Exercise 1. Using Poincaré Duality, induction, and the fact that

$$
H^{r}\left(\mathbb{P}^{n}, \mathbb{Z}\right)=\left\{\begin{array}{cc}
0 & r \text { odd } \\
\mathbb{Z} & r \text { even, } r \leq 2 n
\end{array}\right.
$$

Show that if H_{1}, \ldots, H_{c} are hypersurfaces such that each $H_{1} \cap \cdots \cap H_{i}$ is smooth, then the cohomology of $X=H_{1} \cap \cdots \cap H_{c}$ is

$$
H^{r}(X, \mathbb{Z})=\left\{\begin{array}{cc}
H^{\operatorname{dim} X}(X, \mathbb{Z}) & r=\operatorname{dim} X \\
0 & r \text { odd, } r \neq \operatorname{dim} X \\
\mathbb{Z} & r \text { even, } r \neq \operatorname{dim} X, r \leq d \operatorname{dim} X
\end{array}\right.
$$

Exercise 2. Show that the projective variety defined by st $+x y$ in \mathbb{P}^{3} is smooth. Show that the intersection with the hyperplane defined by as - bt is smooth unless $a=0$ or $b=0$, in which case, it is isomorphic to a union of two \mathbb{P}^{1} 's intersecting in a point.

Exercise 3. Consider the quadric $u z-v y+w x$ in \mathbb{P}^{5}.

1. Show that the intersection of this quadric with the two hyperplanes $u=0$ and $v=0$ is isomorphic to a union of two \mathbb{P}^{2} s, say P, Q, intersecting in a \mathbb{P}^{1}.
2. Let P^{\prime}, Q^{\prime} be the two \mathbb{P}^{2} 's obtained analogously from $y=0$ and $z=0$. Using the fact that all hyperplanes in \mathbb{P}^{5} are rationally equivalent, show that $P+Q \sim_{r a t} P^{\prime}+Q^{\prime}$, and in particular, $P-P^{\prime} \sim_{r a t} Q-Q^{\prime}$.
3. Show that $\left(P-P^{\prime}\right) \cdot\left(Q-Q^{\prime}\right)=-x-y$ for some points x, y.
4. Deduce that $\operatorname{deg}\left(P-P^{\prime}\right) \cdot\left(P-P^{\prime}\right)=-2 \neq 0$, and in particular, that $P-P^{\prime}$ is not homologically equivalent to zero.
