In this lecture we assume that k£ = C is the field of complex numbers. Then to
any smooth variety X is associated the complex manifold X4, , whose topology
is induced by the usual topology on R?” =2 C". We will work exclusively with
the sheaf cohomology on X, in this lecture

Hn(X7 A) = ngtti(Xana A)

If A = C, then we have the canonical isomophism HJ, ... (Xgn, C) = Hix(Xgn, C),

etti
and (when X is projective) the Hodge decomposition on Hji(Xgn, C), leading
to a decomposition
H"(X,C)= @ H™(X).

r4+s=n

1 The cycle map

Proposition 1. Let X be a smooth, quasi-projective, irreducible variety defined
over C. Let 0 < p < dim X.Then there exists a homomorphism, the cycle map

ZP(X) — H*(X,7)
which factors through CHP(X). If X 1is projective, the image lies in Hdg? (X) =
jTYHPP(X), the preimage of HPP(X):

H?(X,Z) > H?(X,C) =@, o H™(X)

o tu

Hdg?(X) — HPP(X,C)

Remark 2. We shall only construct the map for ZP(X) itself. The factorization
exists because Z,.4:(+) C Zpom(+) by our definition of a Weil cohomology theory
as one which factors through the category of motives M.

Outline of the construction of the yz. (For more details see [Voisin, 11.1.2]). Let
Z C X be a closed irreducible subvariety of (algebraic) codimension p. We want
to define v(Z) € H?P(X,Z). Recall the Thom isomorphism theorem: If Z C X
is a smooth closed subvariety of codimension p, then

T:HI(X,U;:Z) — HI"*(Z; 7).
In particular, we deduce from this that
HI(X,7) = H(U,Z); j < 2p.
Even if Z is not smooth, there exists a sequence of closed subvarieties
B=2,CZpn1C---CZ1CZy=2
such that Z; \ Z;11 is smooth. Then by induction, we discover that

H(X,Z) = H?(X \ Z,,2)



Since we want the cycle map to be functorial,

ZNX) ——=2Zr(X\ 41)

vi lv
H?P(X,Z) — H*(X \ Z,,7)
to define v(Z) € H?!(X,7Z), it suffices to define v(Z \ Z;) € H*(X \ Z1,Z). In

other words, we can assume that Z is smooth. Now we use the following exact
sequence with U = X — Z and define v(Z) := po T~ 1(1z)

1—~(2)
<= H¥ YU, Z) - H*®(X,U;Z) 25 H?(X;Z) — H*(U,Z) — - --
N—————
~HO(Z;2)=1
O

Remark 3. If the variety X is defined over an algebraically closed field k& but
otherwise of arbitrary characteristic we have essentially the same construction
(see [Milne, p.268]) working with H.:(X,Z,), where ¢ # char(k), and using
instead of the above sequence the sequence

= HP (X, Ze) — H*(X,Zg) — H*®(U,Z¢) — - -
Remark 4. If Z is codimension one, we have isomorphisms
CH'(X) = Pic(X) & H7,(X,0%) = H' (Xan, 0%, ),
and the short exact sequence
07— 0x,, & O, —1

induces a map

CH'(X) = H'(Xan, 0%, ) = H*(Xan, Z).
It can be shown that this map agrees with the one defined above. Moreover,
since v : CH*(X) — H?*(X,Z) is a morphism of graded rings, the class of any

cycle Z which is an intersection of codimension one cycles Z1, ..., Z,, € CH'(X)
is the product of the classes

IR Zw) =Y(Z1) ... (Zm)

Position of vz(Z) in the Hodge decomposition. If X is (smooth) projective of
dimension d, Poincaré Duality induces an isomorphism

H'(X,C) = H*7(X,C)*



(where (—)* = hom(—,C) means the dual vector space) which is compatible
with the Hodge decomposition in the sense that

Hr,s(X) o~ der,dfs(X7 (C)*

Instead of showing that v(Z) € HPP(X) we will show that the induced map
DB, 1 s—sp H 7% — C is zero unless r = s.

We claim (for more details see [Voisin, 11.1.2]) that the cycle class map sends
a the closed subvariety Z to the map

WZ): Hig *P(X,C) = C
5 /Z (8l2)

Notice that 8|z € ng_2p(Z7 C) and consider its Hodge decomposition. Since
H"™*(Z) is the set of cohomology classes representable by a closed form of type
(r,s), and since d — ¢ = dim Z, the Hodge decomposition of HggiZP(Z, C) has a
single term: H~%%=¢(Z). So |z = 0if 8 ¢ H*“?~¢(X). Hence,

either v(Z)=0 or v(Z) € H o ¢(X)* = H*(X).

2 Hodge classes. Hodge conjecture

Question 5. What is the image of ZP(X) — Hdg"(X)?

