In this talk we compare the pro-étale site with the étale site. First we will see that a sheaf is in the image of $\mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ if and only if it "commutes with limits".

$$\operatorname{Image}\left(\mathsf{Shv}(X_{\mathsf{et}}) \to \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})\right) = \left\{F : F(\varprojlim U_i) = \varinjlim F(U_i)\right\}$$

Similarly, a complex is in the image of $D^+(X_{et}) \to D^+(X_{pro\acute{e}t})$ if and only if its cohomology is in the image of $\mathsf{Shv}_{et}(X)$.

$$\operatorname{Image}\left(D^{+}(X_{\mathsf{et}}) \to D^{+}(X_{\mathsf{pro\acute{e}t}})\right) = \bigg\{K : H^{n}K \in \mathsf{Shv}(X_{\mathsf{et}}) \ \forall \ n\bigg\}.$$

Then we see how the pro-étale site offers a technically simpler way to left complete the étale site. There is a canonical identification of $\hat{D}(X_{\text{et}})$ with the subcategory of $D(X_{\text{pro\acute{e}t}})$ of objects whose cohomology lies in the image of X_{et} .

$$\widehat{D}(X_{\mathsf{et}}) \cong \bigg\{ K \in D(X_{\mathsf{pro\acute{e}t}}) : H^n K \in \mathsf{Shv}(X_{\mathsf{et}}) \ \forall \ n \bigg\}.$$

We also show how the pro-étale site can be used to recover the classical derived category of l-adic sheaves.

$$D^+_{Ek}(X_{\mathsf{et}}, \mathbb{Z}_{\ell}) \cong \left\{ K \in D^+(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_{\ell}) : \begin{array}{c} H^n(K/\ell) \in \mathsf{Shv}(X_{\mathsf{et}}) \; \forall \; n, \; \mathrm{and} \\ R \varprojlim (\cdots \stackrel{\ell}{\to} K \stackrel{\ell}{\to} K) \cong 0 \end{array} \right\}.$$

1 From étale to pro-étale

Since every étale morphism is weakly étale, we have a canonical functor

$$\nu: X_{\mathsf{et}} \to X_{\mathsf{pro\acute{e}t}}.$$

Moreover, this functor sends covering families to covering families and therefore induces an adjunction

$$\begin{split} \nu^*: \mathsf{Shv}(X_{\mathsf{et}}) \rightleftarrows \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}}) : \nu_* \\ (F|_{X_{et}}) \hookleftarrow F \end{split}$$

The left adjoint sends $F \in Shv(X_{et})$ to the *sheafification* of the presheaf

$$U \mapsto \varinjlim_{U \to V \to X} F(V) \tag{1}$$

where the colimit is over those factorisations with $V \in X_{et}$.

Lemma 1 ([Lem.5.1.1]). For $F \in \mathsf{Shv}(X_{\mathsf{et}})$ and $U \in X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$ with presentation $U = \varprojlim_i U_i$, we have $(\nu^* F)(U) = \varinjlim_i F(U_i)$. In other words, the presheaf (1) already satisfies the sheaf condition on $X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$ before sheafification, and the colimit can be calculated using any presentation for U.

Sketch of proof. It suffices to treat the case X is affine. In this case we have $\mathsf{Shv}(X_{\mathsf{pro\acute{e}t}}) \cong \mathsf{Shv}(X^{\mathsf{aff}}_{\mathsf{pro\acute{e}t}})$, [Lem.4.2.4]. Now we use the lemma that we mentioned last time, that a presheaf is a sheaf if and only if it satisfies the sheaf condition for Zariski covers, and affine pro-étale morphisms. Both of these kind of covers (up to refinement) descend through filtered colimits. For example, if $B = \varinjlim B_i$ is an ind-étale algebra and $B \to C$ is an étale morphism, then there is some i, and étale algebra $B_i \to C_i$ such that $C = B \otimes_{B_i} C_i$. Then the sheaf condition for $B \to C$ is the filtered colimit of the sheaf conditions for $B_i \to C_i$

Since filtered colimits preserve exact sequences, exactness of the top line follows from exactness of the lower line. $\hfill \Box$

Exercise 1. Prove the claim that filtered colimits preserve exact sequences. That is, suppose that Λ is a filtered category, and $A, B, C : \Lambda \to Ab$ are functors from Λ to the category of abelian groups, and $A \to B \to C$ are natural transformations such that for each $\lambda \in \Lambda$, the sequence

$$0 \to A_{\lambda} \to B_{\lambda} \to C_{\lambda} \to 0$$

is exact. Then show that

$$0 \to \varinjlim_{\lambda} A_{\lambda} \to \varinjlim_{\lambda} B_{\lambda} \to \varinjlim_{\lambda} C_{\lambda} \to 0$$

is an exact sequence.

