
0 Introduction

In the introduction to the pro-étale topology we argued that adding (filtered)
limits to the site made Zl- and Ql-sheaves work better. One of the technical
reasons that the category works better is that schemes morally become “locally
contractible”. More concretely, every scheme X admits a pro-étale covering
{Ui → X}i∈I such that each Ui is weakly contractible in the sense that for
every pro-étale covering {Vij → Ui} the morphism qjVij → Ui has a section

qjVij
x→ Ui.

The goal of this lecture is to show the following:

Today’s Goal. Every affine scheme X admits a surjective pro-étale morphism
U → X such that U is affine and weakly contractible.

This happens in roughly four steps:

1. (Zariski case) Build a surjective pro-Zariski morphism XZ → X with XZ

weakly contractible for the Zariski topology.

2. (Profinite set case) Build a surjective morphism T → (XZ)c to the set
(XZ)c of closed points of XZ from a profinite set T which is weakly
contractible as a compact Hausdorff topological space.

3. (Dimension zero scheme case) Give T a structure of affine scheme X0 such
that all residue fields are separably closed.

4. Henselise along X0 → X to produce the desired U → X.

If X has finitely many points (e.g., X = Spec(R) with R a discrete valuation
ring, or more generally, a localisation of a Dedekind domain at finitely many
primes) then XZ in Step 1 is just the disjoint union qx∈X Spec(OX,x) of the
localisations at each point of X, Step 2 is redundant, Step 3 just chooses sepa-
rable closures for each k(x), and Step 4 produces the disjoint union of the strict
henselisations qx∈X Spec(OshX,x)→ X.

The general case is not so easy because, for example, qx∈Xx is not affine
if X has infinitely many points (all affine schemes are quasi-compact). How-
ever, instead of just making things more complicated, things actually become
very, very interesting. The scheme XZ → X that is produced is in a precise
since the “smallest” Zariski covering of X. As a set, XZ is the disjoint union
qx∈X Spec(OX,x) of the localisations of X but the topology is coarser: the sub-
set (XZ)c of closed points of XZ is also affine, and has the curious property of
being homeomorphic to the set of points of X equipped with the constructible
topology.

Step 2 is clearly necessary for the following reason: strictly hensel local
schemes X have the property that given any étale morphism U → X, any lift
of the closed point Xc → U → X can be extended to a section X → U → X.
So if our set of closed points is not weakly contractible, there is not much hope
for X to be.
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Step 3 and Step 4 are classical, but Bhatt-Scholze’s approach to separably
closing the residue fields in Step 3 quite amusing; they take the fibre product
of all finite presentation surjective étale morphisms. Of course, this produces
something huge, but certainly also produces something which has all residue
fields separably closed.

1 Pro-Zariski covers of affine schemes

In this section, we consider the question: is there a “smallest” open cover, and
what does it look like?

The category of spectral spaces is the image of the funcor

(Spec(−))top : (Ring)op → Top

which sends a ring to it’s set of primes equipped with the Zariski topology.
Of course, different rings can give rise to the same space (e.g, fields, discrete
valuation rings, noetherian dimension one schemes, . . . ) but none-the-less, if
we are only interested in the Zariski topology, all we are concerned with is the
underlying topological space.

Let S be the category of spectral spaces (i.e., spaces of the form Spec(R) for
some ring R), with spectral maps (i.e., maps of the form Spec(R) → Spec(S)
for some ring homomorphism S → R).

Definition 1 (Def.2.1.1). A spectral space X is w-local if it satisfies:

1. All open covers split, i.e., for every open cover {Ui ↪→ X}, the map
tiUi → X has a section.

2. The subspace Xc ⊂ X of closed points is closed.

A map f : X → Y of w-local spaces is w-local if f is spectral and f(Xc) ⊂ Y c.
Let i : Swl ↪→ S be the subcategory of w-local spaces with w-local maps.

Exercise 1 (Exa.2.1.2). Show that the following spectral spaces are w-local.

