
In this lecture we present some main theorems from algebraic topology, dif-
ferential topology, symplectic geometry, . . . that we will use later. More specif-
ically, we discuss Betti, singular, and de Rham cohomology, the relationship
between them, and finish with pure Hodge structures.

We will get back to algebraic geometry next week.

References:

1. Bott&Tu, Differential forms in algebraic topology.

2. Griffiths&Harris, Principles of algebraic geometry.

3. Hatcher, Algebraic topology.

4. Voisin, Hodge theory and complex algebraic geometry I.

1 Topological spaces

Definition 1. If M is topological space, and R a ring, we define the Betti
cohomology Hn

Betti(M,R) as the cohomology of the constant sheaf R. That is,
we choose an exact complex of sheaves on M

0→ R→ I0 → I1 → . . .

with each Ii injective and define

Hn
Betti(M,R) =

ker(d : In(M)→ In+1(M))

im(d : In−1(M)→ In(M))
.

Remark 2. Its also possible to calculate cohomology using exact complexes of
flasque1 sheaves, (cf. Voisin, Prop.4.34), or fine2 sheaves (cf. Voisin, Prop.4.36).

The singular cohomology is one concrete option of a resolution calculating
Betti cohomology. Cf. Voisin, Section.4.3.2.

Definition 3. Define ∆n = {(x0, . . . , xn) ∈ Rn+1 : 0 ≤ xi, and
∑
xi = 1}.

Then for a topological space U , the group of singular cochains is hom set

Cnsing(U,R) = homset(homcont(∆
n, U), R)

Addition in the ring R makes this set a group.

Example 4. C0
sing(U,R) = homset(U,R).

1Flasque means: (cf. Voisin, Def.4.33) for every inclusion of open subsets U ⊆ V the
induced map F (V )→ F (U) is surjective.

2Fine means: )cf. Voisin, Def.4.35) F is a sheaf of R-modules where R is a sheaf of rings
such that for every open cover {Ui ⊆ X}i∈I there exists a partition of unity fi, i ∈ I,

∑
fi = 1,

subordinate to the covering.

1



The inclusions Rn+1 → Rn+2; (x0, . . . , xi, 0, xi+1, . . . , xn) induce maps δi : ∆n→∆n+1

and, by composition, these induce maps δ∗i : homcont(∆
n+1, U)→ homcont(∆

n, U),
and from there, maps

d =
∑

(−1)idi : Csing
n (U,R)→ Csing

n+1(U,R).

These form a chain complex of sheaves

0→ R(−)→ C0
sing(−, R)

d→ C1
sing(−, R)

d→ · · · d→ Cnsing(−, R)
d→ . . . (1)

Definition 5. The singular cohomology of M is the cohomology of (1). I.e.,

Hn
sing(M,R) =

ker(d : Cnsing(M,R)→ Cn+1
sing (M,R))

im(d : Cn−1sing (M,R)→ Cnsing(M,R))

Exercise 1. Show that each Cnsing(−, R) is a flasque sheaf. That is, for every
inclusion of open sets U ⊆ V the map Cnsing(V,R)→ Cnsing(U,R) is surjective.

Lemma 6. When M is a manifold (or more generally a locally contractible
topology space) the chain complex (1) is exact.

Sketch of proof. Since M is a smooth manifold it admits an open cover consist-
ing of contractible spaces. Then use the result mentioned further down, that
the singular cohomology of contractible spaces vanishes.

Corollary 7. If M is a smooth manifold, then

H∗Betti(M,R) = H∗sing(M,R).

We have the following properties:

Theorem 8.

1. (Homotopy invariance) If there is a continuous map h : M × [0, 1] → N
then the map on cohomology induced by h(−, 0) is equal to the map induced
by h(−, 1). In particular, if M is contractible, i.e., there is a continuous
map h : M × [0, 1]→M such that h(−, 0) = idM and h(−, 1) is constant,
then Hn(M,R) = 0 for n > 0 and H0(M,R) ∼= R.

2. (Mayer-Vietoris) If U, V ⊆M are two open subspaces then there is a long
exact sequence

· · · → Hn−1
Betti(U ∩ V,R)→ Hn

Betti(U ∪ V,R)

→ Hn
Betti(U,R)⊕Hn

Betti(V,R)→ Hn
Betti(U ∩ V,R)→ . . .

