1 Flatness

Definition 1. Let A be a ring. An A-module M is flat if for every monomor-
phism of A-modules N C N’, the morphism M @4 N — M ®4 N’ is also a
monomorphism. Thats is, if M ® o4 — preserves monomorphisms. An A-algebra
18 flat if it is flat when considered as an A-module.

Exercise 1. Show that if k is a field, every k-module (and therefore k-algebra)
is flat.

Exercise 2. Show that if A is a ring and S C A a multiplicatively closed subset,
A — A[S71] is flat.

Example 2. In fact, an A-module M is flat if and only if for every prime p C A
the Ay-module M, is flat. See Milne, Prop.1.2.2.

Example 3. The blowup of k[z,y] at (x,y) is covered by the two open affines
Spec(klz, £]) and Spec(k[7, y]). Neither of k[z,y] — k[z, £], k[T, y] are ﬂatﬁ
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— draw picture of blowup —
Exercise 3. Let A be a ring and I C A an ideal.

1. Show that if A/I is a flat A-algebra then I = I2.

2. (Advanced) Show that if I is finitely generated and I = I? then A/I is a
flat A-algebra.

3. (Advanced) Give an example of an ideal I of a ring A such that [ = I?
but A/I is not a flat A-algebra.

— draw picture of closed immersion, and inclusion of a connected component —

Flatness is a “local uniformity” condition.

Exercise 4.

1. If A—»B and B—C are flat ring morphisms, show that the composition
A—C is flat.

!Consider the proper inclusions (z) C (z,y) C k[z,y]. Since (x)klz, 4] = (x,y)k[z, ¥],
the images of a : () Qplg,y] klz, L] — K[z, L] and 8 : (2,y) Qe klz, L] — klz, L] are
equal. So if @ and B are both monomorphisms, then we must have () Okle,y] k[x,% =
(%,Y) ®k[z,y) klz, L], but this is not the case: Consider the exact sequence (z) — (z,y) —
((E,y)/(:ﬂ) If (z) ®k[m,y] k[x7 %} = (m,y) ®k[x,y] k[l’, %L then (((E,y)/(:ﬂ)) ®k[m,y] k[x7 %} = 0.
But k[z,y]/(x) = (z,y)/(x); f — yf is an isomorphism of k[z, y]-modules, so

((xr y)/(m)) ®k[z,y] k[w9 %} = (k[mv y}/(x)) ®k[z,y] k[mv % = k[fl‘, %]/(z)k[$7 %}

which is not zero.




2. If A — Bisflat and A — D is any ring morphism, show that D — D® 4 B
is a flat ring morphism.

Definition 4. Let A be a ring. An A-module M is faithfully flat if it is flat, and
given any morphism of A-modules ¢ : N — N’ such that M @, N — M ®4 N’
is a monomorphism, the morphism ¢ is a monomorphism. An A-algebra B is
faithfully flat if it is faithfully flat when considered as an A-module.

Example 5. One can show quite easily (see Milne Prop.1.2.7) that a flat ring
homomorphism A — B is faithfully flat if and only if Spec(B) — Spec(A) is
surjective. Consequently, if k is a field, every k-algebra is faithfully flat. If A a
ring and f1,..., fn € A generate the unit ideal then {Spec A/f; — Spec A},
is an open cover, so A — [[ Ay, is flat.

Exercise 5. Suppose that M is an A-module and A — B is a faithfully flat
morphism. Show that if M ® 4 B is a flat B-module, then M is a flat A-module.

Exercise 6. Let M be a flat A-module.

1. Show that M is faithfully flat if and only if for every A-module N such
that M ®4 N =20, we have N = 0.

2. Show that if M is faithfully flat, then given any morphism of A-modules
¢: N — N'such that M ®4 N — M ®4 N' is a surjection, the morphism
¢ is a surjection.

