
1 Flatness

Definition 1. Let A be a ring. An A-module M is flat if for every monomor-
phism of A-modules N ⊆ N ′, the morphism M ⊗A N → M ⊗A N ′ is also a
monomorphism. Thats is, if M ⊗A− preserves monomorphisms. An A-algebra
is flat if it is flat when considered as an A-module.

Exercise 1. Show that if k is a field, every k-module (and therefore k-algebra)
is flat.

Exercise 2. Show that if A is a ring and S ⊆ A a multiplicatively closed subset,
A→ A[S−1] is flat.

Example 2. In fact, an A-module M is flat if and only if for every prime p ⊆ A
the Ap-module Mp is flat. See Milne, Prop.I.2.2.

Example 3. The blowup of k[x, y] at (x, y) is covered by the two open affines
Spec(k[x, yx ]) and Spec(k[xy , y]). Neither of k[x, y]→ k[x, yx ], k[xy , y] are flat.1

— draw picture of blowup —

Exercise 3. Let A be a ring and I ⊆ A an ideal.

1. Show that if A/I is a flat A-algebra then I = I2.

2. (Advanced) Show that if I is finitely generated and I = I2 then A/I is a
flat A-algebra.

3. (Advanced) Give an example of an ideal I of a ring A such that I = I2

but A/I is not a flat A-algebra.

— draw picture of closed immersion, and inclusion of a connected component —

Flatness is a “local uniformity” condition.

Exercise 4.

1. If A→B and B→C are flat ring morphisms, show that the composition
A→C is flat.

1Consider the proper inclusions (x) ⊂ (x, y) ⊂ k[x, y]. Since (x)k[x, y
x

] = (x, y)k[x, y
x

],
the images of α : (x) ⊗k[x,y] k[x, y

x
] → k[x, y

x
] and β : (x, y) ⊗k[x,y] k[x, y

x
] → k[x, y

x
] are

equal. So if α and β are both monomorphisms, then we must have (x) ⊗k[x,y] k[x, y
x

] ∼=
(x, y) ⊗k[x,y] k[x, y

x
], but this is not the case: Consider the exact sequence (x) → (x, y) →

(x, y)/(x). If (x) ⊗k[x,y] k[x, y
x

] ∼= (x, y) ⊗k[x,y] k[x, y
x

], then ((x, y)/(x)) ⊗k[x,y] k[x, y
x

] = 0.
But k[x, y]/(x)→ (x, y)/(x); f 7→ yf is an isomorphism of k[x, y]-modules, so

((x, y)/(x))⊗k[x,y] k[x, y
x

] ∼= (k[x, y]/(x))⊗k[x,y] k[x, y
x

] ∼= k[x, y
x

]/(x)k[x, y
x

]

which is not zero.
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2. If A→ B is flat and A→ D is any ring morphism, show that D → D⊗AB
is a flat ring morphism.

Definition 4. Let A be a ring. An A-module M is faithfully flat if it is flat, and
given any morphism of A-modules φ : N → N ′ such that M ⊗A N →M ⊗A N ′
is a monomorphism, the morphism φ is a monomorphism. An A-algebra B is
faithfully flat if it is faithfully flat when considered as an A-module.

Example 5. One can show quite easily (see Milne Prop.I.2.7) that a flat ring
homomorphism A → B is faithfully flat if and only if Spec(B) → Spec(A) is
surjective. Consequently, if k is a field, every k-algebra is faithfully flat. If A a
ring and f1, . . . , fn ∈ A generate the unit ideal then {SpecA/fi → SpecA}ni=1

is an open cover, so A→
∏
Afi is flat.

Exercise 5. Suppose that M is an A-module and A → B is a faithfully flat
morphism. Show that if M ⊗AB is a flat B-module, then M is a flat A-module.

Exercise 6. Let M be a flat A-module.

1. Show that M is faithfully flat if and only if for every A-module N such
that M ⊗A N ∼= 0, we have N ∼= 0.

2. Show that if M is faithfully flat, then given any morphism of A-modules
φ : N → N ′ such that M ⊗AN →M ⊗AN ′ is a surjection, the morphism
φ is a surjection.

