Exercise 1. Let $\mathcal{O}=k[x, y]_{(x, y)}$ where k is a field. Using the exact sequence $0 \rightarrow \mathcal{O} \xrightarrow{x} \mathcal{O} \rightarrow \mathcal{O} /(x) \rightarrow 0$ show that $\operatorname{Tor}_{r}^{\mathcal{O}}(\mathcal{O} /(x), \mathcal{O} /(y))=k$ if $r=0$, and is zero otherwise. Deduce that $i(V \cdot W ; \mathcal{O})=1$ where $V=\operatorname{Spec}(k[x, y] /(x))$ and $W=\operatorname{Spec}(k[x, y] /(y))$.

Exercise 2. Let $\mathcal{O}=k[x, y]_{(x, y)}$ where k is a field. Using the exact sequence $0 \rightarrow \mathcal{O} \xrightarrow{x} \mathcal{O} \rightarrow \mathcal{O} /(x) \rightarrow 0$ show that $\operatorname{Tor}_{r}^{\mathcal{O}}\left(\mathcal{O} /(x), \mathcal{O} /\left(x-y^{2}\right)\right)=k[y] / y^{2}$ if $r=0$, and is zero otherwise. Deduce that $i(V \cdot W ; \mathcal{O})=2$ where $V=$ $\operatorname{Spec}(k[x, y] /(x))$ and $W=\operatorname{Spec}\left(k[x, y] /\left(x-y^{2}\right)\right)$.

Exercise 3. Let $f: X \rightarrow Y$ be a morphism of varieties over an algebraically closed field, and let $\Gamma_{f} \subseteq X \times Y$ be the graph. If $Z \subseteq X$ is a closed subvariety, show that $\Gamma_{f} \cap(Z \times Y)=(\mathrm{id} \times f)(Z) \subseteq X \times Y$, so in particular, $T \cdot(Z \times Y)$ is defined. Show that $\left.\left(\pi_{Y}\right)_{*}\{T \cdot Z \times Y)\right\}=f_{*} Z$.

Exercise 4. Let X be a variety, $Z, Z^{\prime} \in \mathcal{Z}^{i}(X)$, and $W=\sum n_{k} W_{k} \in \mathcal{Z}^{j}(X)$. Using $\sum n_{k}\left(\mathbb{P}^{1} \times W_{k}\right) \in \mathcal{Z}^{j}\left(\mathbb{P}^{1} \times X\right)$, show that if $Z \sim Z^{\prime}$, and $Z \cdot W, Z^{\prime} \cdot W$ are defined, then $Z \cdot W \sim Z^{\prime} \cap W$. That is, show that rational equivalence satisfies (R2).

Exercise 5. Using the diagonal $\mathbb{P}^{1} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$, show that for any two points $a, b \in \mathbb{P}^{1}$ we have $a \sim b$. Deduce that the degree map $\mathcal{Z}^{1}\left(\mathbb{P}^{1}\right) \rightarrow \mathbb{Z}$ defined by $\sum n_{i} a_{i} \mapsto \sum n_{i}$ induces an isomorphism $C H^{1}\left(\mathbb{P}^{1}\right) \cong \mathbb{Z}$.

Exercise 6. Using the decomposition $\mathbb{P}^{n}=\mathbb{A}^{n} \cup \mathbb{P}^{n-1}$, the homotopy property, and the localisation sequence, show by induction on n that $C H_{q}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$ for all $0 \leq q \leq n$.