1. Any profinite set (with the profinite topology).

2. The topological space Spec(OX,x) underlying any local ring of any scheme,
i.e., a topological space with a unique closed point.

3. Any finite disjoint union of w-local spaces.

Exercise 2. Show that if X is w-local then every connected component has a
at most one closed point.

Remark 2. In fact, ifX is w-local, then every connected component was exactly
one closed point. Indeed: Suppose Z has two closed points x, y ∈ Z. Every
connected component is closed, so x, y are closed in X as well. Then X \ {x} q
X \ {y} → X has a section because X is w-local. This induces a decomposition
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of Z into two non-empty clopen subsets, contradicting the assumption that Z
is connected. On the other hand, since X is spectral, Z is also spectral, and
every spectral space has at least one closed point (cf. every ring has at least
one maximal ideal).

−−−− picture: triangles over the cantor set C × Spec(OX,x) −−−−

Definition 3 (Def.2.1.12). A map f : W → V of spectral spaces is a Zariski
localization if W = tnj=1Uj with the Uj → V open immersions (automatically
quasi-compact because W is spectral). A pro-(Zariski localization) is a cofiltered
limit of such maps.

Example 4.

1. For any profinite set I = lim←− Iλ the map lim←−
∏
Iλ
V → V is a pro-(Zariski

localisation).

−−−− picture: cantor set of copies of some space −−−−

2. For any point v ∈ V , the map ∩v∈UU → V is a pro-(Zariski localisation),
where the intersection is over quasicompact opens containing v.

−−−− picture: triangle representing a localisation at a point −−−−

3. We can combine the above two to describe every pro-(Zariski localisaton).
Suppose thatW → V is a pro-(Zariski localisaton), soW = lim←−i∈I t

ni
j=1Uij

with each Uij → V a quasicompact open immersion. ThenW ⊆ lim←−i∈I t
ni
j=1V .

As a set, lim←−i∈I t
ni
j=1V is a disjoint union of copies of V indexed by the

profinite set lim←−i∈I{1, . . . , ni}. Given an element (ji)i∈I ∈ lim←−i∈I{1, . . . , ni},
the intersection W with the (ji)i∈Ith copy of V is

⋂
i∈I Uiji .

−−−− picture: U ⊆ N∗ × SpecZ −−−−

Lemma 5 (Lem.2.1.10). The inclusion i : Swl → S admits a right adjoint
(−)Z : S → Swl. The counit XZ → X is a surjective pro-(Zariski localisa-
tion) for all X, and the composite (XZ)c → X is a homeomorphism for the
constructible topology on X.

The Z probably stands for “Zariski”.

Remark 6. The family of constructible subsets of an affine scheme Spec(A) is
the smallest family closed under finite intersection, finite union, complement,
and containing the closed subsets V (I) for every finitely generated ideal I (a
ring is noetherian if and only if every ideal is finitely generated; we will often
need non-noetherian rings). The constructible topology is a (usual) topology on
X whose opens are the constructible subsets.
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Exercise 3. Describe the constructible subsets of Spec(Z) and Spec(C[x, y]).

Sketch of proof. The idea is that every spectral space is an inverse limit of finite
spectral spaces, and for finite spectral spaces, XZ is the disjoint union of the
localisations at each point XZ = qx∈XXx.

−−−− picture: XZ for a dvr −−−−

Exercise 4. Prove that if X is a finite spectral space, then any map Y → X
from a w-local space factors through qx∈XXx → X. Hint: use the fact that
each Xx → X is an open immersion, and in fact, {Xx → X}x∈X is an open
covering.

Remark 7 (Omitted from lecture). In fact, every spectral space is the inverse
limit of it’s constructible partitions: Let X = ∪i∈IXi be a partition of X
into constructible sets, and consider the canonical projection X → I to the
components of the partition (so x ∈ X is sent to the i such that x ∈ Xi).
We equip I with the coarsest topology which makes this map continuous (so a
subset J ⊂ I is open iff it’s preimage is). Then the topological space of X is
the inverse limit over these projections.