3. Deduce that if M is faithfully flat, then a sequence of A modules is exact
if it is exact after applying M ⊗A −.

The following theorem will be used to show that O,O∗, µn, GLn,Ω1, . . . are
étale sheaves.

Theorem 6 (See Milne I.2.17). Suppose that f : A→ B is a faithfully flat ring
morphism. Then

0→ A
f→ B

d→ B ⊗A B
d→ B ⊗A B ⊗A B

d→ . . .

is an exact sequence of A-modules. Here we define

ei : b0 ⊗ · · · ⊗ br−1 7→ b0 ⊗ . . . bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ br−1,

d =
∑

(−1)iei.

Exercise 7. Show that d ◦ f = 0 and d ◦ d = 0.

Proof. First suppose that there is a ring homomorphism r : B → A such that
r ◦ f = id. Next define

s : b0 ⊗ b1 ⊗ · · · ⊗ br+1 7→ r(b0)b1 ⊗ · · · ⊗ br+1
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and check that s ◦ d+ f ◦ r = id and s ◦ d+ d ◦ s = id. In other words, we have
constructed a chain complex homotopy between id and 0. Consequently, the
cohomology groups of the chain complex are zero. In other words, the sequence
is exact. More explicitly, if a ∈ ker d, then a = sda+dsa = 0 +dsa, so a ∈ im d.

Now consider some A-algebra A′, let B′ = A′ ⊗A B, and let f ′ = A′ ⊗A f .
Since

A′ ⊗A (B ⊗A · · · ⊗A B) ∼= (A′ ⊗A B)⊗A′ · · · ⊗A′ (A′ ⊗A B)

applying A′ ⊗A − to the sequence for f produces the sequence for f ′. So
by Exercise 6, if we can find some faithfully flat A → A′ such that f ′ has a
retraction, then the theorem is proven. Taking A′ = B with the retraction
B ⊗A B → B; b1 ⊗ b2 7→ b1b2 finishes the proof.

2 Unramified morphisms

Recall that by definition, the residue field k(p) at a prime p of a ring A is
k(p) = Ap/pAp.

Definition 7. A morphism of rings φ : A → B is unramified at a prime
q ⊆ B if k(q) is a finite separable field extension of k(p) where p = φ−1q. It is
unramified if it is of finite presentation and unramified at every prime.

Example 8. The morphisms k[x]→ k[x, y]/(x+y)(x−y) and k[x]→ k[x];x 7→
x2 are unramified everywhere except at the origin.

— draw pictures —

Suppose k = Fp(t). The morphism k[x]→ k[x, y]/yp−xy−t is unramified every
except at (x, yp−t) where it becomes the inseparable extension Fp(t)→ Fp(t1/p).

Remark 9. A finite presentation morphism is unramified if and only if the
diagonal morphism Spec(B)→ Spec(B ⊗A B) is an open immersion (this uses:
a finite presentation morphism is unramified if and only if ΩB/A = 0, and the
identification I/I2 ∼= ΩB/A where I = ker(B⊗AB→B)). See. Milne Prop.I.3.5.

Exercise 8 (Advanced). Using Remark 9 (i.e., that the diagonal is an open
immersion) show that: if φ : A → B is unramified, and σ : B → A any retract
(i.e., σ ◦ φ = id) Then Spec(σ) : Spec(A) → Spec(B) is an open immersion.
Hint: Consider the pullback of Spec(σ) : Spec(A)→ Spec(B) along Spec(B)→
Spec(B ⊗A B)→ Spec(B).

Exercise 9 (cf. Exercise 4). Let A → B → C and A → D be ring homomor-
phisms. Show the following.

1. If A→ B and B → C are unramified, then so is A→ C.

2. (a) If k is a field, a finite presentation k-algebra k → S is unramified
if and only if k → Sq is a finite separable field extension for every
prime q ⊆ S.
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(b) A finite presentation morphism R → S is unramified if and only if
k(p)→ k(p)⊗R S is unramified for every prime p ∈ R.

(c) If A→ B is unramified then so is D → D ⊗A B.

Remark 10. Milne uses finite type instead of finite presentation, but all Milne’s
schemes and rings are noetherian, so its the same thing.

3 Étale morphisms

Definition 11. A morphism of finite presentation of rings is étale if it is flat
and unramified.

