In this lecture we define étale sheaves using the étale topology.

1 Sheaves

We begin with the general theory of Grothendieck sites. This is a generalisation of the notion of a topological space, which allows us to use more general morphisms in place of open immersions.

Definition 1. A (Grothendieck) topology on a category C is the data of: for every object $U \in C$, a collection of families of morphisms $\{U_i \to U\}_{i \in I}$. The families in these collections are called coverings of U. This data is required to satisfy the following axioms:

- 1. $\{U \stackrel{\text{id}}{\to} U\}$ is a covering, for every object U.
- 2. If $\{U_i \to U\}_{i \in I}$ is a covering of U, and $V \to U$ is a morphism, then each fibre product $U_i \times_U V$ exists, and $\{U_i \times_U V \to V\}_{i \in I}$ is a covering of V.
- 3. If $\{U_i \to U\}_{i \in I}$ is a covering of U, and for each $i \in I$ we have a covering $\{U_{ij} \to U_i\}_{j \in J_i}$ of U_i , then $\{U_{ij} \to U\}_{i \in I, j \in J_i}$ is a covering of U.

A category equipped with a Grothendieck topology is called a site.

Exercise 1. Suppose that X is a topological space in the conventional sense.¹ Define Op(X) to be the category whose objects are open sets of X, and morphisms are inclusions. For $U \in Op(X)$, define the coverings of U to be the families $\{U_i \to U\}_{i \in I}$ such that $\bigcup_{i \in I} U_i = U$. Show that this defines a Grothendieck topology on Op(X). (Note that in this category $V \times_U W = V \cap W$.)

Exercise 2. Let X be a topological space, and define LH(X) to be the category whose objects are local homeomorphisms² $Y \to X$ and morphisms are commutative triangles $\bigvee_{X}^{Y' \to Y}$. Show that this category has fibre products.

For $Y \in LH(X)$, define the coverings of Y to be the families $\{f_i : Y_i \to Y\}_{i \in I}$ such that $\bigcup_{i \in I} f_i(Y_i) = Y$. Show that this defines a Grothendieck topology on LH(X).

Exercise 3. Recall that a morphism $f: Y \to X$ of schemes is étale if it is locally of finite presentation, and for every $y \in Y$, the ring morphism $\mathcal{O}_{X,f(x)} \to \mathcal{O}_{Y,y}$ is étale. Let Et(X) denote the category whose objects are étale morphisms $Y \to X$, and morphisms are commutative triangles. Do Exercise 2 with Et(X) instead of LH(X).

Definition 2. A presheaf F on a category C is just a functor $C^{op} \to \operatorname{Set}$. A morphism of presheaves $F \to G$ is just natural transformation of functors $F \to G$.

¹I.e., a set equipped with a collection of subsets of X declared to be *open*, preserved by finite intersection, arbitrary union, and containing X and \varnothing .

²A morphism $f: Y \to X$ is a local homeomorphism if for every point $y \in Y$, there is an open neighbourhood $V \ni y$ such that $f: V \to f(V)$ is a homeomorphism.

Definition 3. If C is equipped with a Grothendieck topology, then a presheaf F is called a sheaf if for any object U and any covering $\{U_i \to U\}_{i \in I}$ we have

$$F(U) = \operatorname{eq}\left(\prod_{i \in I} F(U_i) \rightrightarrows \prod_{i,j \in I} F(U_i \times_U U_j)\right). \tag{III}$$

A morphism of sheaves is just a morphism of presheaves. A sheaf on Et(X) for some scheme X is called an étale sheaf on X.

Remark 4. If A is a ring, we will write Et(A) instead of $Et(\operatorname{Spec}(A))$ and if $A \to B$ is an étale algebra, and F a presheaf on Et(A) we will write F(B) instead of $F(\operatorname{Spec}(B))$.

Example 5. We have the following important examples of étale sheaves on Et(k), cf. Exercise 10.

