
All fields are of characteristic 6= 2 (just to make some statements nicer).
The reference for most of these notes is Dugger’s “Notes on the Milnor

Conjecture”. We use Totaro’s, “MilnorK-theory is the simplest part of algebraic
K-theory” in the section on higher Chow groups.

1 The Witt ring

Definition 1. A quadratic space over a field F is a pair (V, q) consisting of a
finite dimensional vector space V , and a function q : V → F such that

1. for all v ∈ V, a ∈ F , we have q(av) = a2q(v), and

2. βq(v, u) = q(u+ v)− q(u)− q(v) is bilinear.

A morphism of quadratic spaces (V, q) → (V ′, q′) is a linear morphism φ :
V → V ′ such that q′ ◦ φ = q.

Exercise 1.

1. Show that for any matrix A ∈ Mn×n(F ), the map Fn → F defined by
qA : v 7→ vt ·A · v makes (Fn, qA) a quadratic space.

2. Let (V, q) be a quadratic space. Show that (V, q) is isomorphic to a space
of the form (Fn, qA) for some n and some matrix A ∈ Mn×n(F ). Hint:
choose a basis e1, . . . , en for V and consider the elements βq(ei, ej).

An isomorphism of quadratic spaces is called an isometry. If (V, q) is iso-
metric to (V ′, q′) we write (V, q) ∼ (V ′, q′).

Question: Classify quadratic spaces over a field F up to isometry.

Proposition 2. Suppose that (V, q) is a quadratic space. Then there exists a
basis e1, . . . , en, and a1, . . . , an ∈ F such that

q(x1e1 + . . . xne1) = a1x
2
1 + · · ·+ anx

2
n.

Proof. Note that equivalently, there is a basis such that βq(ei, ej) = 0 for all
i 6= j. The proof is by induction on the dimension. It is true in dimension zero,
and also if q = 0. So suppose there is v ∈ V such that q(v) 6= 0. Consider the
vector space W = {w : βq(v, w) = 0}. For an arbitrary u ∈ V , we can write

u =
βq(u,v)
βq(v,v)v + w where w = u − βq(u,v)

βq(v,v)v. Then one sees that βq(w, v) = 0.

In other words, V = W ⊕ 〈v〉. Since dimW < dimV , by induction there is a
basis e1, . . . , en−1 satisfying βq(ei, ej) = 0 for all i 6= j. Then by construction,
e1, dots, en−1, v is a basis of V satisfying the requirement.

Definition 3. The quadratic space in the above theorem will be denoted

〈a1, . . . , an〉 = (Fn, a1x
2
1 + · · ·+ anx

2
n)
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Exercise 2. 1. Show that for any permutation σ : {1, . . . , n} → {1, . . . , n},
we have 〈a1, . . . , an〉 ∼ 〈aσ1, . . . , aσn〉.

2. Suppose that b1, . . . , bn ∈ F are squares, i.e., there exist c1, . . . , cn ∈ F
with c2i = bi. Show that 〈a1, . . . , an〉 ∼ 〈b1a1, . . . , bnan〉.

3. Deduce that if every element of F is a square (e.g., F is algebraically
closed, e.g., F = C) then every quadratic space is isometric to one of the
form 〈1, . . . , 1, 0, . . . , 0〉.

4. Deduce that if F = R, then every quadratic space is isometric to one of
the form 〈1, . . . , 1,−1, . . . ,−1, 0 . . . , 0〉.

Definition 4. A quadratic space (V, q) is degenerate if there is a nonzero v ∈ V
such that β(v, w) = 0 for all w ∈ V . It is anisotropic if there is no subspace
isometric to 〈1,−1〉.

Theorem 5 (Witt). Every quadratic space is isometric to one of the form

〈b1, . . . , bi, 1,−1, . . . , 1,−1, 0, . . . , 0〉

with 〈b1, . . . , bi〉 anisotropic. Moreover, 〈b1, . . . , bi〉 is uniquely determined up to
isometry. That is,

〈b1, . . . , bi, 1,−1, . . . , 1,−1, 0, . . . , 0〉 ∼ 〈b1, . . . , bi, 1,−1, . . . , 1,−1, 0, . . . , 0〉

if and only if
〈b1, . . . , bi〉 ∼ 〈b′1, . . . , b′i〉

Definition 6. The sum of two quadratic spaces (V, q) and (V ′, q′) is the space
(V, q) + (V ′, q′) = (V ⊕ V ′, q + q′). The product is (V, q) · (V ′, q′) = (V ⊗F
V ′, q ⊗F q′).

