1 Étale cohomology

1.1 From Weil conjectures to *l*-adic cohomology

We began with the question:

Question 1. Given a smooth projective variety X/\mathbb{F}_q , how many \mathbb{F}_{q^n} -points does X have for each n? That is, calculate

$$Z(X,t) = \exp\left(\sum_{n=1}^{\infty} |X(\mathbb{F}_{q^n})| \frac{t^n}{n}\right).$$

This lead to the Weil conjectures:

Theorem 2 (Weil conjectures). If X is a smooth projective variety of dimension d over \mathbb{F}_q .

- 1. (Rationality) Z(X,t) is a rational function of t, i.e., it is in $\mathbb{Q}(t) \subseteq \mathbb{Q}((t))$.
- 2. (Functional equation) There is an integer e such that

$$Z(X, q^{-d}t^{-1}) = \pm q^{ed/2}t^e Z(X, t).$$

3. (Riemann Hypothesis) We can write

$$Z(X,t) = \frac{P_1(t)P_3(t)\dots P_{2d-1}(t)}{P_0(t)P_2(t)\dots P_{2d}(t)}$$

with $P_i(t) \in \mathbb{Z}[t]$, and such that the roots of $P_i(t)$ have absolute value $q^{-i/2}$. Moreover, $P_0(t) = 1 - t$ and $P_{2d}(t) = 1 - q^d t$.

4. (Betti numbers) If X comes from a smooth projective variety over $\mathbb{Z}_{(p)}$, then

$$\deg P_i(t) = \dim_{\mathbb{Q}} H^i(X(\mathbb{C}), \mathbb{Q}).$$

The strategy was to develop a cohomology theory

$$H^{\bullet}: (\text{Varieties}/k)^{op} \to \text{graded } \mathbb{Q}\text{-vector spaces}$$

for arbitrary varieties, which satisfied the following properties for smooth projective varieties X.

- 1. (Finiteness) dim $H^{\bullet}(X)$ is finite, and $H^{i}(X) = 0$ for $i \notin \{0, 1, \dots, 2 \dim X\}$.
- 2. (Poincaré Duality) There is a canonical isomorphism $H^{2\dim X}(X) \cong \mathbb{Q}$ and a natural perfect pairing

$$H^i(X) \times H^{2d-i}(X) \to \mathbb{Q}$$

3. (Lefschetz Trace Formula)

$$|X(\mathbb{F}_{q^m})| = \sum_{i=0}^{2 \dim X} (-1)^i \operatorname{Tr}(\phi_i^m)$$

where $X_{\overline{\mathbb{F}}_q} = X \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q$, $\phi : X_{\overline{\mathbb{F}}_q} \to X_{\overline{\mathbb{F}}_q}$ is the Frobenius morphism, and $\phi_i : H^i(X_{\overline{\mathbb{F}}_q}) \to H^i(X_{\overline{\mathbb{F}}_q})$ is the induced morphism.

4. (Compatibility) If $k = \mathbb{C}$ then $H^{\bullet}(X)$ is isomorphic to singular cohomology.

Then,

 $\text{Eigenvalues } \alpha_{i,j} \text{ of } \phi_i | H^i(X_{\overline{\mathbb{F}}_q}) \text{ have } |\alpha_{i,j}| = q^{-i/2} \Rightarrow \quad (\text{Riemann Hypothesis})$

We saw that:

- 1. (Serre) Due to the existence of supersingular elliptic curves, there cannot be any cohomology theory with the above properties taking values in Qvector spaces.
- 2. For curves, étale cohomology with \mathbb{Z}/l^n -coefficients has Poincaré Duality and

$$\operatorname{rank}_{\mathbb{Z}/l^n} H^i_{\operatorname{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}/l^n) = \dim_{\mathbb{Q}} H^i_{\operatorname{sing}}(X(\mathbb{C}), \mathbb{Q})$$

This leads us to define:

$$H^{i}_{\mathsf{et}}(X,\mathbb{Q}_{l}) := \left(\varprojlim_{n \ge 1} H^{i}_{\mathsf{et}}(X,\mathbb{Z}/l^{n}) \right) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}.$$
(1)

1.2 Successes of *l*-adic cohomology

Theorem 3. The \mathbb{Q}_l -vector spaces $H^i_{et}(X, \mathbb{Q}_l)$ satisfy (Finiteness), (Poincaré Duality), (Lefschetz Trace Formula), and (Riemann Hypothesis).