- 1. $\mathcal{O}: L \mapsto (L, +)$.
- 2. $\mathcal{O}^* : L \mapsto (L^*, *).$
- 3. $\mu_n : L \mapsto \{a \in L^* : a^n = 1\}.$

Remark 6. If a presheaf takes values in the category of abelian groups, then the sheaf condition (III) is equivalent to asking that the sequence

$$0 \to F(U) \to \prod_{i \in I} F(U_i) \to \prod_{i,j \in I} F(U_i \times_U U_j)$$

be exact, where the last morphism is the difference of the two morphisms induced by the two projections $U_i \times_U U_j \rightrightarrows U_i, U_j$.

Exercise 4. Let X be a topological space in the conventional sense. Consider the Grothendieck topology defined on Op(X) in Exercise 1. Show that a presheaf on X is the same thing as a presheaf on Op(X), and a presente on X is a sheaf if and only if its associated presheaf on Op(X) is a sheaf. That is, Definition 3 is an honest generalisation of the classical notion of a sheaf.

Exercise 5. Let $\operatorname{Spec}(L) \to \operatorname{Spec}(L')$ be a morphism in Et(k) such that L/L' is Galois with Galois group $G = \operatorname{Aut}(L/L')$. Recall that there is a canonical isomorphism

$$L\otimes_{L'}L\cong\prod_G L$$

where two morphisms $L \rightrightarrows L \otimes_{L'} L$; $a \mapsto 1 \otimes a$, $a \otimes 1$ are identified with $a \mapsto (a, a, \ldots, a)$ and $a \mapsto (a^{g_1}, \ldots, a^{g_n})$ where g_i are the elements of G. Show that if F is an étale sheaf on $\operatorname{Spec}(k)$, then $F(\prod_G L) \cong \prod_G F(L)$, and

$$F(L') = F(L)^G$$

where $F(L)^G = \{s \in F(L) : g^*s = s \ \forall \ g \in G\}$. Deduce that if $F_1 \to F_2$ is a morphism of étale sheaves such that $F_1(L) \cong F_2(L)$ for every Galois extension L/k, then $F_1 \cong F_2$.

Remark 7. We will be able to show later on that a presheaf F on Et(k) is a sheaf if and only if

- 1. $F(\coprod_{i\in I} U_i) \cong \prod_{i\in I} F(U_i)$ for any collection $U_i, i\in I$, and
- 2. $F(L) = F(L')^{Aut(L'/L)}$ for every Galois extension L'/L.

Theorem 8 (cf.Milne, Thm.II.1.9). Suppose that k is a field, k^{sep}/k is a separable closure, and $G = Gal(k^{sep}/k)$. Then there is a canonical equivalence between the category G-set of discrete³ G-sets⁴ and the category Shv(Et(k)) of étale sheaves on k.

Remark 9. An easy case of the above theorem is $k = \mathbb{R}$. In this case the equivalence $\mathsf{Shv}(Et(k)) \to G$ -set is given by $F \mapsto F(\mathbb{C})$. In general, however, k^{sep}/k will not be finite, and therefore $\mathsf{Spec}(k^{sep})$ is not in Et(k). This "problem" will go away next quarter when we discuss the pro-étale topology.

Proof. For $F \in \mathsf{Shv}(Et(k))$ we define

$$X_F = \varinjlim_{k^{sep}/L/k} F(L) \tag{1}$$

as the colimit over all subfields L of k^{sep} which are finite Galois extensions of k.

 X_F is a discrete G-set. For any Galois L/k and any $\sigma \in G$ we have $\sigma(L) = L$ so σ restricts to a (finite) automorphism of L/k (and hence an automorphism of F(L)) via the canonical map $G \to Gal(L/k) \cong G/Aut(k^{sep}/L)$ where $Aut(k^{sep}/L) = \{g \in G : g(a) = a \ \forall \ a \in L\}$. These actions are compatible with inclusions $L \subseteq L'$ (and hence, the morphisms $F(L) \to F(L')$), hence we get an action of G on X_F . Moreover, every $x \in X_F$ is the image of some $y \in F(L)$, so X_F is a discrete G-set. The assignment $F \mapsto X_F$ is clearly natural in F, that is, it defines a functor.