3. (Finiteness) Cf. Bott&Tu, Prop.5.3.2. If M is a compact smooth manifold,
then the Hi(M,Z) are finitely generated.

Sketch of proof (omitted from the lecture).
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1. We only prove the “in particular”. Any map σ : ∆n → X induces a map

∆n×[0, 1] → X×[0, 1]
h→ X. Since h(−, 1) is constant, this map factors

through the projection ∆n×[0, 1] → ∆n×[0, 1]/∆n×{1} ∼= ∆n+1. So we
obtain a map σ′ : ∆n+1 → X whose composition with ∆n ∼= ∆n×{0} ⊂
∆n×[0, 1]/∆n×{1} ∼= ∆n+1 is σ (because h(−, 0) = idX). It also has the
property that σ′ ◦ δi = (σ ◦ δi)′. Hence, id = (− ◦ d)′ − d ◦ (−)′. So the
chain complex C∗sing(X,R) is exact.

2. Consider the free sheaves ZhU∩V ,ZhU ,ZhV ,ZhU∪V represented by U ∩
V,U, V, U ∪ V respectively. In the category of sheaves, the sequence

0→ ZhU∩V → ZhU ⊕ ZhV → ZhU∪V → 0

is exact. For any injective sheaf I the functor hom(−, I) is exact (by
definition). So applying hom(−, I∗) to this short exact sequence gives a
short exact sequence of complexes of abelian groups. Then the long exact
sequence in the statement is the long exact sequence associated to this
short exact sequence of chain complexes.

3. This follows from the theorem thatM admits a “good” covering, Cf. Bott&Tu, Thm.5.1.
That is, covering {Ui →M}i∈I such that all finite intersections Ui1 ∩· · ·∩
Uin are contractible. Since M is compact, we can assume I is finite. Then
one can use an induction argument and Mayer-Vietoris.

Example 9. For m ≥ 1 we have

Hn
Betti(S

m, R) =

{
R n = 0,m
0 otherwise

(2)

We prove this by induction on m. Let U+, U− ⊆ Sm be two open contractible
subsets whose intersection is homotopic to Sm−1. For example, if we are using
the model Sm = {x = (x0, . . . , xm) ∈ Rm+1 s.t. |x| = 1}, then we could take
U± = {(x0, . . . , xm) ∈ Sm s.t. ±x0 ≥ −1/2}. Then (2) follows by induction
from the Mayer-Vietoris sequence, and the homotopies U+ ∼ {∗}, U− ∼ {∗},
U+ ∩ U− ∼ Sm−1.

Remark 10. Note that the underlying topological space of An(C)\{0} is home-
omorphic to R2n \ {0}, which is homotopic to S2n−1 (via (x, t) 7→ x

(1−t)+t||x|| ).

Exercise 2. Add details to the argument in Example 9. I.e., write out the
long exact sequence and use the induction hypothesis for m − 1 to deduce the
result for m. Note that S0 = {−1, 1} ⊆ R so H0

Betti(S
0, R) ∼= R ⊕ R, and

Hn
Betti(S

0, R) ∼= 0 for n > 0.

Theorem 11.

1. (Künneth Formula) Cf. Voisin, Thm.11.38. For smooth manifolds M,M ′,
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and any field3 K (e.g., Q,R,C) there is a canonical isomorphism

Hn
Betti(M ×M ′,K) ∼=

⊕
i+j=n

Hi
Betti(M,K)⊗K Hj

Betti(M
′,K)

2. (Poincaré duality) Cf. Hatcher, Prop.3.38, Voisin, Thm.5.30, Rem.5.31.
For X a connected smooth projective complex variety of complex dimension
n then there is canonical isomorphism

H2n
Betti(X(C), R) ∼= R.

which, when combined with the Künneth isomorphism, induces isomor-
phisms

Hi
Betti(X(C), R) ∼= H2n−i

Betti (X(C), R)∗

when R is a field, or when torsion is factored out of H∗Betti(X(C),Z).

These isomorphisms are easier to describe for HdR so we omit details here.

Example 12. The cohomology of a torus is:

Hn
Betti(S

1 × · · · × S1︸ ︷︷ ︸
m times

, R) ∼=
(m
n)⊕
i=1

R.

Remark 13. Note that the underlying topological space E(C) of a complex
projective elliptic curve E is homeomorphic to S1 × S1. More generally, The
underlying topological space of a complex abelian variety is homeomorphic to
S1 × · · · × S1.