We also saw that the \mathbb{Z}/l^n cohomology groups had a very strong Poincaré Duality formalism.

Theorem 4. For any finite type morphism between noetherian schemes $f : Y \to X$, and object $E \in D(X_{et}, \mathbb{Z}/l^n)$ there are adjunctions

$$(f^*, f_*) : D(Y_{\mathsf{et}}, \mathbb{Z}/l^n) \rightleftharpoons D(X_{\mathsf{et}}, \mathbb{Z}/l^n)$$
$$(f_!, f^!) : D(X_{\mathsf{et}}, \mathbb{Z}/l^n) \rightleftharpoons D(Y_{\mathsf{et}}, \mathbb{Z}/l^n)$$
$$(- \otimes E, \underline{\hom}(E, -)) : D(X_{\mathsf{et}}, \mathbb{Z}/l^n) \rightleftharpoons D(X_{\mathsf{et}}, \mathbb{Z}/l^n)$$

satisfying a number of properties such as a Proper Base Change and Smooth Base Change formulas.

In order to have these functors for \mathbb{Z}_l -sheaves, some work is needed.

Definition 5 ([BS, Def.3.5.3]). For a scheme X, define $\mathsf{Shv}_{\mathsf{et}}(X)^{\mathbb{N}}$ to be the category of \mathbb{N} -indexed projective systems in $\mathsf{Shv}_{\mathsf{et}}(X)$. The derived category of this abelian category is denoted by $D(X_{\mathsf{et}}^{\mathbb{N}})$.

We write $D(X_{et}, (\mathbb{Z}_l)_{\bullet}) \subseteq D(X_{et}^{\mathbb{N}})$ for the full subcategory of those objects $(\cdots \to K_2 \to K_1)$ such that $K_m \in D(X_{et}, \mathbb{Z}/l^m)$ and $K_m \otimes_{\mathbb{Z}/l^m} \mathbb{Z}/l^{m-1} \to K_{m-1}$ is a quasi-isomorphism. Here, \otimes is the left derived tensor product.

Theorem 6 (Ekedahl). The functors $f^*, f_*, f_!, f^!, \otimes, \underline{\text{hom}}$ can be extended to the categories $D(X_{et}, (\mathbb{Z}_l)_{\bullet})$ in a sensible way.

We also had a very nice Galois theory.

Theorem 7 (Stacks Project, Tags 0BNB, 0BMY,0BN4). Let X be a connected scheme, $\overline{x} \in X$ a geometric point, FEt_X the category of finite étale X-schemes, and consider the functor

$$F: \operatorname{FEt}_X \to \operatorname{Set}; \qquad Y \mapsto |Y_{\overline{x}}|.$$

The étale fundamental group of X is the profinite group

$$\pi_1^{\mathsf{et}}(X,\overline{x}) = \operatorname{Aut}(F)$$

and F induces an equivalence of categories

$$\operatorname{FEt}_X \cong \operatorname{Fin-} \pi_1^{\operatorname{et}}(X, \overline{x}) \operatorname{-Set}$$

with the category of finite sets equipped with a continuous $\pi_1^{\text{et}}(X, \overline{x})$ -action.

There is also a linear version of this. Recall that $\text{Loc}_X(R)$ is the category of *local systems* with *R*-coefficients. That is, sheaves *F* of *R*-modules such that for some covering $\{f_i : U_i \to X\}$, each f_i^*F is isomorphic to the constant sheaf R^n for some *n*. Similar to the case of topological spaces, π_1 determines the category of local systems.

Proposition 8. If X is a connected locally noetherian $\mathbb{Z}_{(l)}$ -scheme, then there is an equivalence of categories

$$\mathbb{Q}_{l} \otimes_{\mathbb{Z}_{l}} \varprojlim \operatorname{Loc}_{X}(\mathbb{Z}/l^{n}) \cong \left\{ \begin{array}{c} continuous finite dimensional \\ \mathbb{Q}_{l} \text{-linear representations of } \pi_{1}^{et}(X) \end{array} \right\}$$

1.3 Shortcomings of *l*-adic cohomology

All of this is not quite as nice as it could be though.