Remark 8 (Rem.2.1.11, Omitted from lecture). The space XZ can be alterna-
tively described as:

XZ = lim←−
{Xi↪→X}

tiX̃i,

where the limit is indexed by the cofiltered category of constructible stratifica-
tions {Xi ↪→ X}, and X̃i denotes the set of all points of X specializing to a
point of Xi. As a set, XZ is the disjoint union of the localisations at each point
XZ = qx∈XXx, but the topology is coarser.

Example 9. Let X be the topological space associated to a curve (e.g., Spec(Z)
or Spec(k[t])), so X has one generic point η, every other point is closed, and
the non-empty proper closed subsets are finite sets of closed points. Then XZ

as a set is {η} t qx∈Xc{x, ηx}. The sets {x, ηx} and {ηx} are open, as well as
{η}tqx∈S{x, ηx} for any cofinite set S ⊆ Xc of closed points. These open sets
generate the topology. Note that {η} is closed, but not open. Note also that
the topology induced on {η} ∪Xc is the constructible topology of X.

From a ring point of view,

Spec(Z)Z = Spec

(
lim−→

primes p

Z(2) × Z(3) × Z(5) × · · · × Z(p) × (Z[ 1
2 ,

1
3 , . . . ,

1
p ])

)

The transition morphisms are the identities on the Z(p) factors, and the diagonal

Z[ 1
2 ,

1
3 , . . . ,

1
p ]→ Z(p′) × Z[ 1

2 ,
1
3 , . . . ,

1
p ,

1
p′ ] on the end.
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The following lemma is used in Lem.2.2.8 to transfer a scheme structure
from T to S.

Lemma 10 (Lem.2.1.14). Any map f : X → Y in Swl admits a canonical
factorization X → Z → Y in Swl with Z → Y a pro-(Zariski localization) and
X → Z inducing a homeomorphism Xc ' Zc.

Proof. (Omitted from lecture). Take Z = π0(X) ×π0(Y ) Y . Here π0(X), π0(Y )
are the sets of connected components of X,Y . The morphism π0(X)→ π0(Y ) is
a morphism of profinite sets, and therefore a pro-(Zariski localisation). Hence,
its pullback π0(X)×π0(Y ) Y → Y is also a pro-(Zariski localisation). The map
X → π0(X) induces a homeomorphism Xc → π0(X) because each connected
component of X has a unique closed point. For the same reason (π0(X)×π0(Y )

Y )c → π0(π0(X) ×π0(Y ) Y ) is a homeomorphism. But π0(π0(X) ×π0(Y ) Y ) ∼=
π0(X), so it follows that Xc → Zc is a homeomorphism.

2 Rings

Definition 11 (Def.2.2.1). Fix a ring A.

1. A is w-local if Spec(A) is w-local.

2. A is w-strictly local if A is w-local, and every faithfully flat étale map
A→ B has a section.

3. A map f : A→ B of w-local rings is w-local if Spec(f) is w-local.

4. A map f : A → B is called a Zariski localization if B =
∏n
i=1A[ 1

fi
] for

some f1, . . . , fn ∈ A. An ind-(Zariski localization) is a filtered colimit of
Zariski localizations.

5. A map f : A → B is called ind-étale if it is a filtered colimit of étale
A-algebras.

Example 12.

1. We have already seen an example of an ind-(Zariski localisation) above:

lim−→
primes p

Z(2) × Z(3) × Z(5) × · · · × Z(p) × (Z[ 1
2 ,

1
3 , . . . ,

1
p ])

2. Let k be a field, and ksep a separable closure. Then k → ksep is étale if
and only if ksep/k is a finite extension, but it is always ind-étale.

3. Any field k and any profinite set T = lim←−i∈I Ti, gives rise to a k-algebra

lim−→i∈I

∏
t∈Ti k ⊆

∏
t∈T k. The algebra lim−→i∈I

∏
t∈Ti k has the property

that each residue field is isomorphic to k, and it’s topological space is
homeomorphic to the profinite set T .
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Recall that a ring B is called absolutely flat if B is reduced with Krull dimen-
sion 0 (or, equivalently, that B is reduced with Spec(B) Hausdorff). Absolutely
flat rings are also characterised as those rings such that every module is flat
[Stacks project, 092F]. An example is k ⊗k k for any perfect field k. Note that
Spec(k ⊗k k) ∼= Gal(k/k) as topological spaces.