3. Deduce that if M is faithfully flat, then a sequence of A modules is exact
if it is exact after applying M ®4 —.

The following theorem will be used to show that O, O*, i, GL,,Q', ... are
étale sheaves.

Theorem 6 (See Milne 1.2.17). Suppose that f : A — B is a faithfully flat ring
morphism. Then

05ALB4BesBSBoaBoaBS ...
18 an exact sequence of A-modules. Here we define
€ by ®- - ®@br_q — b ®...0 116, @+ Rb,_1,
d= Z(—l)iei.
Exercise 7. Show that do f =0 and dod = 0.

Proof. First suppose that there is a ring homomorphism r : B — A such that
ro f =id. Next define

5:0p @b @ @bpg1 = 7(bo)b1 @ -+ ® bry



and check that sod+ for =id and sod + do s = id. In other words, we have
constructed a chain complex homotopy between id and 0. Consequently, the
cohomology groups of the chain complex are zero. In other words, the sequence
is exact. More explicitly, if a € kerd, then a = sda + dsa = 0+dsa, so a € imd.

Now consider some A-algebra A’, let B’ = A’ ®4 B, and let f' = A" ®4 f.
Since

A ®a(BRa - Q@a4B)=2 (A @4B)@ya - @4 (A ®4 B)

applying A’ ® 4 — to the sequence for f produces the sequence for f’. So
by Exercise [6] if we can find some faithfully flat A — A’ such that f’ has a
retraction, then the theorem is proven. Taking A’ = B with the retraction
B®4 B — B;b; ® by — b1bs finishes the proof. O

2 Unramified morphisms

Recall that by definition, the residue field k(p) at a prime p of a ring A is
k(p) = Ap/pAp.

Definition 7. A morphism of rings ¢ : A — B is unramified at a prime
q C B if k(q) is a finite separable field extension of k(p) where p = ¢~1q. It is
unramified if it is of finite presentation and unramified at every prime.

Example 8. The morphisms k[z] — k[z,y]/(z+y)(x—y) and k[z] — k[z];z —

22 are unramified everywhere except at the origin.

— draw pictures —

Suppose k = F,(¢). The morphism k[z] — k[z, y]/y? —xy —t is unramified every
except at (2, y? —t) where it becomes the inseparable extension F,(¢) — F,('/7).

Remark 9. A finite presentation morphism is unramified if and only if the
diagonal morphism Spec(B) — Spec(B ®4 B) is an open immersion (this uses:
a finite presentation morphism is unramified if and only if Q5,4 = 0, and the
identification /1% = Qg4 where I = ker(B®4B—B)). See. Milne Prop.1.3.5.

Exercise 8 (Advanced). Using Remark [J] (i.e., that the diagonal is an open
immersion) show that: if ¢ : A — B is unramified, and ¢ : B — A any retract
(i.e., 0 0 ¢ = id) Then Spec(o) : Spec(A) — Spec(B) is an open immersion.
Hint: Consider the pullback of Spec(c) : Spec(A) — Spec(B) along Spec(B) —
Spec(B ®4 B) — Spec(B).

Exercise 9 (cf. Exercise[d). Let A - B — C and A — D be ring homomor-
phisms. Show the following.
1. If A— B and B — C are unramified, then so is A — C.

2. (a) If k is a field, a finite presentation k-algebra k — S is unramified
if and only if £ — S is a finite separable field extension for every
prime q C S.



(b) A finite presentation morphism R — S is unramified if and only if
k(p) — k(p) ®g S is unramified for every prime p € R.

(¢) If A — B is unramified then sois D — D ®4 B.

Remark 10. Milne uses finite type instead of finite presentation, but all Milne’s
schemes and rings are noetherian, so its the same thing.

3 Etale morphisms
Definition 11. A morphism of finite presentation of rings is étale if it is flat
and unramified.

Remark 12. It is equivalent to define an étale morphism as a smooth morphism
of relative dimension zero, but in practice the above definition is easier to use.