In the multiplication we mean V ⊗F V ′
q⊗q′→ F ⊗F F ∼= F .

Exercise 3. Let 〈a1, . . . , an〉, 〈b1, . . . , bm〉 be quadratic spaces. Describe their
sum and product in the form 〈c1, . . . , cN 〉.

Using the fact than any isometry class of quadratic spaces can be written in
the form 〈a1〉+ · · ·+ 〈an〉 show that we have(

(V, q)⊕ (V ′, q′)

)
⊗ (V ′′, q′′) ∼

(
(V, q)⊗ (V ′′, q′′)

)
⊕
(

(V ′, q′)⊗ (V ′′, q′′)

)
Definition 7. The Witt ring is

W (F ) =

{
equivalence classes of nondegenerate

quadratic spaces

}
〈a1, . . . , an〉 = 〈a1, . . . , an, 1,−1〉
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Remark 8. By Witt’s theorem, every element of W is represented by a unique
isometry class of anisotropic quadratic spaces. The problem is that addition and
multiplication of anisotropic quadratic spaces are not necessarily anisotropic
anymore (e.g., 〈1〉 + 〈−1〉 = 〈1,−1〉, and 〈1, a〉 ⊗ 〈1,−a〉 = 〈1, a,−a,−a2〉 ∼
〈1,−1〉 ⊕ 〈a,−a〉, but its possible that neither 〈1, a〉 or 〈1,−a〉 are isometric to
〈1,−1〉. For example, if a = 2 in F5 then disc〈1,±2〉 = ∓2 6≡ 1 = disc〈1,−1〉
because 2 and −2 are not squares in F5).

Exercise 4. Show that inW (F ) we have−〈a1, . . . , an〉 = 〈−a1, . . . ,−an〉. Hint:
consider multiplication by 〈1,−1〉.

Exercise 5. Recall that over R, every nondegenerate quadratic space is iso-
metric to one of the form 〈1, . . . , 1,−1, . . . ,−1〉. Show that W (R) ∼= Z.

Exercise 6.

1. Show that the map

dim : W (F )→ Z/2; (V, q) 7→ dimV

is a well-defined group homomorphism.

2. Show that the map

disc : W (F )→ F ∗/(F ∗)2; 〈a1, . . . , an〉 7→ (−1)
n(n−1)

2

n∏
i=1

ai

restricted to the kernel I(F ) = ker(W (F )
dim→ Z/2) of dim (i.e., elements

such that n is even) is a group homomorphism with addition on the left
and multiplication on the right.

3. Show that if 〈a1, . . . , an〉 and 〈b1, . . . , bm〉 are in I(F ) (i.e., n and m are
both even), then disc(〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉) is in (F ∗)2, i.e., it is a
square.

Definition 9. The kernel I(F ) = ker(W (F )
dim→ Z/2) of the dimension ho-

momorphism is called the augmentation ideal. The graded Witt ring is the
associated graded ring of W (F ) with respect to the ideal I.

GrIW (F ) = W/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . .

Remark 10. The augmentation ideal I(F ) is the subset W (F ) of classes that
are represented by even dimension quadratic spaces.

Exercise 7. Show that GrIW (R) ∼= Z/2[t] (the polynomial ring in one variable
over Z/2.

Proposition 11. The maps dim and disc induce isomorphisms

dim : W/I ∼= Z/2,
disc : I/I2 ∼= F ∗/(F ∗)2
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Moreover, [Merkurjez 1981], there is an isomorphism

C : I2/I3 ∼= 2Br(F )

with target the 2-torsion elements in the Brauer group.

2 Etale cohomology

Recall, the following two results from étale cohomology.

Theorem. (Hilbert 90) H1
et(Spec(F ),Gm) ∼= 0.

Proposition. H2
et(Spec(F ),Gm) ∼= Br(F ).