So Spec(B) of an absolutely flat ring has a profinite set as it’s topological
space,1 and all local rings are fields.2 So it is some kind of “profinite product”
of fields.

Lemma 13 (Lem.2.2.3). If A is w-local, then the Jacobson radical IA (=
∩maximal idealsm) cuts out Spec(A)c ⊂ Spec(A) with it’s reduced structure. The
quotient A/IA is an absolutely flat ring.

Proof. (Omitted from lecture). Let J ⊂ A be the (radical) ideal cutting out
Spec(A)c ⊂ Spec(A) with the reduced structure. Then J ⊂ m for each m ∈
Spec(A)c, so J ⊂ IA. Hence, Spec(A/IA) ⊂ Spec(A)c is a closed subspace;
we want the two spaces to coincide. If they are not equal, then there exists a
maximal ideal m such that IA 6⊂ m, which is impossible.

Lemma 14 (Lem.2.2.4). The inclusion of the category w-local rings and maps
inside all rings admits a left adjoint A 7→ AZ . The unit A→ AZ is a faithfully
flat ind-(Zariski localization), and Spec(A)Z = Spec(AZ) over Spec(A).

Proof. (Ommitted from lecture). This follows from Remark 2.1.11 (above). In
more details, let X = SpecA, and define a ringed space XZ → X by equipping
(SpecA)Z with the pullback of the structure sheaf from X. Then Remark 2.1.11
presents XZ as an inverse limit of affine schemes, so that XZ = Spec(AZ) is
itself affine.

Lemma 15 (Lem.2.2.6). Any w-local map f : A→ B of w-local rings admits a

canonical factorization A
a→ C

b→ B with C w-local, a : A → C a w-local ind-
(Zariski localization), and b : C → B a w-local map inducing π0(Spec(B)) '
π0(Spec(C)).

Lemma 16 (Lem.2.2.7). For any absolutely flat ring A, there is an ind-étale
faithfully flat map A→ A with A w-strictly local and absolutely flat. For a map
A → B of absolutely flat rings, we can choose such maps A → A and B → B
together with a map A→ B of A-algebras.

1Recall that profinite sets are precisely the quasi-compact Hausdorff totally disconnected
spaces. Every affine scheme is quasi-compact. We observed above that absolutely flat rings
have Hausdorff spectrum. Suppose Spec(B/I) ⊆ Spec(B) is a connected component. We
can assume I =

√
I, and so Spec(B/I) is again reduced of Krull dimension zero, so we can

in fact, assume B = B/I. Since Spec(B) is Hausdorff, for any two points m0,m1, there are
disjoint opens containing each of them. Shrinking, we can assume the opens are of the form
Spec(Bf0 ), Spec(Bf1 ). The complement of union of these two opens is the closed subset of
the ideal 〈f0, f1〉. Since every module is flat however, the support of this ideal is open, and we
deduce that Spec(B) is a disjoint union of three opens, two of which are nonempty by virtue
of containing the closed points m0,m1 from the beginning. This contradicts Spec(B) being
connected.

2Indeed, since all modules are flat, for any maximal ideal m, the module A/m is flat. It
follows that A/m = Am.
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Proof. The following fact is used without further comment below: any ind-étale
algebra over an absolutely flat ring is also absolutely flat. Choose a set I of
isomorphism classes of faithfully flat étale A-algebras, and set A = ⊗IAi, where
the tensor product takes place over Ai ∈ I, i.e., A = lim−→J⊂I ⊗j∈JAj , where

the (filtered) colimit is indexed by the poset of finite subsets of I. Then one
checks that A is absolutely flat, and that any faithfully flat étale A-algebra
has a section, so A is w-strictly local as Spec(A) is profinite. For the second
part, simply set B to be a w-strictly local faithfully flat ind-étale algebra over
A⊗A B.