Example 2. Suppose k is a field with separable closure k^{sep} such that k^{sep}/k is not a finite extension. Then consider the sheaf $F(-) = \hom(-, \operatorname{Spec}(k^{sep}))$ on the category $\operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}$. For any $\operatorname{Spec}(A) \in \operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}$ we have $F(\operatorname{Spec}(A)) = \emptyset$. However, $\operatorname{Spec}(k^{sep}) \in \operatorname{Spec}(k)_{\operatorname{pro\acute{e}t}}^{\operatorname{aff}}$ and we have $F(\operatorname{Spec}(k^{sep})) \neq \emptyset = \lim_{\substack{\longrightarrow k \subseteq L \subseteq k^{sep}}} F(\operatorname{Spec}(L))$ where the limit is over finite subextensions of k^{sep}/k . So F is not in the image of ν^* .

Lemma 3 ([Lem.5.1.2]). The functor ν^* : Shv $(X_{et}) \to$ Shv $(X_{pro\acute{e}t})$ is fully faithful. Its essential image consists of those sheaves F such that $F(U) = \varinjlim_i F(U_i)$ for any $U \in X_{pro\acute{e}t}^{aff}$ with presentation $U = \varinjlim_i U_i$.

Proof. A left adjoint is fully faithful if and only if the unit id $\rightarrow \nu_*\nu^*$ is an isomorphism.¹ Isomorphisms of sheaves can be detected locally, cf. Exercise 2, and in X_{et} every scheme is locally affine. For any affine étale $U \rightarrow X$, the

¹This is because the composition $hom(X, Y) \to hom(LX, LY) \cong hom(X, RLY)$ induced by the unit $Y \to RLY$.

constant diagram (U) is a presentation for U. So then by [Lem.5.1.1] we have $F(U) \cong \nu_* \nu^* F(U)$ for any $F \in Shv(X_{et})$.

For the second part, suppose $G \in \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}})$ satisfies the conditions of the lemma. To show that G is in the image of ν^* , we will show that $\nu^*\nu_*G \to G$ is an isomorphism. Since $\mathsf{Shv}(X_{\mathsf{pro\acute{e}t}}) \cong \mathsf{Shv}(X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}})$, [Lem.4.2.4], it suffices to show that $\nu^*\nu_*G(U) \to G(U)$ is an isomorphism for every $U \in X_{\mathsf{pro\acute{e}t}}^{\mathsf{aff}}$. But this follows from [Lem.5.1.1] and the hypothesis.

Exercise 2. Prove the claim in the above proof that a morphism of sheaves $\phi: F \to G$ on a site (C, τ) is an isomorphism if and only if for every $X \in C$, there is a τ -covering family $\{U_i \to X\}_{i \in I}$ such that $F(U_i) \to G(U_i)$ is an isomorphism for all i.

Hint: The hypothesis is for every $X \in C$, in particular, for any cover $\{U_i \to X\}$ with ϕ an isomorphism on each U_i , there are also covers $\{W_{ijk} \to U_i \times_X U_j\}_{k \in K_{ij}}$ with ϕ an isomorphism on each W_{ijk} .

Definition 4. The sheaves in the image of $Shv(X_{et}) \subseteq Shv(X_{pro\acute{e}t})$ are called classical.

Lemma 5 ([Lem.5.1.4]). Suppose that $F \in Shv(X_{pro\acute{e}t})$. If there is a pro-étale covering $\{Y_i \to X\}_{i \in I}$ such that $F|_{Y_i}$ is classical for all $i \in I$, then F is classical.