Putting these two isomorphisms into the long exact sequence associated to the
short exact sequence of étale sheaves

0→ Z/2→ Gm
(−)2→ Gm → 0

we get

0→H0
et(F,Z/2)
∼=Z/2

→ H0
et(F,Gm)
∼=F∗

2→ H0
et(F,Gm)
∼=F∗

→

→H1
et(F,Z/2)
∼=F∗/(F∗)2

→ H1
et(F,Gm)
∼=0

→ H1
et(F,Gm)
∼=0

→

→H2
et(F,Z/2)
∼=2Br(F )

→ H2(F,Gm)
∼=Br(F )

2→ H2(F,Gm)
∼=Br(F )

→

That is, our invariants take the form

e0 :W/I ∼= H0
et(F,Z/2)

e1 :I/I2 ∼= H1
et(F,Z/2)

e2 :I2/I3 ∼= H2
et(F,Z/2)

Question 12. Does this sequence of isomorphisms continue?

3 Milnor K-theory

Exercise 8. Note that the discriminant disc = e1 : I/I2 ∼→ F ∗/(F ∗)2 has in-
verse ν : a 7→ ν(a) = 〈a, 1〉. For a ∈ F ∗ show that if a 6= 1 then

ν(a)ν(1− a) =

(
〈a〉 − 〈1〉

)
·
(
〈1− a〉 − 〈1〉

)
= 0

Hint: show that for a, b ∈ F ∗ we have 〈a, b〉 ∼ 〈ab(a+ b), a+ b〉.

Proposition 13 (Tate, Milne). For a ∈ F ∗, a 6= 1 we have η(a) ∪ η(1− a) = 0
in H2

et(F,Z/2).
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So, the canonical ring homomorphisms⊕
n∈N

(F ∗)⊗n → GrIW (F )

⊕
n∈N

(F ∗)⊗n → H∗(G,Z/2)

both factor through:

Definition 14. The Milnor K-theory ring

KM
∗ (F ) =

⊕
n∈N(F ∗)⊗n

a⊗ (1− a) : a 6= 1

and we have seen that

Theorem 15. The two graded ring homomorphisms

GrIW (F )
ν← KM

∗ (F )/2
η→ H∗(G,Z/2)

are isomorphisms in degrees 0, 1, 2.

Theorem 16 (Orlov-Vishik-Voevodsky 1996, Morel 1999). For all fields F , the
map ν is an isomorphism.

Theorem 17 (Voevodsky 1996). For all fields F , the map η is an isomorphism.

Example 18. Since we have Hn
et(Fq,Z/2) = 0 for n > 1, we see that any

quadratic space over Fq is completely determined by its dimension and dis-
criminant. Consequently, there are exactly four classes of anisotropic quadratic
spaces over Fq:

〈〉, 〈1〉, 〈ω〉, 〈1,−ω〉
where ω ∈ F∗q is any nonsquare, e.g., a generator.

4 Higher Chow groups

The reference for this section is Totaro’s, “Milnor K-theory is the simplest part
of algebraic K-theory”.

One of the most important ingredients in Voevodsky’s proof of the Milnor
conjecture was translating it into an isomorphism between motivic cohomology
and étale cohomology. An earlier candidate for motivic cohomology was Bloch’s
higher Chow groups. Their definition is quite concrete, and Totaro gave an
elementary proof that they specialise to Minor K-theory.

Let X be a quasi-projective variety over a field F . One defines cj(X,n)
to be the free abelian group generated by closed subvarieties Z ⊆ X × An of
codimension j such that Z ∩ X × An−i × {ε} × Ai is a union of varieties of
codimension j + 1 for all i = 1, . . . , n and ε = 0, 1.

−−−−−−−−− draw picture −−−−−−−−−
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For example, cdimX+n(X,n) is freely generated by the closed points of
X×An which do not lie on any of the “faces” (since the only variety of di-
mension -1 is ∅).

For each i = 1, . . . , n and ε = 0, 1, there are maps

∂εi : cj(X,n)→ cj(X,n− 1)

induced by intersection with the “faces” X × An−i × {ε} × Ai. We define

d =

n∑
i=1

(−1)i(∂1
i − ∂0

i )

and obtain a complex

· · · → cj(X, 2)→ cj(X, 1)→ cj(X, 0)→ 0.

Inside each cj(X,n) is a canonical subgroup dj(X,n) of those cycles which are
pulled back from cycles on cj(X,n−1) along a projection X×An → X×An−1.