Remark 17. Note that one can construct the algebraic closure of a field k using
this method. Take the tensor product over all finite algebraic extensions of k.
This will give some complicated ring but every residue field will be an algebraic
closure of k.

Note that if A is w-local then π0(Spec(A)) is canonically homeomorphic to
the set Spec(A)c of closed points of Spec(A).

Lemma 18 (Lem.2.2.8). For any ring A and a map T → π0(Spec(A)) of
profinite sets, there is an ind-(Zariski localization) A→ B such that Spec(B)→
Spec(A) gives rise to the given map T → π0(Spec(A)) on applying π0. Moreover,
the association T 7→ Spec(B) is a limit-preserving functor.

−−−− picture −−−−

Remark 19 (No number). One may make the following more precise statement:
for any affine scheme X, the functor Y 7→ π0(Y ) from affine X-schemes to
profinite π0(X)-sets has a fully faithful right adjoint S 7→ S ×π0(X) X, the
fibre product in the category of topological spaces ringed using the pullback of
the structure sheaf on X. Moreover, the natural map S ×π0(X) X → X is a
pro-(Zariski localisation) and pro-finite.

Proof. Notice that π0(Spec(A)) = lim−→I∈D I where the limit is over the set D =

{Spec(A) = ti∈IZi} of decompositions of Spec(A) into finitely many subsets
Zi = Spec(Ai) which are both open and closed. Writing T = lim←−λ∈Λ

Tλ, the

map T → π0(Spec(A)) comes from a map of pro-systems φ : (Tλ)Λ → (I)I∈D.
For each λ ∈ Λ define Bλ =

∏
t∈Tλ Γ(Tφλ(t),OSpec(A)). Then lim−→λ∈Λ

Bλ satisfies

the requirements.

3 Henselisation

To pass from w-strictly local covers of absolutely flat rings to arbitrary rings,
we use henselizations:

Definition 20 (Def.2.2.10). Given a map of rings A → B, let HensA(−) :
Ind(Bet) → Ind(Aet) be the functor right adjoint to the base change functor
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Ind(Aet) → Ind(Bet). Explicitly, for B0 ∈ Ind(Bet), we have HensA(B0) =
lim−→A′, where the colimit is indexed by diagrams A → A′ → B0 of A-algebras
with A→ A′ étale.

Lemma 21 (Lem.2.2.13). Let A be a ring henselian along an ideal I. Then A
is w-strictly local if and only if A/I is so.

Corollary 22 (Cor.2.2.14). Any ring A admits an ind-étale faithfully flat map
A→ A′ with A′ w-strictly local.

Proof. Set A′ := HensAZ (AZ/IAZ ), where AZ/IAZ is a w-strictly local ind-étale
faithfully flat AZ/IAZ -algebra; then A′ satisfies the required property by Lemma
2.2.13.

4 Weakly étale versus pro-étale

Definition 23 (Def.2.3.1). A morphism A→ B of commutative rings is called
weakly étale if both A→ B and the multiplication morphism B ⊗A B → B are
flat.

p:PropWeaklyEtale Proposition 24 (Prop.2.3.3). Fix maps f : A → B, g : B → C, and h : A →
D of rings.

1. If f is ind-étale, then f is weakly étale.

2. If f is weakly étale and finitely presented, then f is étale.

3. If f and g are weakly étale (resp. ind-étale), then g ◦ f is weakly étale
(resp. ind-étale). If g ◦ f and f are weakly étale (resp. ind-étale), then g
is weakly étale (resp. ind-étale).

4. If h is faithfully flat, then f is weakly étale if and only if f ⊗A D : D →
B ⊗A D is weakly étale.

Theorem 25 (Thm.2.3.4). Let f : A→ B be weakly étale. Then there exists a
faithfully flat ind-étale morphism g : B → C such that g◦f : A→ C is ind-étale.