Exercise 3. Prove the isomorphism of Example 12 by induction using the
Künneth Formula starting with the base case m = 1, cf. Exercise 9.

Definition 14. If U ⊆ M is an open immersion of topological spaces, the
relative cohomology is defined as

Hn
Betti(M,U ;R) = Hn−1

(
Cone(I•(M)→ I•(U))

)
For any injective resolution R→ I0 → I1 → . . . (e.g., F • = C•sing).

Remark 15. By definition, there is a long exact sequence

· · · → Hn
Betti(X,U ;R)→ Hn

Betti(X,R)

→ Hn
Betti(U,R)→ Hn+1

Betti(X,U ;R)→ . . .

3If H∗(M,Z), H∗(M ′,Z) are finitely generated, e.g., if M,M ′ are compact (cf. Voisin,
Rema.4.46) then the result is also true for K = Z.
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Theorem 16 (Thom isomorphism). Cf. Hatcher, Cor.4D.9, Thm.4D.10, Voisin, Proof of Lem.11.13.
Let Y ⊆ X be a closed complex submanifold of (complex) codimension c. Then

Hj
Betti(X,X \ Y ;Z) ∼= Hj−2c

Betti (Y,Z)

for j ≥ 2c.

Some ideas of a proof (probably omitted from lecture, depending on time). The vague
idea is to replace X with a small open neighbourhood of Y in X, then replace
this open neighbourhood with the normal bundle to Y in X. In this way, we
can assume Y → X is the zero section of a vector bundle (of real rank 2c).
If the vector bundle is trivial, i.e., X ∼= Y × Rn−2c then Künneth reduces the
calculation to the case Y = {∗}, in which case it is straightforward using the
long exact sequence of Remark 15 and the homotopy R2c \ {0} ∼ S2c−1.

2 Smooth manifolds

To an open subset U ⊆ Rn we associate Ak(U) the R-vector space of differ-
ential k-forms on X. This is a free module over the ring C∞(U) of infinitely
differentiable functions from U to R with basis

{dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ n}.

Every differentiable map ψ : U → Rm induces a map Ak(im(ψ)) → Ak(U)
defined by dxi 7→

∑
( ∂
∂xj

ψi)dxj , and in particular, the Ak(U) define a sheaf on

Rn. If M is a smooth manifold of dimension n, then there is a unique sheaf Ak

on M such that for any chart U ⊆ M , φ : U → Rn we have Ak|φ(U)
∼→ Ak|U ,

and for any two charts φ, ψ : U → Rn of the same open U , the isomorphism
Ak|φ(U)

∼→ Ak|U
∼← Ak|ψ(U) is the canonical one associated to ψ ◦φ−1 : φ(U)→

Rn.4

The exterior differential

d : fdxi1 ∧ · · · ∧ dxik 7→
n∑
j=1

( ∂
∂xj

f)dxj ∧ (dxi1 ∧ · · · ∧ dxik)

induces maps of sheaves d : Ak → Ak+1 producing a chain complex of sheaves

0→ A0 d→ A1 d→ · · · d→ An → 0. (3)

Definition 17. The de Rham cohomology of a smooth manifold M is the
cohomology of the above chain complex

Hk
dR(M,R) =

ker(d : Ak(M)→ Ak+1(M))

im(d : Ak−1(M)→ Ak(M))
4For example, if {ιi : Ui → M ;φi : Ui → Rn}i∈I is a system of charts of M , define Ak

as the kernel of
∏

i∈I ιi∗φ
∗
iA

k →
∏

i,j∈I ιij∗φ
∗
ijA

k where ιij : Ui ∩ Uj → M is the inclusion,
φij : Ui∩Uj → Rn the chart induced by φi, and the morphism is the difference of the canonical
maps ιi∗φ

∗
iA

k → ιij∗φ∗ijA
k, and the compositions ιi∗φ

∗
iA

k → ιij∗φ∗ijA
k ∼= ιji∗φ∗jiA

k.
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Theorem 18. Let M be a smooth manifold. Then

Hi
Betti(M,R) ∼= Hi

dR(M,R).

Sketch of proof. Poincaré’s Lemma (Bott&Tu,§4) says that Hi
dR(Rn,R) = 0 for

i > 0 so we deduce that the sequence of sheaves (3) is exact. Then one shows
that each Ak is a “fine sheaf” (cf. Voisin, Def.4.35), and that resolutions of fine
sheaves calculate cohomology (cf. Voisin, Prop.4.36, Cor.4.37).