Definition 19. Bloch’s higher Chow groups are the homology groups of the
complex

CHi(X,n) = ci(X, ∗)/di(X, ∗).

Note that CH1(F, 1) is generated by the points of A1 \ {0, 1}. There is a
canonical morphism F ∗ → CH1(F, 1) sending

a ∈ F ∗ 7→
{

0 a = 1
[1/(1− a)] a 6= 1

Theorem 20 (Totaro). The morphism defined above induces an isomorphism

KM
n (F )

∼→ CHn(F, n).

The point is that now we have a theory defined for all varieties, not just
fields. Moreover it is equipped with a lot of extra structure, for example, there
are long exact sequences

· · · → CHn(Z, i)→ CHn+c(X, i)→ CHn+c(X \ Z, i)→ CHn(Z, i+ 1)→

where Z ⊂ X is a closed subvariety of codimension c.

5 Further remarks - Voevodsky’s proof of the
Milnor conjecture

1. (Reduction to char = 0). Using transfer maps, and discrete valuation
rings, it is sufficient to prove that η is an isomorphism for all fields of
charactersitic zero.
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2. (Conversion to motivic cohomology). Instead of proving that η is an iso-
morphism, Voevodsky showed that it is isomorphic to the case i = j of
a “realisation map” between motivic cohomology and étale motivic coho-
mology

Hi
M(F,Z/2(j))→ Hi

M,et(F,Z/2(j))

These motivic cohomology groups are the Zariski / étale cohomology
groups of explicit complexes built using cycles (formal sums of irreducible
closed subvarieties) in Ai × (P1)j .

This is useful because these groups have more structure. They are defined
for all varieties, not just fields, they are bigraded (so there are more of
them), there are various long exact sequences, etc.

3. (Hilbert 90). In this reformulation, it becomes sufficient to show that a
Hilbert 90 type vanishing:

Hn+1
M,et(F,Z(2)(n)) = 0 (H90(n))

for all characteristic zero fields, and all n.

4. (Splitting varieties). The statement H90(n) can be proven by induction
on n. The statement H90(n) is true if the following holds:

(a) H90(n -1) is true for all characteristic zero fields.

(b) For every field F and tuple a = (a1, . . . , an) with ai ∈ F ∗ there is
some smooth irreducible F -variety Xa such that

i. a1 ⊗ · · · ⊗ an vanishes in the function field F (Xa) of Xa. That
is, it is killed by the map

KM
n

(
F
)
/2→ KM

n

(
F (Xa)

)
/2

(i.e., Xa is a splitting variety for a).

ii. the variety Xa becomes rational (i.e., birational to a projective
space) over its function field F (Xa).

iii. A certain motivic cohomology group of the Čech simplicial scheme
Č(Xa) of Xa vanishes: Hn+1

M (Č(Xa),Z(2)(n)) = 0.

Remarks:

• The second two hypotheses imply that

Hn+1
M,et

(
F,Z(2)(n)

)
→ Hn+1

M,et

(
F (Xa),Z(2)(n)

)
is injective.

• By Č(X) we mean the simplicial scheme X←←X×X←←←X×X×X←←←
← . . . .

There is a generalisation of motivic cohomology to simplicial schemes.
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5. (Pfister quadrics). For a as above consider the symmetric bilinear form
associated to 〈1,−a1〉 · 〈1,−a2〉 · · · · · 〈1,−an−1〉 + 〈an〉. Then consider
the variety Qa in P2n

F defined by the quadratic form associated to this
symmetric bilinear form. The theory of Pfister quadratic forms says that
this is a splitting variety for a. So now it suffices to show that condition
(4(b)iii) is satisfied for this Qa. To begin with, one can show that

H2n−1
M (Č(Qa),Z(2)(2

n−1)) = 0.

6. (Cohomology operations). The last piece is to show the following. Let
n ≥ 2 be an integer and F a field of characteristic 0. Then there exists a
natural transformation

Θn : Hn+1
M (−,Z/2(n)))→ H2n−1

M (−,Z/2(2n−1))

on the category of simplicial smooth k-varieties which preserves the mod
2 reduction of integral classes, and such that H90(n - 1) implies that for
all a the morphism Θn

Č(Qa)
is an monomorphism.

This is where a careful study of the motivic Steenrod algebra (i.e., the
algebra of certain nice natural transformations as above) is used.
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