Proof. Lemma 2.3.7 (omitted from the lecture) gives a diagram

A //

f

��

A′

f ′

��
B // B′

with f ′ a w-local map of w-strictly local rings, and both horizontal maps being
ind-étale and faithfully flat. The map f ′ is also weakly étale since all other
maps in the square are so. Then f ′ is a ind-(Zariski localization) by Lemma
2.3.8 which says that any w-local weakly étale map of w-local rings from a w-
strictly local ring is an ind-(Zariski localisation). Setting C = B′ then proves
the claim.
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5 Local contractibility

Definition 26 (Def.2.4.1). A ring A is w-contractible if every faithfully flat
ind-étale map A→ B has a section.

Lemma 27 (Lem.2.4.2). A w-contractible ring A is w-local (and thus w-strictly
local).

Lemma 28 (Lem.2.4.3). Let A be a ring henselian along an ideal I. Then A
is w-contractible if and only if A/I is so.

Definition 29 (Def.2.4.4). A profinite set is extremally disconnected if the
closure of every open is open.

Remark 30. We are interested in extremally disconnected spaces because they
are weakly local. In fact, a theorem of Gleason from 1958 says that they are ex-
actly the projective objects in the category of all compact Hausdorff spaces: any
continuous surjection Y → X from a compact Hausdorff space to an extremally
disconnected profinite set has a section.

Example 31 (Exa.2.4.6). Every compact Hausdorff space X admits a contin-
uous surjection from an extremally disconnected space. (Proof ommitted).

Lemma 32 (Lem.2.4.8). A w-strictly local ring A is w-contractible if and only
if π0(Spec(A)) is extremally disconnected.

Proof. Suppose A is w-contractible and T → π0(Spec(A)) is a continuous surjec-
tion of profinite sets. Then Spec(T )×π0(Spec(A)) T → Spec(A) is a pro-(Zariski-
localisation) and therefore has a section by w-contractibility. Composing with
Spec(A)c → Spec(A), we get a factorisation Spec(A)c → T → π0(Spec(A)), but
Spec(A)c → π0(Spec(A)) is an isomorphism (by w-locality of A) so we have
found a section to T → π0(Spec(A)).

The converse reduces the dimension zero (i.e., absolutely flat) case. In this
case since the residue fields of A are all separable closed, every ind-étale faithfully
flat A-algebra B is indued by a continuous surjection of profinite sets T →
Spec(A). Then we just apply that π0(Spec(A)) is extremally disconnected.

lem:cwcontractiblecover Lemma 33 (Lem.2.4.9). For any ring A, there is an ind-étale faithfully flat
A-algebra A′ with A′ w-contractible.

Proof. By Lemmas 2.1.10, 2.2.3, and 2.2.4, the pro-finite set Spec(AZ/IAZ ) is
homeomorphic to Spec(A) with the constructible topology, where IAZ is the
Jacobson radical. In particular, it is a compact Hausdorff space. Choose a con-
tinuous surjection T → Spec(AZ/IAZ ) from an extremally disconnected profi-
nite set as mentioned in Example 2.4.6. Using Lemma 2.2.8, choose an algebra
AZ/IAZ → B such that T = π0(B). Using Lemma 2.2.7, we find an ind-étale
faithfully flat AZ/IAZ -algebra A0 with A0 w-strictly local and Spec(A0) an
extremally disconnected profinite set. Let A′ = HensAZ (A0). Then A0 is w-
contractible because π0(Spec(A0)) is extremally disconnected (Lem.2.4.8), and
A′ is w-contractible because A0 is (Lemma 2.4.3). The map A→ A′ is faithfully
flat and ind-étale since both A→ AZ and AZ → A′ are so individually.
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A Some point-set topology

A.1 Profinite sets

Definition 34. A profinite set is a filtered inverse limit T = lim←−Ti of finite
sets Ti, equipped with the limit topology. So the open sets are (possibly infinite)
unions of sets of the form π−1

i (t) where πi : T → Ti is the canonical projection
and t ∈ Ti.

Example 35.