Sketch of proof. We just treat the affine pro-étale case here. That is we assume $\{Y_i \to X\}_{i \in I}$ is of the form $\{\operatorname{Spec}(B) \to \operatorname{Spec}(A)\}$ for some ind-étale morphism of rings $A \to B$. We need to check that for any other ind-étale A-algebra $A \to C$ (so $C = \varinjlim_j C_j$ for some filtered system of étale algebras $A \to C_j$), we have $F(C) = \lim_{i \to j} F(C_j)$. We have the following diagram

$$\begin{array}{cccc} F(C) & \longrightarrow & F(C \otimes B) & \Longrightarrow & F(C \otimes B \otimes B) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \lim_{\longrightarrow j} F(C_j) & \longrightarrow & \lim_{\longrightarrow j} F(C_j \otimes B) & \Longrightarrow & \lim_{\longrightarrow j} F(C_j \otimes B \otimes B) \end{array}$$

The the left vertical morphism is an isomorphism since the middle and right one is, and F is a sheaf.

Definition 6. Suppose that R is a ring equipped with the discrete topology. We write $Loc_{X_{\text{et}}}(X)$ (resp. $Loc_{X_{\text{pro\acute{et}}}}(X)$) for the category of sheaves of R-modules on X_{et} which are locally free of finite rank. That is, those sheaves F such that there exists a covering $\{U_i \to X\}_{i \in I}$ and isomorphisms $F|_{U_i} \cong R^n$ for each i and some n, where R^n is the constant sheaf associated to the R-module R^n .

Exercise 3. Show that every sheaf in $Loc_{X_{\text{proét}}}(R)$ is classical.

Exercise 4. Show that for any $U \in X_{et}$ and $F \in Shv(X_{et})$ we have $\nu^*(F|_{U_{et}}) \cong (\nu^*F)|_{U_{pro\acute{e}t}}$. Deduce that for any $F \in Loc_{X_{et}}(R)$, the sheaf ν^*F is in $Loc_{X_{pro\acute{e}t}}(R)$.

Corollary 7 ([Cor.5.1.5]). Suppose that R is a ring equipped with the discrete topology. Then ν^* defines an equivalence of categories $Loc_{X_{\text{eff}}}(R) \cong Loc_{X_{\text{eff}}}(R)$.

Proof omitted.

Corollary 8 ([Cor.5.1.6]). For any $K \in D^+(X_{et})$, the map $K \to \nu_*\nu^*K$ is an equivalence (here ν_* and ν^* are derived now). Moreover, if $U \in X_{pro\acute{et}}^{aff}$ has presentation $U = \lim_{i \to i} U_i$ then $R\Gamma(U, \nu^*K) = \lim_{i \to i} R\Gamma(U_i, K)$.

The proof is omitted. It uses the Čech cohomology spectral sequence (hence the boundedness hypothesis).

Corollary 9 ([Cor.5.1.9]). Consider a short exact sequence $0 \to F' \to F \to F'' \to 0$ in Shv($X_{\text{pro\acute{e}t}}$, Ab). Then F is in Shv(X_{et} , Ab) if and only if F' and F'' are in Shv(X_{et} , Ab).

Proof omitted. It is not long, and it uses neat standard homological algebra tricks.

2 From pro-étale to étale

We now start working with the derived categories (cf. Remark 11). Functors between derived categories are always derived (for example $\nu^* : D(X_{et}) \rightarrow D(X_{pro\acute{e}t})$), even if we don't explicitly write it.

Definition 10 ([Def.5.2.1]). A complex $L \in D(X_{\text{pro\acute{e}t}})$ is called parasitic (寄 \pm) if $R\Gamma(U,L) = 0$ for all $U \in X_{\text{et}}$. We write $D_p(X_{\text{pro\acute{e}t}}) \subseteq D(X_{\text{pro\acute{e}t}})$ for the full subcategory of parasitic complexes.

Remark 11. The category $D_p(X_{\text{pro\acute{e}t}})$ is closed under shift, cone, and direct sum. However, if we try and define parasitic sheaves (outside of the derived category) we do not get a nice subcategory. For example, it is not closed under quotient.