For future reference, we note that since F is an étale sheaf, for each extension L'/L, the morphism $F(L) \to F(L')$ is injective, and moreover, for any two Galois extensions L'/L/k of k, by Exercise 5 we have $F(L) = F(L')^{Aut(L'/L)}$. Since the action of G commutes with the colimit (1), we get

$$\begin{split} X_F^{Aut(k^{sep}/L)} &= \varinjlim_{k^{sep}/L'/L/k} F(L')^{Aut(k^{sep}/L)} = \varinjlim_{k^{sep}/L'/L/k} F(L')^{Aut(L'/L)} \\ &= \varinjlim_{k^{sep}/L'/L/k} F(L) = F(L). \end{split}$$

Now suppose we have a discrete G-set X. Recall that every étale k-algebra is of the form $\prod_{i=1}^{n} L_i$ for some finite separable field extensions L_i . We define a presheaf on Et(k) as

$$F_X(U) = \hom_G \bigg(\hom_{\operatorname{Spec}(k)} \big(\operatorname{Spec}(k^{sep}), U \big), X \bigg),$$

³Here discrete means that for every $x \in X$, there is a finite Galois extension L/k with stabiliser $Stab(L) \subseteq G$ such that $x \in X^{Stab(L)}$.

⁴That is, a set \overline{X} equipped with an action of G.

where hom_G means G-equivariant morphisms, and $G = Gal(k^{sep}/k) = \text{hom}_k(k^{sep}, k^{sep})$ acts on $\text{hom}_{\text{Spec}(k)}(\text{Spec}(k^{sep}), U)$ by composition.

 F_X is an étale sheaf. Cf. Milne, Lem.I.1.8. By Remark 7, to show F_X is a sheaf, it suffices to check that

$$F_X(L) = F_X(L')^{Aut(L'/L)}$$

for finite Galois extensions L'/L. Note that for any Galois extension L'/k and any subextension L'/L/k we have

$$\operatorname{hom}_k(L', k^{sep})_{Aut(L'/L)} \stackrel{\sim}{\to} \operatorname{hom}_k(L, k^{sep}).$$

it follows from this that $F_X(L) = F_X(L')^{Aut(L'/L)}$. Note that for any finite Galois subextension $k^{sep}/L/k$ we have $\hom_{\operatorname{Spec}(k)}(\operatorname{Spec}(k^{sep}),\operatorname{Spec}(L)) = \operatorname{Gal}(L/k)$. So

$$F_X(L) = \hom_G(\operatorname{Gal}(L/k), X) = X^{\operatorname{Aut}(k^{\operatorname{sep}}/L)}.$$
 (2)

Combining (1) and (2) we get

$$X_{F_X} = \varinjlim_L F_X(L) = \varinjlim_L X^{Aut(k^{sep}/L)} = X.$$

On the other hand, by (2) we get

$$F_{X_F}(L) = X_F^{Aut(k^{sep}/L)} = F(L)$$

for Galois extensions L/k. Then by Exercise 5 we have $F_{X_F} = F$. So the assignments $X \mapsto F_X$ and $F \to X_F$ are inverse equivalences.

Exercise 6 (Omitted from lecture). Suppose that F is a presheaf on a category \mathcal{C} equipped with a Grothendieck topology. Suppose that $\{U_i \to U\}_{i \in I}$ and $\{U_{ij} \to U_i\}_{j \in J_i}$ are coverings. Using the diagram

$$F(U) \longrightarrow \prod F(U_i) \Longrightarrow \prod F(U_i \times_U U_{i'})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

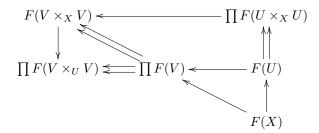
$$F(U) \longrightarrow \prod F(U_{ij}) \Longrightarrow \prod F(U_{ij} \times_U U_{i'j'})$$

show that if F satisfies the sheaf condition (III) for $\{U_{ij} \to U\}_{i \in I, j \in J_i}$ and each $F(U_i) \to \prod_{J_i} F(U_{ij})$ is injective, then F satisfies the sheaf condition for $\{U_i \to U\}_{i \in I}$.