1. Any finite set is a profinite set.

2. The set {0} ∪ { 1
n : n = 1, 2, 3, . . . } is profinite.

3. The Cantor set is profinite.

4. Any product of profinite sets is profinite.

−−−− *** add picture ***−−−−

Proposition 36 ([Stacks Project, Tag 08ZY]). A topological space is a profinite
set if and only if it is compact3 Hausdorff4 and totally disconnected5.

This proposition gives a canonical choice for the filtered limit.

Lemma 37. Let T be a profinite set. Then T = lim←−ti∈ITi I were the limit is

over the finite partitions T = ti∈ITi of T into a disjoint union of subsets Ti
which are both open and closed.

Note that any closed open U is compact (any covering of U extends to a
covering of T by adjoining T \ U , and T is compact). On the other hand, any
compact open U is a finite union of basic opens6 and these are closed, so U is
closed.

So, to summarise:{
basic
opens

}
⊆
{

compact
opens

}
=

{
closed
opens

}
3Compact means every open cover admits a finite subcover. This property is called quasi-

compact when talking about schemes.
4Hausdorff means for every pair of distinct points x 6= y there are open sets U, V with

x ∈ U, y ∈ V and U ∩ V = ∅. When talking about schemes, we say quasi-compact for this
same property.

5Totally disconnected means that every subset V ⊆ T containing more than one point can
be written as a disjoint union V = V1 q V2 of nonempty sets V1, V2 ⊆ T both of which are
both open and closed.

6By basic we mean the preimage of some point t ∈ Ti for some presentation T = lim←−i∈I
Ti.
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A.2 Finite sober spaces

A topological space X is called sober7 if every irreducible closed subset has a
unique generic point. I.e., if a closed subset Z is irreducible, then Z is the closure
Z = {η} of some unique point η). The reader is probably already familiar with
finite sober spaces in a different form:

Proposition 38. The category of finite sober spaces is equivalent to the category
of finite partially ordered sets.

Proof. Given a partially ordered set P we define X(P ) to be the topological
space whose points are the points of P , and whose opens are the “upwards
closed” subsets. I.e., subsets U satisfying

x ∈ U, x ≤ y ⇒ y ∈ U.

Exercise: check that the U really form a topology.
Conversely, given a topological space X we define P (X) to be the partially

ordered set whose points are the points of X, and relation

x ≤ y iff y ∈
⋂
U3x

U

where the intersection is over all opens U containing x.
Exercise: Check that we have x ≤ y and y ≤ z ⇒ x ≤ z, that we have

x ≤ x, and that when X is sober we have x ≤ y and y ≤ x ⇒ x = y.
Note that an equivalent condition for x ≤ y is that x ∈

⋂
Z3y Z where the

intersection is over all closed subsets containing y (its straightforward to prove
y 6∈ ∩U3xU ⇐⇒ x 6∈ ∩Z3yZ).

Finally, one should check that X(P (X)) = X and that P (X(P )) = P , and
also that the operations X 7→ P (X) ad P 7→ X(P ) send continuous morphisms
(resp. morphisms of partially ordered sets) to morphisms of partially ordered
sets (resp. continuous morphisms).

So it’s quite easy to produce examples of finite sober spaces.

• • •

•

OO

•

??

•

__

•

??

•

__

•

??__

•

OO

•

??

•

OO

7From Johnstone’s Topos Theory book, p.230: “If we regard two distinct points having the
same closure as an instance of double vision (and an irreducible closed set with no generic point
as a species of pink elephant!), then the reason for the term ‘sober space’ will be apparent.”
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A.3 Spectral spaces

Definition 39. A spectral space is a topological space of the form Spec(R) for
some ring R.

Spaces of the form Spec(R) satisfy a number of nice properties.

1. Each Spec(R) is sober.

2. Each Spec(R) is quasi-compact, i.e., every open cover {Ui → Spec(R)}i∈I
has a finite subcover.8

3. The topology on Spec(R) is generated by the opens of the form D(f) =
Spec(R[ 1

f ]); note that these are also quasi-compact.

4. In fact an open U ⊂ Spec(R) is quasi-compact if and only if Spec(R)\U =
V (I) with I a finitely generated ideal. Consequently, intersections of quasi-
compact opens of Spec(R) are also quasi-compact.