Example 12 ([Rem.5.2.4]). Let $X = \text{Spec}(\mathbb{Q})$, and $\widehat{\mathbb{Z}}_l(1) := \varprojlim \mu_{\ell^n} \in \text{Shv}(X_{\text{pro\acute{e}t}}, \text{Ab})$. Then there is a short exact sequence

$$1 \to \widehat{\mathbb{Z}}_l(1) \stackrel{l}{\to} \widehat{\mathbb{Z}}_l(1) \to \mu_l \to 1.$$

For all $U \in X_{\text{et}}$, we have $\widehat{\mathbb{Z}}_l(1)(U) = 0$ (because there is no finite separable field extension of \mathbb{Q} which contains all ℓ^n th roots of unity). However, $\mu_l \neq 0$. So the category of "parasitic" sheaves of abelian groups is not closed under quotients.

Lemma 13 ([Lem.5.2.3]). We have:

- 1. A complex is in $D_p(X_{\text{pro\acute{e}t}})$ if and only if it is sent to zero by the derived functor $\nu_* : D(X_{\text{pro\acute{e}t}}) \to D(X_{\text{e}t})$.
- 2. The inclusion $i: D_p(X_{\text{pro\acute{e}t}}) \to D(X_{\text{pro\acute{e}t}})$ has a left adjoint L.

Proposition 14 ([Prop.5.2.6]). Consider the adjunctions (where ν^*, ν_* are derived functors).

$$D_p^+(X_{\mathsf{pro\acute{e}t}}) \stackrel{L}{\underset{i}{\longleftrightarrow}} D^+(X_{\mathsf{pro\acute{e}t}}) \stackrel{\nu^*}{\underset{\nu_*}{\longleftrightarrow}} D^+(X_{\mathsf{et}})$$

- 1. ν^* is fully faithful.
- The essential image of ν^{*} are those complexes whose cohomology sheaves lie in Shv_{et}(X, Ab) ⊆ Shv_{proét}(X, Ab).
- 3. For every $K \in D^+(X_{\text{pro\acute{e}t}})$ we have

$$\operatorname{Cone}(iLK \to K) \cong \nu^* \nu_* K.$$

4. We have $\hom(i(K'), \nu^*(K'')) = 0$ for all $K' \in D_p^+(X_{\text{pro\acute{e}t}}), K'' \in D^+(X_{\text{et}}).$

In other words, the above adjunctions define a semi-orthogonal decomposition of triangulated categories.

Remark 15 ([Rema.5.2.8]). In the case that $D(X_{et})$ is left-complete (cf.[Prop.3.3.7]) then the above proposition extends to the unbounded categories.

Remark 16 ([Prop.5.2.9]). Another way to extend the above proposition to unbounded categories is to replace $D^+(X_{\text{et}})$ with the smallest subcategory of $D(X_{\text{pro\acute{e}t}})$ containing $\nu^*(D(X_{\text{et}}))$, closed under cones, shift, and filtered colimits.

3 Left completion via the pro-étale site

Recall that the left completion $\widehat{D}(X_{\text{et}})$ of $D(X_{\text{et}})$ is the subcategory of $D(X_{\text{et}})$ consisting of those sequence of chain complexes $(\cdots \to K_2 \to K_1 \to K_0)$ in $Ch(\mathsf{Shv}(X_{\text{et}})^{\mathbb{N}})$ such that

- 1. $K_n \in D^{\geq -n}(X_{et})$. That is, the sheaves $H^i K_n$ are zero for i < -n.
- 2. $\tau^{\geq -n} K_{n+1} \to K_n$ is an equivalence. That is the map $H^i K_{n+1} \to H^i K_n$ is an isomorphism of étale sheaves for $i \geq -n$.

The left completion $\widehat{D}(X_{\text{pro\acute{e}t}})$ is defined similarly, however, since $\mathsf{Shv}(X_{\text{pro\acute{e}t}})$ is replete [Prop.4.2.8], $D(X_{\text{pro\acute{e}t}})$ is left complete. That is, the canonical adjoints

$$\widehat{D}(X_{\mathsf{pro\acute{e}t}}) \leftrightarrows D(X_{\mathsf{pro\acute{e}t}})$$

are both equivalences of categories.

