
In this lecture we motivate some material that we will see in the course.

1 Cohomology

We begin by considering two cohomology theories: de Rham and `-adic.

1.1 De Rham

Let k ⊆ C be a subfield of the complex numbers. The de Rham cohomol-
ogy associated to each smooth projective variety X/k a graded C-vector space
H•dR(X).

X 7→ Hn
dR(X) ∈ C-vector space

Its more than just a graded vector space though. De Rham cohomology comes
with some extra structure: For each n, there is a free abelian group V ⊆ Hn

dR(X)
such that V ⊗ C = Hn

dR(X), and a decomposition

V ⊗ C = ⊕p+q=nV
p,q (1)

such that

V p,q = V q,p. (2)

(All this will be defined properly in the next lecture). Here complex conju-
gation is respect to the −⊗ C part.

Definition 1. A Hodge structure of weight n is a free finite rank abelian group
V , equipped with a decomposition (1) which satisfies (2).

Example 2. Suppose A/C is an abelian variety. That is, A is a smooth
projective variety equipped with morphisms of varieties mult : A × A → A,
inv : A→ A, unit : Spec(C)→ A making A an abelian group. Then there is an
isomorphism of complex analytic spaces

A(C) ∼= Cg/Λ

for some subgroup Z2g ∼= Λ ⊆ Cg such that Λ ⊗ R ∼= Cg (as R-vector spaces).
In fact, notice that Λ⊗ C ∼= Cg ⊗R C. There is a canonical isomorphism

H1
dR(A) ∼= (Cg ⊗R C)∗

And the decomposition H1
dR(A) ∼= V 1,0 ⊕ V 0,1 is induced by the decomposition

of Cg ⊗R C into the i and −i eigenspaces (multiplication by i on the right) of
the map v ⊗ a 7→ iv ⊗ a (multiplication by i on the left). In particular, we can
completely reconstruct the complex analytic space A(C) from the weight one
Hodge structure.
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Exercise 1. Let V be a C-vector space, and define J : V → V to be multipli-
cation by i ∈ C. Now consider V ⊗R C as a C-vector space by multiplication on
the right. Show that the only two eigenvalues of

J ⊗R C : V ⊗R C→ V ⊗R C

are i and −i, and moreover, complex conjugation (on the right) swaps the
eigenspaces.

Example 3. Suppose there is a sequence of closed subvarieties ∅ = Y0 ⊂
Y1 ⊂ · · · ⊂ X such that Yi \ Yi−1 ∼= Ani for some ni (e.g., projective space,
Grassmanians, . . . ). Then

V p,q ∼=
{

0 p 6= q
Cbp p = q

where bp = #{Yi : Yi \ Yi−1 ∼= Ap}.

Exercise 2. Let V be a free abelian group equipped with a decomposition (1)
satisfying (2). Show that if V p,q = 0 for all p 6= q and n is odd, then V = 0.

Corollary 4. If X has a sequence of closed subvarieties as in Example 3, and
A is an abelian variety as in Example 2, then ever map X → A is constant.

So the Hodge structure contains a lot of information about about the
variety. On the other hand, it is “just” linear algebra.

1.2 `-adic

Now consider any field k. The `-adic cohomology associates to each smooth
projective variety X/k a graded Q`-vector space H•` (X). Any morphism Y → X
induces a graded linear morphism H•et(X)→ H•et(Y ). Moreover, each Q`-vector
space H•et(X) is equipped with a representation of the group Gal(k/k). In
particular, any element σ ∈ Gal(k/k) induces a morphism Hn

et(X) → Hn
et(X)

of Q`-vector spaces for all X,n.

Example 5. Let k = Fq. Then the Frobenius φ : Fq → Fq; a 7→ aq induces
morphisms

φi : Hi
et(X)→ Hi

et(X) (3)

for each smooth projective X/Fq, and each i. Defining

Z(X, t) =

2 dimX∏
i=0

det(id−φit)(−1)
i+1

one can show that
∞∑

n=1

|X(Fqn)| t
n

n
= logZ(X, t).

That is, the Galois representations Hi
et(X) know how many points X has over

every extension of Fq.
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Exercise 3 (Advanced). In the situation of Example 3 show that

Z(X, t) =

2 dimX∏
j=1

1

(1− qjt)bj
.

In particular, the eigenvalues of each φi are integral powers of 1/q.

The `-adic Galois representation contains a lot of information about about
the variety. On the other hand, it is “just” linear algebra.