Example 13. Let k be a field and k£ — A a finitely presented k-algebra. Then A
is étale if and only if A & Ly X --- x L, for some finite separable field extensions
L;/k.

Exercise 10 (cf. Exercises [l and [J). Let A — B — C and A — D be ring
homomorphisms. Show the following.

1. If A— B and B — C are étale, then sois A — C.
2. If A— Bis étale thensois D - D ®4 B.

Example 14. Suppose Y — X is a morphism of smooth affine C-varieties, say
Y = Spec(B) and Spec(A). Then A — B is étale if and only if Y'(C) — X(C)
is a local homeomorphism of topological spaces.

— draw picture of a local homeomorphism —

We will see later that this “local homeomorphism” description is true in an
algebraic setting too.

4 Hensel rings

Definition 15. A local ring A with mazimal ideal m is henselian if for every
étale morphism ¢ : A — B, and every prime q C B such that ¢~'q = m and
k(m) = k(q), there exists a ring homomorphism o : B — A such that c~'m = q
and oo ¢ =id.

cf. “Inverse function theorem” Spec(k(q)) — Spec(B)

|

Spec(k(m)) —— Spec(A)



Theorem 16. Let A be a local ring with mazximal ideal m and residue field
k= A/m. The following are equivalent.

1. Hensel’s Lemma holds: If f € A[t] is a monic such that f € k[t] factors
as [ = goho with go, ho monic and coprime, then f factors as f = gh with
g and h monic and such that g = gy and h = hg.

2. Any finite A-algebra B is a direct product of local rings B =[] B;.

3. If Spec(B) — Spec(A) is quasi-finite and finite type, then B = By x -+ - X
B,, where k @4 By =0, and fori > 0, each A — B; is finite and B; is a
local ring.

4. A is henselian.

Proof. For the omitted steps, see Milne, Etale cohomology, Theorem 1.4.1.

(1) = (2). First note: by the going up theorem for any finite A-algebra B,
all maximal ideals of B lie over m. So B is local if and only if B/mB is local.

Now assume B is of the form B = A[t]/(f) with f monic. If f = g% for some
n € Z,go € k[t] irreducible, then B/mB is local, so B is local. If not, then by
(1) we have f = gh with g, h monic and g, h coprime. Hence, x[t]/(go,ho) = 0,
so A[t]/(g,h) = 0 (by Nakayama’s Lemma). Since (g) + (h) = (g,h) = 0, and
(f) = (gh) = (9) N (h), it then follows from a version of the Chinese Remainder
Theorem that A[t]/g x A[t]/h = A[t]/f. Tterating this process gives the result.
The general case is omitted.

(2) = (3). Let A’ be the integral closure of A in B, so we have morphisms
Spec(B) — Spec(A’) — Spec(A4). A version of Zariski’s Main Theorem says
that Spec(B) — Spec(A’) is an open immersion, and Spec(A’) — Spec(A)
is finite. By (2), A" = [] A, for local rings A, (which are finite over A).
The decomposition Spec(A’) = L Spec(A}) induces a decomposition Spec(B) =
LISpec(B}) (explicitly Spec(B]) = Spec(B) N Spec(A})). Let Spec(By) be the
union of the Spec(B}) such that Spec(B]) — Spec(4}) is not surjective (i.e.,
such that Spec(B]) C Spec(A}) does not contain the closed point), and let
Spec(Bi), ..., Spec(B,) be the other connected components.

(3) = (4). Suppose q C B is as in the definition of henselian. By (3) we
can assume that ¢ : A — B is finite and B is a local ring. Since B is a finite
flat module over a local ring, it is free (Matsumura. Commutative ring theory,
Thm.7.10). That is, B = A9? as an A-module. But B®a k = B/mB = B/q =
k(q) = k(m) = k by assumption. So d = 1, and we find that B = A.

(4) = (1). Ommited. O

Example 17. Fields are henselian. Any complete local ring is henselian (see
Milne, 1.4.5).