Theorem 6 (Lefschetz (1,1), 1924). Let X be a smooth, irreducible, projective
variety defined over C. Then

V3.x 1 Div(X) — Hdg"(X) C H*(Xan,Z)
is onto. That is, every class of type (1,1) is “algebraic” (i.e. is the cohomology
class of a divisor).
Indication of the proof. See [Griffiths and Harris, p.163] for details. It follows
from the exponential sequence description of the cycle class map
oo H (Xgn, O%, ) S H?(Xan, Z) 5 H?(X 4, Ox,,) — - .

that the image of v : CH'(X) = H'(Xan, 0%, ) = H*(Xan, Z) = H*(X,Z) is
the kernel of 5. On the other hand, the pieces of the Hodge decomposition of
H?(X,C) can be identified as

H™ (X)) H*(X,Q")
and under this identification, the map ( corresponds to the canonical projection

2
B+ H*(Xan, Z) % H*(Xan,C) = @ H" (Xan, *7") = H*(Xan, Ox,,,)-
r=0



Now since H?" = H%2 we see that a class lies in Hdg' (X) if and only if it is
in the kernel of 3.
O

Motivated by the Lefschetz (1,1) theorem for divisors Hodge conjectured
that, or at least raised the question whether, 47 is onto always for all p (“inte-
gral Hodge conjecture”). However Atiyah-Hirzebruch discovered that this inte-
gral form is not true (1962), later other counterexamples were given by Kollar
(1992) and Totaro (1997). Therefore the question has to be modified to rational
coefficients.

Conjecture 7 (Hodge). vg : 2P(X) @ Q — Hdg"(X) ® Q is onto.

This fundamental conjecture is wide open and only known for special cases
(see for instance lectures by Murre and van Geemen in [Green al.]).

3 Intermediate Jacobian and Abel-Jacobi map

Let X be a smooth, irreducible, projective variety defined over C. Recall the
Hodge decomposition

H'(X,C)= @ H(X), H(X)=H7(X)
r+s=1
and the corresponding descending Hodge filtration
FH(X)=@H""=H "+ H ™" +... 4 H".
r>j
Definition 8. The p-th intermediate Jacobian of X is
JP(X) =H*1(X,C)/ (FPH2P1 (X) + H¥P (X, Z)) .
So writing

V — H(),prl 4. +Hp71,p

we have that JP(X) = V/H?*~(X,Z) (where -of course- we mean the image of
H?**~YX,Z) in V).

Exercise 1. Let A be a free abelian group of rank 2n, and let V.C A ® C be
a sub-C-vector space of dimension n such that A®@ C = V & V. Show that
A®R — (A®C)/V is an isomorphism of R-vector spaces.

Lemma 9. The pth intermediate Jacobian JP(X) is a complex torus of dimen-
sion half the (2p — 1)th Betti number by, = dimg H*?~1(X,Q) of X :

dim JP(X) = %bgp_l(X).



Proof. [Voisin, 12.1.1] Since 2p — 1 is odd, the Hodge filtration on H*~1(X, C)
gives the direct sum decomposition

H?» X, C)=VaV.
Thus the composition map
H* (X ,R) —» H* Y(X,C)/FPH*~1(X,C)
is an isomorphism of R-vector spaces. Therefore the lattice
H* Y(X,7) C H*7(X,R)
gives a lattice in the C-vector space H?*?~1(X,C)/FPH?**~1(X). O

Remark 10. The complex torus J?(X) is in general not an abelian variety, i.e.
can not be embedded in projective space. For a torus T' = V/L to be an abelian
variety it is necessary and sufficient that there exists a so-called Riemann form.
This is a R—bilinear alternating form F : V x V — R satisfying

a. E(iv,iw) = E(v,w).
b. E(v,w) € Z whenever v,w € L.
c. E(v,iw) symmetric and positive definite

In our case there is a non-degenerate form on V given by E(v,w) =vUw U
hd+2=2P where h is the hyperplane class in H2(X,Z). However this form is in
general not positive definite because it changes sign on the different H™*(X),
but it is if only one H™* occurs in V, for instance only HP~1P,

Special cases

a. p=1. Then J}(X) = HY(X,C)/H"® + H'(X,Z). This is the Picard
variety of X, which is an abelian variety.

b. p =d. Then J4X) = H?~1(X,C)/H%4~1 + H?4~1(X,Z). This is the
Albanese variety of X, which is an abelian variety.

c. If X = C is a curve then J!(X) is the so-called Jacobian variety of C,
an abelian variety which is at the same time the Picard variety and the
Albanese variety of X.

Recall
ZP

Pom(X) ={Z € ZP(X) : vz(Z) =0},
i.e. the algebraic cycles which are homologically equivalent to zero.

