a separated presheaf GG, there exists a unique factorisation
F — F? — G. In particular, this is true for every sheaf G.

Proposition 13. Let C be a category equipped with a Grothendieck topology.
For every presheaf F' on C, there exists a universal morphism F — F® to a
sheaf. That is, a morphism towards a sheaf such that for any other morphism
F — G towards a sheaf, there is a unique factorisation F — F* — G.

In other words, the (fully faithful) inclusion Shv(C) — PreShv(C) admits a
left adjoint (—)® : PreShv(C) — Shv(C).

Proof. By Exercise [L1] it suffices to consider the case that F is separated. For
U € C define

H°(U,F) = limeq [[Fw) =[] FWi <o Uy)
i€l i,5€l

Omitted from lecture: Note that this is functorial in F', and if F' is a sheaf we
have H°(U, F) = F(U) by the sheaf condition. It follows from this (with a little
bit of work) that we get a unique factorisation F — H°F — G for any sheaf G.
So it suffices to show that HOF is a sheaf. For simplicity we assume that F is a
sheaf of abelian groups, and all covers have a single element. The general case
is the same proof, just more confusing chasing indices around.

So suppose that {V — U} is a covering of U. We want to show that

0— H°(UF)— H'(V,F) — H°(V xy V, F)

is exact. Let (U’,s € F(U’)) represent an element of H°(U, F') and suppose that
it gets sent to zero in V. Putting in the definitions, we see that this means that
there is a refinement V! — V xy U’ — V of the covering V xy U’ — V such
that s|y» = 0. But this is also a refinement of {U’ — U}, so (U',s € F(U"))
and (V’/,0 € F(V")) represent the same element of H(U, F).
Showing exactness in the middle is fiddly and not very informative, so we
omit it. It can be found in [Artin, Grothendieck topologies, 1962, Lemma.2.1.2(ii)].
O

Definition 14. The sheaf F* in Proposition [13 is called the sheafification or
associated sheaf of F.



Corollary 15. Let C be a category equipped with a Grothendieck topology. Then
the category Shv(C, Ab) of sheaves of abelian groups is an abelian category.

Sketch of proof. Limits (i.e., products and kernels) can be calculated section-
wise. E.g., ker(F — G)(U) = ker(F(U) — G(U)). Colimits (i.e., sums and cok-
ernels) are calculated sectionwise, and then sheafified. E.g., the sheaf cokernel
of ' — G is the sheafification of the presheaf U +— coker(F(U) — G(U)). O

3 Stalks

Definition 16. A geometric point of a scheme X is a morphism T — X such
that T = Spec(Q)) for some separably closed field Q.

Definition 17. Let F' be a presheaf on Et(X). For a geometric point T — X
we define the stalk at T as

Fr= lim F(Y)

T—=Y =X
where the colimit is over factorisations of T — X wvia some Y € Et(X).

Remark 18. If X is a topological space, F is a sheaf on X, and x € X is a
point, then classically, the stalk of F' at x is defined as the colimit

F,= lim F(U)
zeUCX

over open subsets of X containing x. The above definition is the étale analogue
of this classical definition.

Remark 19. If F' is a presheaf defined on all schemes that commutes with
filtered colimits, then Fz = F(Og(h’x) where z = im(Z) € X and Oﬁ(h,x is the
strict henselisation of Ox , defined by the separably closed extension k(Z)/k(x).
In particular, if F =0 :Y — T'(Y,Oy), then Fz = ngfz.

Remark 20. If k°°? /k is a separable closure, then T = Spec(k*?) — Spec(k)
is a geometric point, and F3 is the G-set X defined above.

Proposition 21. Suppose that F is a sheaf of abelian groups on Et(X) and
Y € Et(X). Then a section s € F(Y) is zero if and only if for any geometric
point T — Y its image in each Fg is zero.

Proof. Since all sheaves are separated, it suffices to show that for every s €
F(Y), there exists a covering {U; — Y };¢; such that s|y, = 0 for all ¢ € I. For
every point € Y, choose a separable closure k(z)®/k(z), and let T — X be the
corresponding geometric point. Since the image of s in F is zero, there is some
T — V — Y such that s|y = 0. Since V is associated to z, let us write V, = V.
We do this for every point z € Y, and obtain a family {V, — Y},cy of étale
morphisms indexed by points of Y. Since z € im(V, — Y) for each z € Y, the
family is surjective, and therefore is a covering. By construction s|y, = 0 for
each Y, so s = 0. O




Corollary 22. A sheaf of abelian groups F on Et(X) is zero if and only if
Fz =0 for each x € X.

Proof. (Omitted from lecture). We want to show that s = 0 for every Y €
Et(X), s € F(Y). By Proposition it suffices to show that Fz = 0 for
every geometry point T — Y. We claim that Fz_,yv = Fz_y_, x. Indeed, there
is a canonical morphism

Fy_>y_>X = hgrl F(U) — hﬂ F(V) = F§_>Y

z—>U—X >V Y

defined by sending a representative (U,s € F(U)) to (UxyV,s|lux,v). Injec-
tivity is straight-forward. For surjectivity, note that any representative (V,s €
F(V)) of Fz_y can be considered as a representative of an element s €
Fz_.v_.x. Then due to the factorisation V' — V xx Y — Y, the image of
s’ is precisely the element represented by (V,s € F(V)). O

Corollary 23. A morphism of sheaves of abelian groups ¢ : F — G is a
monomorphism, (resp. epimorphism, resp. isomorphism) if and only if ¢z :
Fz — Gz is for each geometric point T — X.

Proof. (Omitted from lecture). Since the definition of (—)z is defined by a fil-
tered colimit, it commutes with kernels and cokernels. Applying Corollary
to ker ¢ and coker ¢ gives the result. O
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