Left completion is functorial, so we get a commutative square of functors

$$\begin{array}{c|c} D(X_{\mathsf{et}}) & \stackrel{\nu}{\longrightarrow} & D(X_{\mathsf{pro\acute{e}t}}) \\ & & \downarrow \cong \\ \widehat{D}(X_{\mathsf{et}}) & \stackrel{\nu^*}{\longrightarrow} & \widehat{D}(X_{\mathsf{pro\acute{e}t}}) \end{array}$$

Then, since $D(X_{\text{pro\acute{e}t}})$ is left complete, we end up with an adjunction

$$\nu^* : \widehat{D}(X_{\mathsf{et}}) \rightleftharpoons D(X_{\mathsf{pro\acute{e}t}})$$

This functor is full faithful, and its essential image admits the following simple description.

Definition 17 ([Def.5.3.1]). Let $D_{cc}(X_{pro\acute{e}t})$ be the full subcategory of $D(X_{pro\acute{e}t})$ consisting of complexes whose cohomology sheaves lie in $Shv(X_{et}, Ab) \subseteq Shv(X_{pro\acute{e}t}, Ab)$. That is, those complexes with classical cohomology.

Proposition 18 ([Prop.5.3.2]). There is an adjunction

$$D(X_{\mathsf{et}}) \rightleftharpoons D_{cc}(X_{\mathsf{pro\acute{e}t}})$$

induced by ν^*, ν_* which is isomorphic to the left-completion adjunction

$$\tau: D(X_{\mathsf{et}}) \rightleftharpoons \widehat{D}(X_{\mathsf{et}}): R \, \underline{\lim} \, .$$

 $In \ particular$

$$\hat{D}(X_{\mathsf{et}}) \cong D_{cc}(X_{\mathsf{pro\acute{e}t}}).$$

4 *l*-adic sheaves via the pro-étale site

Suppose l is a prime, and X is a $\mathbb{Z}[1/l]$ -scheme. The l-adic cohomology is classically defined as

$$H^i_{\text{et}}(X, \mathbb{Z}_\ell) := \varprojlim_n H^i_{\text{et}}(X, \mathbb{Z}/\ell^n).$$

On the other hand, it is useful to have a description of cohomology in terms of derived categories. We have

$$\hom_{D(X_{\mathsf{et}},\mathbb{Z}/\ell^n)}(\mathbb{Z}/\ell^n,\mathbb{Z}/\ell^n[i]) = H^i_{\mathsf{et}}(X;\mathbb{Z}/\ell^n)$$

but to extend this to l-adic cohomology, we would need to consider something like

$$\varprojlim_n D(X_{\mathsf{et}}, \mathbb{Z}/\ell^n)$$

but categories are only well-defined up to equivalence, so limits of categories are technically complicated to define.

Exercise 5. In this exercise we show that naïve inverse limits of categories are not well-defined up to equivalence of categories. Let $\cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0$ be a system of functors of small categories. Define $\varprojlim C_n$ to be the category with set of objects

$$Ob_{\lim C_n} = \varprojlim Ob_{C_n}.$$

Given objects $x = (\dots, x_2, x_1, x_0)$ and $y = (\dots, y_2, y_1, y_0)$ in $\underline{\lim} C_n$ define

$$\hom_{\underset{\leftarrow}{\lim} C_n}(x,y) = \varprojlim \hom_{C_n}(x_n,y_n).$$

1. For an abelian group A, let BA be the category of one object, *, and $\hom_{BA}(*,*) = A$ with composition in BA given by addition in A. Note that any group homomorphism $A \to A'$ induces a functor $BA \to BA'$. Show that

$$\lim_{n \to \infty} B(\mathbb{Z}/\ell^n) = B\mathbb{Z}_\ell.$$

2. Now define C_n to be the category whose objects are $Ob \ C_n = \{i \in \mathbb{Z} : i \geq n\}$, morphisms are $\hom_{C_n}(i,j) = \mathbb{Z}/\ell^n$ for every i, j, and composition is given by addition $\operatorname{in} \mathbb{Z}/\ell^n$. Note that there are canonical functors $C_{n+1} \to C_n$ induced by the group homomorphisms $\mathbb{Z}/\ell^{n+1} \to \mathbb{Z}/\ell^n$ and the inclusions $Ob \ C_{n+1} \subset Ob \ C_n$. Show that

$$\varprojlim_n C_n = \varnothing$$

3. Show that for every n, the canonical functor $C_n \to B\mathbb{Z}/\ell^n$ is fully faithful, and essentially surjective. That is, it is an equivalence of categories. Deduce that \varprojlim , as defined above, does not preserve equivalences of categories.