Deduce that a presheaf F on LH(X) from Exercise 2 is a presheaf if and only if $F|_{Op(Y)}$ is a sheaf on Op(Y) from Exercise 1 for every $Y \in LH(X)$.

Exercise 7 (Omitted from lecture). Suppose that F is a presheaf on a category \mathcal{C} equipped with a Grothendieck topology. Suppose that $\{V \to U\}$ and $\{U \to U\}$

X are coverings consisting of single morphisms. Using the diagram



show that if F satisfies the sheaf condition (III) for $\{V \to U\}$ (cf.middle row) and $\{U \to X\}$ (cf.right column), and each $F(U \times_X U) \to F(V \times_X V)$ is injective (cf. top row), then F satisfies the sheaf condition for $\{V \to X\}$ (cf. diagonal).

Exercise 8 (Advanced. Omitted from lecture). Do Exercise 7 for coverings $\{U_i \to X\}_{i \in I}$ and $\{V_{ij} \to U_i\}_{j \in J_i}$ containing more than one element.

Exercise 9 (Advanced). Let X be a scheme. Deduce from Exercises 6 and Exercise 8 that a presheaf F on Et(X) is a sheaf if and only if $F|_{Op(Y)}$ is a sheaf for every $Y \in Et(X)$, and F satisfies the sheaf condition (III) for every covering $\{Y_i \to Y\}_{i \in I}$ such that Y and each Y_i are affine schemes.

Exercise 10. Recall that for any faithfully flat ring morphism $A \to B$ the sequence $0 \to A \to B \to B \otimes_A B$ is exact. Deduce from this and Exercise 9 that for any scheme X and any affine scheme T, the presheaf hom(-,T) is a sheaf on Et(X). (Actually, its also true without the affine hypothesis, and for the category Fppf(X)).

Corollary 10. The following representable presheaves are étale sheaves.

- 1. $hom(-, \mathbb{A}^1)$; $X \mapsto \Gamma(X, \mathcal{O}_X)$,
- 2. $hom(-, \mathbb{G}_m); X \mapsto \Gamma(X, \mathcal{O}_X^*),$
- 3. $\mu_n = \text{hom}(-, \text{Spec}(\frac{\mathbb{Z}[T]}{T^n 1})); X \mapsto \{a \in \Gamma(X, \mathcal{O}_X^*) : a^n = 1\},\$
- 4. $GL_n = \text{hom}(-, \text{Spec}\left(\frac{\mathbb{Z}[U, T_{ij}: 1 \leq i, j \leq n]}{U \cdot \det T_{ij} 1}\right)); X \mapsto GL_n(\Gamma(X, \mathcal{O}_X)),$

2 Sheafification

Definition 11. A presheaf F on a category equipped with a Grothendieck topology is called separated if the morphism $F(U) \to \prod_{i \in I} F(U_i)$ is injective for every covering $\{U_i \to U\}_{i \in I}$.

Remark 12. Every sheaf is separated.

Exercise 11. Suppose that \mathcal{C} is a category equipped with a Grothendieck topology, and let F be a presheaf. For $U \in \mathcal{C}$ define $F^s(U)$ as the quotient group

$$F^{s}(U) = F(U) / \bigcup \ker \left(F(U) \to \prod_{i \in I} F(U_i) \right)$$

where the union is over all covering families $\{U_i \to U\}_{i \in I}$. Show that for any morphism $V \to U$ in \mathcal{C} , there is an induced morphism $F^s(U) \to F^s(V)$, that is, F^s is a presheaf. Show that F^s is separated. Show that if $F \to G$ is any morphism from F to a separated presheaf G, there exists a unique factorisation $F \to F^s \to G$. In particular, this is true for every sheaf G.