We have the following general philosophy.(
Algebraic geometry

)
Cohomology−→

(
Linear algebra

)

2 Correspondences

Recall that the Riemann(-Weil) Hypothesis states: the eigenvalues of the φn
(from Equation 3) have absolute value q−n/2 (equivalently, if s is a root or pole
of Z(X, q−s), then <s = n/2).

Proposition 6 (Manin, 19681). The Riemann Hypothesis holds for smooth
three dimensional projective unirational varieties.

Proof. Unirational means there exists a birational morphism W → P3, and a
generically finite morphism W → V for some (possibly singular) projective W .
By Abhyankar’s resolution of singularities for threefolds in positive character-
istic, we can in fact assume that W is smooth and moreover that W → P3

is a sequence W = Wn → Wn−1 → · · · → W1 → W0 = P3 of blowups with
smooth centres. For simplicity, we assume that all the centers are geometri-
cally irreducible (changing the base field allows this, and does not affect the
calculation).

Step 1, calculate Z(W, t). Let νn(X) = |X(Fqn)|. One calculates directly
that

νn(P3) = 1 + qn + q2n + q3n.

Next, we take for granted the calculation for curves C of genus g,

νn(C) = 1−
2g∑
i=1

ηni + qn

1NB. In 1968, all Weil conjectures except for the Riemann Hypothesis had been proved
using étale cohomology. The Riemann Hypothesis was known at the time in certain cases, and
in particular, it was known for curves. The Riemann Hypothesis was proved in full generality
by Deligne in 1974.
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where ηi are some algebraic integers satisfying |ηi| = q1/2. Now if Y → X is
the blowup of a point x, then we have

νn(Y ) = νn(X)− νn(x) + νn(P2)

= νn(X)− 1 + 1 + qn + q2n

= νn(X) + qn + q2n

−−−− draw picture of blowup −−−−

If Y → X is the blowup of a curve C, then we have

νn(Y ) = νn(X)− νn(C) + νn(C × P1)

= νn(X) + qn − qn
2g∑
i=1

ηni + q2n

−−−− draw picture of blowup −−−−

It follows from this2 that the eigenvalues of φn acting on Hn
et(W ) are of the

form 1, q−1, q−2, q−3, or (qη)−1 where |η| = q1/2.
Step 2, the trace morphism. Now morphism f : W → V . It induces a

morphism
f∗ : Hn

et(V )→ Hn
et(W ),

but since its projective and generically finite, it also induces a morphism

f∗ : Hn
et(W )→ Hn

et(V ).

Moreover, we have the relation

1
deg f f∗f

∗ = id .

This means that we have a direct sum decomposition

Hn
et(W ) ∼= Hn

et(V )⊕ (something else).

We deduce that every eigenvalue of φn acting on Hn
et(V ), is an eigenvalue of φn

acting on Hn
et(W ). So they are also of the form 1, q−1, q−2, q−3, or (qη)−1 where

|η| = q1/2.

2We have νn(W ) = 1 + Nqn − qn
∑
i,j η

n
ij + Nq2n + q3n where N is the number of

blowups and the ηij depend on which curves are blown up. Putting this into logZ(W, t) =∑∞
n=1 νn(W ) t

n

n
produces

∞∑
n=1

tn

n
+N

∞∑
n=1

(qt)n

n
−

∑
i,j

∞∑
n=1

(ηijqt)
n

n
+

∞∑
n=1

(q2t)n

n
+

∞∑
n=1

(q3t)n

n

from which it follows that

Z(W, t) =

∏
i,j(1 − ηijqt)

(1 − t)(1 − qt)N (1 − q2t)N (1 − q3t)
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Step 3, remarks. A key ingredient in the above proof is the trace morphism
f∗. In fact, for each of the blowups fi : Wi+1 → Wi, we also have a trace
morphism f∗i, and Manin modifies the above proof to use only the eigenvalues
of φn, and without using the numbers νn.

Fact 7. Let X,Y be smooth projective over k, and Z ⊂ X × Y a closed
irreducible subvariety with dimZ = dimX. Then for Hn = Hn

et or Hn = Hn
dR

(if k ⊆ C), there is an induced morphism

Hn(X)→ Hn(Y )

of Galois representations, resp. Hodge structures.

Example 8.

1. If f : X → Y is any morphism, consider the graph Γf : X → Y . This
defines a morphism Hn(Y ) → Hn(X). In fact, this is just the usual
morphism of cohomology f∗ defined by f .