Theorem 11. There exists a homomorphism

AJP . zZP

hom

— JP(X)

which factors through CHY (X). The map AJ is called the Abel-Jacobi map.

hom



Omitted. See [Voisin, 12.1.2]. The construction is a little complicated and leans
heavily on Poincaré Duality. Using the commutative diagram

H?P~1(X,Z) /torsion = Hag2p11(X,Z) /torsion
H*~1(X,C) = H2=2+1( X, C)*

It suffices to construct a map H2?=?*1(X,C) — C for each Z € 2/ (and
show everything is well-defined). Using Poincaré Duality again, now between
singular cohomology and singular homology, it suffices to construct a I' €
G582y 41 (X, Z). Tn fact, the element v(Z) € H??(X,Z) 2= Hay 2,(X,Z) is actu-
ally represented by a canonical cycle in C;icri'f 2p(X ,Z) (the pushforward of a tri-

angulation of the smooth manifold associated to any desingularisation Z—7 ).
Saying Z € _Zﬁom means precisely that v(Z) € C53%, (X,Z) is the image of
some I' € O34, (X, Z). This is the I' that we choose. Then one must check
that every thing is well-defined, and has the appropriate properties. O

Example 12. Let X = C be a smooth projective curve defined over C of genus
g. Nowp=1and Z}  (C)= Div(?(C) are the divisors of degree zero, so we
can write D =Y. (P; — Q;) for some closed points P;,Q; € C. Let I'; be a path
from Q; to P;, so D =0T with ' = >"T';. Now

J(C)=HYC,C)/(F'H' + H'(C,7)) = H*'(C)/H'(C,Z)

=~ HY0(C)*/H"(C,Z) (Poincaré Duality)

and H'9(C) = HY(C,Q}), ie. the space of holomorphic differentials, so
dim H'0 = dim H%! = g. Now I € C"8(C, Z) defines a map H°(C,QL) — C,
namely if w € H°(C, QL) consider fr w € C, and hence, via the above isomor-
phisms, an element in J(C).

If we choose other paths (or another ordering of the points @;) then we get a
1-chain IV and IV —T" € H1(C,Z) and the maps I" and I give the same element
in J(C).

4 Deligne cohomology. Deligne cycle map

In this section X is a smooth, irreducible, quasi-projective variety defined over
C. We denote the associated analytic space X, by the same letter (X,, is a
connected complex manifold, but not necessarily compact).

Definition 13. Recall the decomposition AZ(X) = >, _, AP4(X) of com-
plex infinitely differentiable forms on the smooth (real) manifold X,,. A form

w € APO(X) is called holomorphic if its image dw € > prg=nt1 APUX) lies



entirely in AP0, We will write Q% for the sheaf of holomorphic n-forms. The
differential d : AL(X) — ART(X) induces a complex

0%:0-0% -0k - = Q% =0
Exercise 2. Show that Q% is the sheaf of holomorphic functions.

Proposition 14 (Holomorphic Poincaré lemma, [Griffiths and Harris, p.448]).
The canonical inclusion C C Q% induces a quasi-isomorphism of C — Q%.

Definition 15. Let A C C be a subring (such as Z,Q, or R). Deligne-Beilinson
cohomology is the hypercohomology

Hp (X, A(n)) = H'(X, A(n)p)
of the complex
An)} 0—=An) - Q% -0k - = Qv =0 ...,
where A(n) = (2mi)™A.

Theorem 16 (Deligne). The cycle map induces a morphism of short exact
sequences

0—— ZP

hom(X) ZP(X) ZP(X)/Zﬁom(X)*)O

i | |

0 — JP(X) —— HZP(X,Z(p)) —— HdgP(X) —— 0

We don’t say anything about the cycle map.
Sketch of exactness of the lower row. See [Voisin, p.304, 12.3]. Associated to
0 — Q3 F[-1] — Z(p)p — Z(p) — 0.
is the long exact sequence
HY7) (X, Z(p)) S B (X, 057
= Hy (X, Z(p))
— H(X,Z(p)) & B (X, Q57). (1)

and it suffices to show that coker & = JP(X) and ker 8 = HdgP(X).
The point essentially that Q3&7 calculates the Hodge filtration (this basically
follows from the spectral sequence associated to the double complex AP'9(X))

H' (X, Q577) = FPH'(X),

so the short exact sequence 0 — Q%7 — Q% — Q% — 0 implies

H'(X,Q%") = H'(X,C)/FPH(X) (2)
The the claims about « and (3 follow from the definitions of J?(X) and Hdg? (X).
O



Exercise 3. Using the sequence and the isomorphism show that we have
ker 8 = Hdg?(X). (Hint: Cf. the proof of Theorem @

Exercise 4.
1. Show that H%)(X,Z(O)) = H'(X, 7).

2. Show that via the map z — exp(z), the complex Z(1)p is quasi-isomorphic
to the complex O%[—1] which has O% placed in degree —1, and is trivial
elsewhere.

Remark 17. We deduce from the exercise that H3 (X, Z(1)) = H' (X4n, 0%, ) =
Pic(X), and that the lower short exact sequence of Theorem is identified with
the classical short exact sequence

0 — Pic’(X) — Pic(X) = NS(X) =0 (3)
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