Proposition 13. Let C be a category equipped with a Grothendieck topology. For every presheaf F on C, there exists a universal morphism $F \to F^a$ to a sheaf. That is, a morphism towards a sheaf such that for any other morphism $F \to G$ towards a sheaf, there is a unique factorisation $F \to F^a \to G$.

In other words, the (fully faithful) inclusion $\mathsf{Shv}(\mathcal{C}) \to \mathsf{PreShv}(\mathcal{C})$ admits a left adjoint $(-)^a : \mathsf{PreShv}(\mathcal{C}) \to \mathsf{Shv}(\mathcal{C})$.

Proof. By Exercise 11 it suffices to consider the case that F is separated. For $U \in \mathcal{C}$ define

$$\check{H}^0(U,F) = \varinjlim \operatorname{eq} \left(\prod_{i \in I} F(U_i) \rightrightarrows \prod_{i,j \in I} F(U_i \times_U U_j) \right).$$

Omitted from lecture: Note that this is functorial in F, and if F is a sheaf we have $\check{H}^0(U,F)=F(U)$ by the sheaf condition. It follows from this (with a little bit of work) that we get a unique factorisation $F\to \check{H}^0F\to G$ for any sheaf G. So it suffices to show that \check{H}^0F is a sheaf. For simplicity we assume that F is a sheaf of abelian groups, and all covers have a single element. The general case is the same proof, just more confusing chasing indices around.

So suppose that $\{V \to U\}$ is a covering of U. We want to show that

$$0 \to \check{H}^0(U,F) \to \check{H}^0(V,F) \to \check{H}^0(V \times_U V,F)$$

is exact. Let $(U', s \in F(U'))$ represent an element of $\check{H}^0(U, F)$ and suppose that it gets sent to zero in V. Putting in the definitions, we see that this means that there is a refinement $V' \to V \times_U U' \to V$ of the covering $V \times_U U' \to V$ such that $s|_{V'} = 0$. But this is also a refinement of $\{U' \to U\}$, so $(U', s \in F(U'))$ and $(V', 0 \in F(V'))$ represent the same element of $\check{H}^0(U, F)$.

Showing exactness in the middle is fiddly and not very informative, so we omit it. It can be found in [Artin, Grothendieck topologies, 1962, Lemma.2.1.2(ii)].

Definition 14. The sheaf F^a in Proposition 13 is called the sheafification or associated sheaf of F.

Corollary 15. Let C be a category equipped with a Grothendieck topology. Then the category Shv(C, Ab) of sheaves of abelian groups is an abelian category.

Sketch of proof. Limits (i.e., products and kernels) can be calculated sectionwise. E.g., $\ker(F \to G)(U) = \ker(F(U) \to G(U))$. Colimits (i.e., sums and cokernels) are calculated sectionwise, and then sheafified. E.g., the sheaf cokernel of $F \to G$ is the sheafification of the presheaf $U \mapsto \operatorname{coker}(F(U) \to G(U))$.

3 Stalks

Definition 16. A geometric point of a scheme X is a morphism $\overline{x} \to X$ such that $\overline{x} = \operatorname{Spec}(\Omega)$ for some separably closed field Ω .

Definition 17. Let F be a presheaf on Et(X). For a geometric point $\overline{x} \to X$ we define the stalk at \overline{x} as

$$F_{\overline{x}} = \varinjlim_{\overline{x} \to Y \to X} F(Y)$$

where the colimit is over factorisations of $\overline{x} \to X$ via some $Y \in Et(X)$.