2. If f : W ′ → W is a blowup, then consider the graph Γf ⊆ W ′ ×W . This
defines a morphism Hn(W ′) → Hn(W ) (note the direction is backwards
to f∗).

3. If f : W → V is a proper generically finite morphism, consider the graph
Γf ⊆ V × W . This defines a morphism Hn(W ) → Hn(V ) (note the
direction is backwards to f∗).

In general, it is useful to consider sums of such subvarieties.

Definition 9. A cycle of dimension d on a variety X is a formal sum
∑N

i=1 niZi

where ni ∈ Z and Zi ⊆ X is a closed irreducible subvariety of dimension d. The
group of cycles is denoted

Zd(X) = {
N∑
i=1

niZi}.

Very often, it is more convenient to use codimension. If X is of pure dimension
d then

Zd(X) = ZdimV−d(X)

The reason I presented Manin’s proof is to motivate the following idea:

Cycles define important morphisms of cohomology groups.

The main tool in defining the maps from Fact 7 are cycle class maps.

Fact 10. Let X/k be a smooth projective variety of dimension d, and consider
Hn = Hn

et or Hn
dR (if k ⊆ C). Then there are group morphisms

γ : Zi(X)→ H2i(X)

called cycle class maps.
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Some of the deepest conjectures in algebraic geometry involve cycle class
maps. Recall that the de Rham cohomology Hn

dR came with an abelian group
V , an isomorphism V ⊗ C ∼= Hn

dR and a decomposition V ⊗ C = ⊕p+q=nV
p,q.

Fact 11.
im
(
γ : Zp(X)→ H2p

dR(X)
)
⊆ V p,p

Definition 12.
Hdgp(X) = {η ∈ V : η ⊗ 1 ∈ V p,p}

Conjecture 13 (Hodge).

Zp(X)⊗Q→ Hdgp(X)⊗Q

is surjective.

Recall that the `-adic cohomology Hn
et(X) is a Q`-vector space, equipped

with an action of the absolute Galois group G = Gal(k/k) of the base field
k. That is, a group homomorphism G → Aut(Hn

et(X)). In particular, we can
consider the subspace of Hn

et(X) on which G is constant.

Hn
et(X)G = {η ∈ Hn

et(X) : σ(η) = η ∀ σ ∈ G}.

Conjecture 14 (Tate).

Zp(X)⊗Q` → H2n
et (X)G

is surjective.

Conjecturally, the kernel of the cycle class maps does not depend on which
cohomology theory we chose. In characteristic zero, this follows from a theorem
of Artin.

Theorem 15 (Artin). Suppose k ⊆ C. Then

ker(Zp(X)→ H2p
dR(X)) = ker(Zp(X)→ H2p

et (X))

Combining this with the Hodge and Tate conjectures, we get the following.

Conjecture 16. Let X be a smooth projective variety over k ⊆ C. Then

Hdgp(X)⊗Q`
∼= H2p

et (X)G.

Exercise 4. Assuming the Hodge and Tate conjectures, and using Artin’s the-
orem, prove the above conjecture.

So we see that, conjecturally at least:

Cycles are a bridge between Hodge theory and Galois representation theory.
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3 Outline

• Lecture 2. Definition and basic properties of Hn
dR.

• Lecture 3. Algebraic cycles. Definition and basic properties of pullback,
pushforward, and intersection of cycles, adequate equivalence relations.
Introduce the Chow groups.

• Lecture 4. Classical equivalent relations such as algebraic, numerical, and
homological equivalence. More details about the codimension one case.

• Lecture 5. Define the cycle class map for de Rham cohomology. Discuss
intermediate Jacobians and the Abel-Jacobi map, and possibly Deligne
cohomology if there is time.

• Lecture 6. Compare of algebraic and numerical equivalence.

• Lecture 7. In this lecture we discuss the Albanese map, its kernel, and see
theorems of Mumford, Roitman, and Bloch.

• Lecture 8. Milnor’s conjecture. In this lecture we discuss Milnor’s conjec-
ture. We begin with the question of classifying quadratic forms, motivat-
ing the study of the Witt ring, and from there move to the comparison
of Milnor K-theory to Galois cohomology. This motivates Voevodsky’s
theory of motivic cohomology which will be developed in more detail on
the second half of the course.

• Lecture 9-16. Voevodsky’s motivic cohomology.
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