We deduce from Theorem 18 that de Rham cohomology satisfies Homo-
topy Invariance, Mayer-Vietoris, Poncaré Duality, Künneth Formula, and the
Thom Isomorphism. However, de Rham cohomology makes Poincaré duality
and Künneth a little easier to state. Recall that an orientation on a smooth
n-dimensional manifold M is a choice of ω ∈ An(M) which is nowhere zero.

Theorem 19 (Poincaré Duality, Cf. Voisin, Thm.5.30). Let M be an n-dimensional
smooth connected compact orientable manifold. Then An(M) → R;ω 7→

∫
M
ω

defines an isomorphism
Hn
dR(M,R)

∼→ R.

Moreover, the map Ap(M) ⊗R A
n−p(M) → An(M); (α, β) 7→

∫
M
α ∧ β induces

a perfect pairing on cohomology. That is, it induces an isomorphism

Hp(M,R) ∼= Hn−p(M,R)∗

(which depends on the isomorphism Hn
dR(M,R) ∼= R above).

Theorem 20 (Künneth Formula, Cf. Voinsin, §11.3.3, Griffiths&Harris, pg.103,104).
Let M,M ′ be smooth manifolds. Then the map

Ak(M)×Ak
′
(M ′)→ Ak+k

′
(M ×M ′); α⊗ β 7→ pr∗1α ∧ pr∗2β

induces the Künneth Formula

Hk
dR(M,R)⊗Hk

dR(M ′,R)
∼→ Hk+k′

dR (M ×M ′,R).

Here, pr1 : M ×M ′ →M,pr2 : M ×M ′ →M ′ are the canonical projections.

3 Complex manifolds

Consider the canonical identification

Cν ∼= R2ν : (x1 + iy1, . . . , xν + iyν)↔ (x1, y1, x2, y2, . . . , xν , yν).

For an open subset U ⊆ R2ν we define

I : A1(U)→ A1(U);

{
dxj 7→ dyj
dyj 7→ −dxj

For any U ⊆ R2n, a smooth function ψ : U → R2m is called holomorphic if
I ◦ dψ = dψ ◦ I.

6



Exercise 4. Show that ψ is holomorphic if and only if the Cauchy-Riemann
equations hold. That is, if and only if

∂yiuj = −∂xivj , and ∂yivj = ∂xiuj .

for each i, j, where ψ(z) = (u1(z), v1(z), . . . , um(z), vm(z)) and z = (x1, y1, . . . , xn, yn).

Exercise 5. Show that the morphism I : A1(U) → A1(U) induces a complex
vector pace structure on A1(U) by

(a+ ib)ω = (a+ bI)ω.

Observe that a smooth function ψ : U → R2m is holomorphic if and only if the
R-linear morphism dψ : A1(R2m)→ A1(U) is actually C-linear.

Exercise 6. Show that:

1. A composition of holomorphic functions is holomorphic.

2. A function U → R2m is holomorphic if and only if the composition with
each projection U → R2m → R2; (x1, y1, . . . , xm, ym) 7→ (xi, yi) is holo-
morphic.

3. A sum of holomorphic functions U → R2 is holomorphic.

4. Via the multiplication induced by C ∼= R2, a product of holomorphic
functions U → R2 is holomorphic.

5. Any polynomial f ∈ C[z1, . . . , zn] defines a holomorphic function R2n ∼=
Cn → C ∼= R2.

6. If a function φ : U → R2m admits a smooth inverse ψ : φ(U)→ U , then φ
is holomorphic if and only if ψ is holomorphic.

Now suppose that X is a smooth complex manifold of dimension n. That is,
X is equipped with charts {Ui ⊆ X;φi : Ui → R2n}i∈I such that the transition
maps φi ◦ φ−1j are holomorphic. Then we obtain an induced automorphism

I : A1 → A1

of the sheaf A1. We now define

A1
C(U) := A1(U)⊗R C.

Since I2 = −1, there are two eigenvalues−i and i. Their eigenspaces are denoted
A1,0(U), A0,1(U) respectively. Since the transition maps are holomorphic, they
preserve the eigenspaces, and we get a decomposition of sheaves

A1
C = A1,0 ⊕A0,1.