Remark 12. It is equivalent to define an étale morphism as a smooth morphism
of relative dimension zero, but in practice the above definition is easier to use.

Example 13. Let k be a field and k → A a finitely presented k-algebra. Then A
is étale if and only if A ∼= L1×· · ·×Ln for some finite separable field extensions
Li/k.

Exercise 10 (cf. Exercises 4 and 9). Let A → B → C and A → D be ring
homomorphisms. Show the following.

1. If A→ B and B → C are étale, then so is A→ C.

2. If A→ B is étale then so is D → D ⊗A B.

Example 14. Suppose Y → X is a morphism of smooth affine C-varieties, say
Y = Spec(B) and Spec(A). Then A → B is étale if and only if Y (C) → X(C)
is a local homeomorphism of topological spaces.

— draw picture of a local homeomorphism —

We will see later that this “local homeomorphism” description is true in an
algebraic setting too.

4 Hensel rings

Definition 15. A local ring A with maximal ideal m is henselian if for every
étale morphism φ : A → B, and every prime q ⊂ B such that φ−1q = m and
k(m) = k(q), there exists a ring homomorphism σ : B → A such that σ−1m = q
and σ ◦ φ = id.

cf. “Inverse function theorem” Spec(k(q)) // Spec(B)

��
Spec(k(m)) // Spec(A)

CC

4



Theorem 16. Let A be a local ring with maximal ideal m and residue field
κ = A/m. The following are equivalent.

1. Hensel’s Lemma holds: If f ∈ A[t] is a monic such that f ∈ κ[t] factors
as f = g0h0 with g0, h0 monic and coprime, then f factors as f = gh with
g and h monic and such that g = g0 and h = h0.

2. Any finite A-algebra B is a direct product of local rings B =
∏
Bi.

3. If Spec(B)→ Spec(A) is quasi-finite and finite type, then B = B0 × · · · ×
Bn where κ⊗A B0 = 0, and for i > 0, each A → Bi is finite and Bi is a
local ring.

4. A is henselian.

Proof. For the omitted steps, see Milne, Étale cohomology, Theorem I.4.1.
(1) ⇒ (2). First note: by the going up theorem for any finite A-algebra B,

all maximal ideals of B lie over m. So B is local if and only if B/mB is local.
Now assume B is of the form B = A[t]/(f) with f monic. If f = gn0 for some

n ∈ Z, g0 ∈ κ[t] irreducible, then B/mB is local, so B is local. If not, then by
(1) we have f = gh with g, h monic and g, h coprime. Hence, κ[t]/(g0, h0) = 0,
so A[t]/(g, h) = 0 (by Nakayama’s Lemma). Since (g) + (h) = (g, h) = 0, and
(f) = (gh) = (g)∩ (h), it then follows from a version of the Chinese Remainder
Theorem that A[t]/g ×A[t]/h

∼→ A[t]/f . Iterating this process gives the result.
The general case is omitted.

(2) ⇒ (3). Let A′ be the integral closure of A in B, so we have morphisms
Spec(B) → Spec(A′) → Spec(A). A version of Zariski’s Main Theorem says
that Spec(B) → Spec(A′) is an open immersion, and Spec(A′) → Spec(A)
is finite. By (2), A′ ∼=

∏
A′i for local rings A′i (which are finite over A).

The decomposition Spec(A′) = tSpec(A′i) induces a decomposition Spec(B) =
t Spec(B′i) (explicitly Spec(B′i) = Spec(B) ∩ Spec(A′i)). Let Spec(B0) be the
union of the Spec(B′i) such that Spec(B′i) → Spec(A′i) is not surjective (i.e.,
such that Spec(B′i) ⊆ Spec(A′i) does not contain the closed point), and let
Spec(B1), . . . ,Spec(Bn) be the other connected components.

(3) ⇒ (4). Suppose q ⊆ B is as in the definition of henselian. By (3) we
can assume that φ : A → B is finite and B is a local ring. Since B is a finite
flat module over a local ring, it is free (Matsumura. Commutative ring theory,
Thm.7.10). That is, B ∼= A⊕d as an A-module. But B ⊗A κ ∼= B/mB ∼= B/q =
k(q) ∼= k(m) = κ by assumption. So d = 1, and we find that B ∼= A.

(4) ⇒ (1). Ommited.