There is a notion of 2-limit of categories defined by keeping track of isomorphisms, which does preserve equivalences, but the following is a better way of dealing with this problem.

Definition 19 ([Def.5.5.2]). Define $D_{Ek}^+(X_{et}, \mathbb{Z}_{\ell})$ as the full subcategory of $D^+(X_{et}^{\mathbb{N}}, \mathbb{Z}_{\ell})$ consisting of those sequences $(\cdots \to M_2 \to M_1 \to M_0)$ of complexes such that each M_n is a complex of sheaves of \mathbb{Z}/ℓ^n -modules, and the induced maps²

$$M_n \otimes_{\mathbb{Z}/\ell^n} \mathbb{Z}/\ell^{n-1} \to M_{n-1}$$

are quasi-isomorphisms for all n.

The category $D_{Ek}^+(X_{\text{et}}, \mathbb{Z}_{\ell})$ (and its unbounded version) is what was used classically to access *l*-adic cohomology in a derived category setting.

Recall that $K \in D(X_{\text{pro\acute{e}t}}, \mathbb{Z}_{\ell})$ is derived complete if T(K) is quasi-isomorphic to zero, where $T(K) = R \varinjlim (\cdots \xrightarrow{\ell} K \xrightarrow{\ell} K \xrightarrow{\ell} K) \cong \text{Cone} \left(\prod_{\mathbb{N}} K \xrightarrow{\text{id} - \ell} \prod_{\mathbb{N}} K \right) [-1].$

Definition 20 ([Def.5.5.3]). Define $D_{Et}^+(X_{\text{pro\acute{e}t}}, \mathbb{Z}_\ell) \subseteq D(X_{\text{pro\acute{e}t}}, \mathbb{Z}_\ell)$ for the full subcategory of bounded below complexes K such that

1. K is derived complete, cf. [Def. 3.4.1].

²Recall that all functors in the derived setting are derived, even if the notation does not expicitely say it. In particular, since $\mathbb{Z}/\ell^{n-1} \cong l\mathbb{Z}/\ell^n$ and $0 \to l\mathbb{Z}/\ell^n \to \mathbb{Z}/\ell^n \xrightarrow{l} \mathbb{Z}/\ell^n \to 0$ is a short exact sequence of \mathbb{Z}_{ℓ} -modules the functor $-\otimes_{\mathbb{Z}/\ell^n} \mathbb{Z}/\ell^{n-1}$ can be calculated as $\operatorname{Cone}(-\stackrel{\ell}{\to} -)[-1]$ for chain complexes of sheaves of \mathbb{Z}/ℓ^n -modules. Similarly, $-\otimes_{\mathbb{Z}_{\ell}} (\mathbb{Z}/\ell)$ can be calculated by $\operatorname{Cone}(-\stackrel{\ell}{\to} -)$ for complexes of sheaves of \mathbb{Z}_{ℓ} -modules.

2. $K \otimes_{\mathbb{Z}_{\ell}} (\mathbb{Z}/\ell) \in D_{cc}(X_{\text{pro\acute{e}t}}).$

Proposition 21. There is a natural equivalence

$$D^+_{Ek}(X_{\text{pro\acute{e}t}}, \mathbb{Z}_\ell) \cong D^+_{Ek}(X_{\text{et}}, \mathbb{Z}_\ell).$$

Remark 22. If there is an integer N such that for all affine $Y \in X_{et}$ and sheaves of κ -vector spaces F we have $H^n(Y, F) = 0$ for n > N, then the above proposition is true for unbounded complexes too.

Remark 23. Notice that $D_{Ek}^+(X_{\mathsf{et}}, \mathbb{Z}_{\ell})$ is defined by adding structure to $D(X_{\mathsf{et}}, \mathbb{Z}_{\ell})$, whereas $D_{Ek}^+(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_{\ell})$ is defined via properties of objects in $D^+(X_{\mathsf{pro\acute{e}t}}, \mathbb{Z}_{\ell})$. So one would expect that the latter is easier to work with.