7



Example 21. Consider X = R2n. Then A1,0(X) (resp. A0,1(X)) has basis

dzj := dxj + idyj , (resp. dzj := dxj − idyj), j = 1, . . . , n

as a free C∞(R2n)-module

Exercise 7. Check that Idz = −idz and Idz = idz.

The eigenspace decoposition A1
C = A1,0(X)⊕A0,1(X) induces a decomposi-

tion of AnC(X) := An(X)⊗R C as

AnC(X) =
∑

p+q=n

Ap,q(X); Ap,q(X) :=

p∧
A1,0 ⊗

q∧
A0,1

(the tensor and wedge products are over the sheaf C∞).

Example 22. Ap,q(R2n) is spanned by the

dzj1 ∧ · · · ∧ dzjp ∧ dzjp+1 ∧ · · · ∧ dzp+q

as a C∞(R2n)-module

Exercise 8. Let V,W be finitely generated free R-modules for some ring R.
Show that there is a canonical isomorphism

n∧
(V ⊕W ) ∼=

∑
p+q=n

(
p∧
V ⊗

q∧
W

)
.

In analogy with dz, dz we define

∂z := 1
2 (∂x − i∂y), ∂z := 1

2 (∂x + i∂y)

Exercise 9. For U ⊆ R2n, show that with respect to the basis dzj , dzj the
differential C∞(U)⊗R C→ A1

C(U) becomes f 7→
∑n
j=1(∂zjfdzj + ∂zjfdzj).

Theorem 23 (Cf. Voisin, Proof of Prop.6.11). Let X be a smooth projective
variety. Then there is a canonical decomposition

Hk
dR(X(C),C) ∼=

⊕
p+q=k

Hp,q

where Hp,q is the set of cohomology classes representable by a closed form of
type (p, q). Moreover, we have

Hp,q = Hq,p

where complex conjugation acts via Hp+q(X(C),C) ∼= Hp+q(X(C),R)⊗R C.
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Theorem 24 (Cf. Voisin, Lem.7.30). Poincaré duality is compatible with the
Hodge decomposition, in the sense that it induces isomorphisms

Hr,s ∼= (Hd−r,d−s)∗

In particular, for r′+ s′ = 2d− r− s, and (r′, s′) 6= (d− r, d− s), the morphism

Hr,s ⊗Hr′,s′ → C

is zero.

Theorem 25 (Künneth Formula, Cf. Voinsin, §11.3.3, Griffiths&Harris, pg.103,104).
Künneth is compatible with the Hodge decomposition in the sense that if X,Y
are smooth complex projective varieties, then it induces isomorphisms

Hr,s(X(C)×Y (C)) ∼=
⊕

p+p′=r,
q+q′=s

Hp,q(X(C))⊗C H
p′,q′(Y (C)).

4 Pure Hodge structures

Definition 26. (Cf. Voisin, Def.7.4) A pure Hodge structure of weight k, is a
free finitely generated abelian group V , equipped with a decomposition

V ⊗ C ∼=
⊕
p+q=k

V p,q

satisfying V p,q = V q,p.
(Cf. Voisin, Def.7.22) A morphism (V, V p,q) → (W,W p,q) from a Hodge

structure of weight n to a Hodge structure of weight m is a morphism φ : V →W
is of abelian groups such that φ⊗ C(V p,q) ⊆W p+r,q+r where m = n+ 2r.

(Cf. Voisin, Def.11.39) The tensor product (K,Kr,s) of (V, V p,q) and (W,W p′,q′)
is defined to be the Hodge structure of weight n + m whose abelian group is
K = V ⊗W and whose decomposition is

Kr,s =
⊕

p+p′=r,
q+q′=s

V p,q ⊗C W
p′,q′ .

Example 27. Putting together all of the above material, we get: If X is a
smooth complex projective variety, then each

Hk
Betti(X(C),Z)/torsion

is canonically equipped with a pure Hodge structure of weight k. Moreover,
if Y is another smooth complex projective variety, then Künneth induces an
isomorphism of pure Hodge structures of weight k + l

Hk
Betti(X(C),Z)

torsion
⊗ H l

Betti(Y (C),Z)

torsion

∼→
Hk+l

Betti((X × Y )(C),Z)

torsion
.

9


	Topological spaces
	Smooth manifolds
	Complex manifolds
	Pure Hodge structures