Example 17. Fields are henselian. Any complete local ring is henselian (see
Milne, I.4.5).

Proposition 18. For every local ring A, there exists a universal local morphism
to a local henselian ring. That is, there exists a local morphism A → Ah to a
local henselian ring Ah such that for every other local morphism A → B to a
local henselian ring, there is a unique factorisation A→ Ah → B.
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Proof. Consider the category of factorisations A
φ→ B → A/m such that φ is

étale. Morphisms in this category are commutative diamonds

B

��
**

A

55

))
A/m

B′
44

This category has an initial object (A = A→ A/m) as well as fibre coproducts
(A→B′ ⊗B B′′→A/m), so it is filtered. Define

Ah = lim−→
A→B→A/m

B.

The ring Ah is local with the same residue field as A: Note that the set of those
A → B → A/m such that A → B is a local homomorphism of local rings is
cofinal. It follows that the set of non-units of Ah is the colimit of the sets of
non-units of the B. From this it follows that the non-units of Ah are closed
under addition. But a ring is local if and only if the set of non-units is closed
under addition.

The ring Ah is henselian: Suppose Ah → C → κ is a factorisation with C
étale over Ah. As Ah → C is finite presentation, there is some A → B → κ
and a factorisation B → C0 → κ such that C = Ah ⊗B C. In fact, B → C0 is
étale, since A→ Ah is faithfully flat, and faithfully flat morphisms detect étale
morphisms.2 But then the canonical morphism C0 → Ah induces a morphism
C → Ah with the required properties.

The morphism A→ Ah satisfies the universal property: Suppose A→ A′ is a
local homomorphism to a henselian local ring A′. Consider some A→ B → A/m
in the system defining Ah. The morphism A′ → A′ ⊗A B is étale, and there is
a factorisation A′ → A′ ⊗A B → A′/m′ by the universal property of the tensor
product since A→ A′ is a local homomorphism. Now since A′ is henselian, by
definition we get a retraction A′ ← A′ ⊗A B, and this induces a factorisation
A → B → A′. Since we have such a factorisation for every A → B → A/m in
a compatible way, we get an induced factorisation A→ lim−→B → A′. That is, a

factorisation A→ Ah → A′.

Remark 19. Let A be a noetherian local ring. Since Â is henselian there is a
canonical factorisation A → Ah → Â. In fact, both morphisms are monomor-
phisms. That is, Ah can be considered as a subring of the completion.

Remark 20. We will see in Lecture 8 that if A is a normal integral local ring,
then Ah is isomorphic to a subring of the separable closure Frac(A)s of Frac(A).

Definition 21. A local henselian ring is strictly local if its residue field is
separably closed.

2Ah is a filtered colimit of flat A-modules so it is flat. Moreover, it is a filtered colimit of
algebras which are surjective on spectra, so it is surjective on spectra. That is, it is faithfully
flat. Faithfully flat morphisms detect flatness is Exercise 5. That they detect unramifiedness
can be deduced from Exercise 9.
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Exercise 11. Show that if A is a strictly local henselian ring, then every sur-
jective étale morphism Spec(B)→ Spec(A) admits a section.

Proposition 22. If A is a local ring and φ : κ → κs is a separable closure of
its residue field, then there exists a universal local homomorphism of local rings
A → Ash such that Ash is strictly henselian, and the induced map on residue
fields is φ.

Proof. Run the proof of Proposition 18 with κs instead of κ.

Definition 23. The ring Ash in the above proposition is called a strict henseli-
sation.

Exercise 12. Let φ : A→ B be a finite étale morphism. Then for each p ⊆ A,
and each strict henselisation Ashp we have Ashp ⊗A B ∼=

∏n
i=1A

sh
p for some n.

Note Spec(
∏n
i=1A

sh
p ) ∼= qni=1 Spec(Ashp ). So by the above exercise, étale

morphisms are local homeomorphisms if we consider Ashp to be small neigh-
bourhoods of p ∈ Spec(A).

Exercise 13 (Advanced). Show that the necessary condition in the above ex-
ercise is also sufficient. That is, a finite morphism φ : A → B is étale if and
only if for each p and Ashp we have Ashp ⊗A B ∼=

∏n
i=1A

sh
p for some n.
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