It is an old theorem of Hochster that the above four properties characterise
spectral spaces: I.e., A topological space X is (i) sober, (ii) quasi-compact,
(iii) has topology generated by quasi-compact opens, and (iv) has it’s set of
quasi-compact opens preserved by finite intersection if and only if there is some
ring R with Spec(R) homeomorphic to X. Moreover, a continuous morphism of
spectral spaces is spectral if and only if the inverse image of any quasicompact
open is quasicompact.

In particular, we can deduce from this that for every finite sober space X,
there is some ring R with X = Spec(R). In light of the above proposition, an
equivalent statement is: every partially ordered set is the partially ordered set
of primes of some ring.

On the other hand, there is another characterisation of spectral spaces that
is useful for us.

Proposition 40. A topological space is spectral if and only if it is a filtered
inverse limit of finite sober spaces.

B Constructible sets

Just as any profinite set X is the filtered inverse limit of it’s partitions into
closed-open sets (see above), any spectral space is the inverse limit of it’s par-
titions into constructible sets.

Definition 41. Suppose that X is a spectral space. The family of constructible
sets of X is the smallest family of subsets closed under finite intersection, finite
union, complement, and containing the quasi-compact open subsets of X.

8This follows from a partition of unity type argument: If V (Ii) are the closed complements
of the Ui, then ∩V (Ii) = ∅, but ∩V (Ii) = V (

∑
i Ii) and this is empty if and only if 1 ∈

∑
i Ii,

so 1 = ai1 + · · · + ain for some aij ∈ Ij . But then V (Ii1 + · · · + Iin ) is also empty, so
{Ui1 , . . . , Uin} is also an open cover.

12



−−−− *** add picture ***−−−−

Constructible sets generate a new topology on X: the constructible topology.
The opens of the constructible topology are (possibly infinite) unions of con-
structible sets (which, of course, may not be open in the original topology). Since
the original topology on our spectral space X is generated by quasi-compact
opens, we see that the constructible topology is finer than the original topology.
In fact, equipped with the constructible topology, X becomes a profinite set!

Proposition 42 ([Stacks Project, Tag 0901]). Let X be a spectral space. The
constructible topology on X is compact, Hausdorff, and totally disconnected. In
other words, it is profinite.

The claim about being totally disconnected is not in the Stacks Project
statement, but follows easily from the fact that the constructible topology is
Hausdorff, and that it has a basis consisting of sets which are both open and
closed.

On the other hand, since the compact opens of a profinite set are precisely
the closed opens, for a profinite set the constructible topology is the same as
the original topology.

So changing a spectral spaces topology to the constructible topology is a
kind of “profinitification”.

Construction 43. Suppose that X = Spec(R) is a spectral space and X =
tP∈pXp is a decomposition into constructible subsets. Sending x ∈ X to the
index of the Xp that contains it defines a map π : X → P . Then we give P the
induced topology. So a subset U ⊂ P is open if and only if π−1U is open.

Since the constructible open sets are the quasicompact ones, one sees that
the map X → P is spectral. That is, there is a ring homomorphism S → R
such that Spec(S) → Spec(R) induces the map of topological spaces X → P
(this R may be different from the R in the construction, even though it gives
rise to the same topological space).

Lemma 44. Suppose that X is a spectral space. Then X is the inverse limit of
it’s finite constructible decompositions X = lim←−X=tp∈PXp

P .

Proof. If we equip each P with the discrete topology, then we get the morphism
π : X → lim←−X=tp∈PXp

P from the profinite version of this lemma, which we have

already proven is injective and surjective. So it suffices to show that U ⊆ X is
open if and only if π(U) is open. Suppose U is a quasicompact open. Then U
induces a constructible partition X = U q (X \ U) and so π(U) is open. Since
all opens of X are unions of quasicompact opens, this shows that if U is open,
π(U) is open. Conversely, if π(U) is open, then U must be open by continuity
and bijectivity of π.
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