Proposition 18. For every local ring A, there exists a universal local morphism
to a local henselian ring. That is, there exists a local morphism A — A" to a
local henselian ring A" such that for every other local morphism A — B to a
local henselian ring, there is a unique factorisation A — A" — B.



Proof. Consider the category of factorisations A 4B A/m such that ¢ is
étale. Morphisms in this category are commutative diamonds

/’lf\

A
T~ ),

A/m
B/

This category has an initial object (A = A — A/m) as well as fibre coproducts
(A—»B’ ®p B"—A/m), so it is filtered. Define

A"= lm B
A—B—A/m

The ring A" is local with the same residue field as A: Note that the set of those
A — B — A/m such that A — B is a local homomorphism of local rings is
cofinal. It follows that the set of non-units of A" is the colimit of the sets of
non-units of the B. From this it follows that the non-units of A" are closed
under addition. But a ring is local if and only if the set of non-units is closed
under addition.

The ring A" is henselian: Suppose A" — C' — & is a factorisation with C
étale over A". As A" — (' is finite presentation, there is some A — B — &
and a factorisation B — Cy — & such that C = A" @ C. In fact, B — Cj is
étale, since A — A" is faithfully flat, and faithfully flat morphisms detect étale
morphisms But then the canonical morphism Cy — A" induces a morphism
C — A" with the required properties.

The morphism A — A" satisfies the universal property: Suppose A — A’is a
local homomorphism to a henselian local ring A’. Consider some A —+ B — A/m
in the system defining A”. The morphism A’ — A’ ®4 B is étale, and there is
a factorisation A" — A’ ®4 B — A’/m’ by the universal property of the tensor
product since A — A’ is a local homomorphism. Now since A’ is henselian, by
definition we get a retraction A’ +— A’ ® 4 B, and this induces a factorisation
A — B — A'. Since we have such a factorisation for every A -+ B — A/m in
a compatible way, we get an induced factorisation A — lii>nB — A’. That is, a

factorisation A — A" — A’ O

Remark 19. Let A be a noetherian local ring. Since A is henselian there is a
canonical factorisation A — A" — A. In fact, both morphisms are monomor-
phisms. That is, A" can be considered as a subring of the completion.

Remark 20. We will see in Lecture 8 that if A is a normal integral local ring,
then A" is isomorphic to a subring of the separable closure Frac(A)* of Frac(A).

Definition 21. A local henselian ring is strictly local if its residue field is
separably closed.

2 AN ig a filtered colimit of flat A-modules so it is flat. Moreover, it is a filtered colimit of
algebras which are surjective on spectra, so it is surjective on spectra. That is, it is faithfully
flat. Faithfully flat morphisms detect flatness is Exercise [5| That they detect unramifiedness
can be deduced from Exercise @



Exercise 11. Show that if A is a strictly local henselian ring, then every sur-
jective étale morphism Spec(B) — Spec(A) admits a section.

Proposition 22. If A is a local ring and ¢ : k — K° is a separable closure of
its residue field, then there exists a universal local homomorphism of local rings
A — A%h such that A" is strictly henselian, and the induced map on residue
fields is ¢.

Proof. Run the proof of Proposition |18 with «° instead of «. O

Definition 23. The ring A" in the above proposition is called o strict henseli-
sation.

Exercise 12. Let ¢ : A — B be a finite étale morphism. Then for each p C A,
and each strict henselisation A;h we have A;h ®a B[, A;h for some n.

Note Spec([];-, Agh) = 1, Spec(A;jh). So by the above exercise, étale
morphisms are local homeomorphisms if we consider A;h to be small neigh-
bourhoods of p € Spec(A).

Exercise 13 (Advanced). Show that the necessary condition in the above ex-
ercise is also sufficient. That is, a finite morphism ¢ : A — B is étale if and
only if for each p and A;h we have Agh ®a B[, Agh for some n.
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