Remark 18. If X is a topological space, F is a sheaf on X, and $x \in X$ is a point, then classically, the stalk of F at x is defined as the colimit

$$F_x = \varinjlim_{x \in \overrightarrow{U \subseteq X}} F(U)$$

over open subsets of X containing x. The above definition is the étale analogue of this classical definition.

Remark 19. If F is a presheaf defined on all schemes that commutes with filtered colimits, then $F_{\overline{x}} = F(\mathcal{O}_{X,x}^{sh})$ where $x = \operatorname{im}(\overline{x}) \in X$ and $\mathcal{O}_{X,x}^{sh}$ is the strict henselisation of $\mathcal{O}_{X,x}$ defined by the separably closed extension $k(\overline{x})/k(x)$. In particular, if $F = \mathcal{O} : Y \mapsto \Gamma(Y, \mathcal{O}_Y)$, then $F_{\overline{x}} = \mathcal{O}_{X,x}^{sh}$.

Remark 20. If k^{sep}/k is a separable closure, then $\overline{x} = \operatorname{Spec}(k^{sep}) \to \operatorname{Spec}(k)$ is a geometric point, and $F_{\overline{x}}$ is the G-set X_F defined above.

Proposition 21. Suppose that F is a sheaf of abelian groups on Et(X) and $Y \in Et(X)$. Then a section $s \in F(Y)$ is zero if and only if for any geometric point $\overline{x} \to Y$ its image in each $F_{\overline{x}}$ is zero.

Proof. Since all sheaves are separated, it suffices to show that for every $s \in F(Y)$, there exists a covering $\{U_i \to Y\}_{i \in I}$ such that $s|_{U_i} = 0$ for all $i \in I$. For every point $x \in Y$, choose a separable closure $k(x)^s/k(x)$, and let $\overline{x} \to X$ be the corresponding geometric point. Since the image of s in $F_{\overline{x}}$ is zero, there is some $\overline{x} \to V \to Y$ such that $s|_V = 0$. Since V is associated to x, let us write $V_x = V$. We do this for every point $x \in Y$, and obtain a family $\{V_x \to Y\}_{x \in Y}$ of étale morphisms indexed by points of Y. Since $x \in \text{im}(V_x \to Y)$ for each $x \in Y$, the family is surjective, and therefore is a covering. By construction $s|_{Y_x} = 0$ for each Y_x , so s = 0.

Corollary 22. A sheaf of abelian groups F on Et(X) is zero if and only if $F_{\overline{x}} = 0$ for each $x \in X$.

Proof. (Omitted from lecture). We want to show that s=0 for every $Y \in Et(X)$, $s \in F(Y)$. By Proposition 21, it suffices to show that $F_{\overline{x}}=0$ for every geometry point $\overline{x} \to Y$. We claim that $F_{\overline{x} \to Y} = F_{\overline{x} \to Y \to X}$. Indeed, there is a canonical morphism

$$F_{\overline{x} \to Y \to X} = \varinjlim_{\overline{x} \to U \to X} F(U) \to \varinjlim_{\overline{x} \to V \to Y} F(V) = F_{\overline{x} \to Y}$$

defined by sending a representative $(U, s \in F(U))$ to $(U \times_Y V, s|_{U \times_Y V})$. Injectivity is straight-forward. For surjectivity, note that any representative $(V, s \in F(V))$ of $F_{\overline{x} \to Y}$ can be considered as a representative of an element $s' \in F_{\overline{x} \to Y \to X}$. Then due to the factorisation $V \to V \times_X Y \to Y$, the image of s' is precisely the element represented by $(V, s \in F(V))$.

Corollary 23. A morphism of sheaves of abelian groups $\phi: F \to G$ is a monomorphism, (resp. epimorphism, resp. isomorphism) if and only if $\phi_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ is for each geometric point $\overline{x} \to X$.

Proof. (Omitted from lecture). Since the definition of $(-)_{\overline{x}}$ is defined by a filtered colimit, it commutes with kernels and cokernels. Applying Corollary 22 to ker ϕ and coker ϕ gives the result.