Problem 9.

1. The definition $H^i_{\mathsf{et}}(X, \mathbb{Q}_l) := \left(\varprojlim_{n \ge 1} H^i_{\mathsf{et}}(X, \mathbb{Z}/l^n) \right) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$ is a d hoc, and not very pleasant to work with.

- 2. The categories $D(X_{et}, (\mathbb{Z}_l)_{\bullet})$ are horrible to work with.
- 3. The equivalence between local systems and π_1 -representations is no longer true in general if one uses, honest \mathbb{Q}_l -local systems.

Question 10. So why can't we just use sheaves of \mathbb{Z}_l -coefficients?

Representability!

Finite coefficients work so well due to the equivalence of categories.

Theorem 11. There is equivalence of categories

 $\operatorname{FEt}(X) \cong \operatorname{Loc}_X(\operatorname{FinSet})$

between the category of finite étale X-schemes and the category of locally constant étale sheaves.

This suggests that we should enlarge the category Et(X) to include filtered limits.

2 Pro-étale schemes

Definition 12. A morphism $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ of affine schemes is pro-étale if there exists a cofiltered¹ system $(B_{\lambda})_{\lambda \in \Lambda}$ of étale finite presentation A-algebras such that $B = \varinjlim B_{\lambda}$. The system (B_{λ}) is called a presentation for B.

Exercise 1. Let $(B_{\lambda})_{\lambda \in \Lambda}$ be a cofiltered system of rings. Let Primes(C) denote the set of prime ideals of a ring C, and Spc(C) the underlying topological space of Spec(C), i.e., Spc(C) is Primes(C) equipped with its Zariski topology.

- 1. Show that $\operatorname{Primes}(\lim B) = \lim \operatorname{Primes}(B_{\lambda})$.
- 2. Show that for any $f \in B_{\lambda}$ with image $\overline{f} \in \varinjlim B_{\lambda}$, the set $D(\overline{f}) \subseteq$ Primes $(\varinjlim B_{\lambda})$ of primes not containing \overline{f} is the preimage of the set $D(f) \subseteq \overrightarrow{\text{Primes}}(B_{\lambda})$ of primes not containing f, under the canonical map π : Primes $(\varinjlim B_{\lambda}) \rightarrow \operatorname{Primes}(B_{\lambda})$. That is, show $D(\overline{f}) = \pi^{-1}(D(f))$.
- 3. Deduce that $\operatorname{Spc}(\lim B_{\lambda}) = \lim \operatorname{Spc}(B_{\lambda})$.

Exercise 2. Let k be an algebraically closed field. Using Exercise 1, show that for every pro-finite set S, there exists a pro-étale k-scheme $\operatorname{Spec}(B) \to \operatorname{Spec}(k)$ with $S \cong \operatorname{Spc}(B)$.

Exercise 3. Let k be a field and $k \subseteq k^{sep}$ a separable closure. Show that the $\operatorname{Spec}(k^{sep}) \to \operatorname{Spec}(k)$ is pro-étale.

¹A system is cofiltered if (i) it is nonempty, (ii) for every pair of objects $B_{\lambda}, B_{\lambda'}$ there is a third object $B_{\lambda''}$ and morphisms in the system $B_{\lambda} \to B_{\lambda''}, B_{\lambda'} \to B_{\lambda''}$, and (iii) for any pair of parallel morphisms in the system $B_{\lambda} \rightrightarrows B_{\lambda'}$ there exists a morphism in the system $B_{\lambda'} \to B_{\lambda''}$ such that the two compositions are equal.

Exercise 4. Suppose that $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$, $\operatorname{Spec}(C) \to \operatorname{Spec}(A)$ are proétale with $B = \varinjlim_{\lambda \in \Lambda} B_{\lambda}$ and $C = \varinjlim_{\mu \in M} C_{\mu}$ presentations. Show that $\operatorname{Spec}(B) \times_{\operatorname{Spec}(A)} \operatorname{Spec}(C) \to \operatorname{Spec}(A)$ is pro-étale. Hint: consider the system $(B_{\lambda} \otimes_A C_{\mu})_{(\lambda,\mu) \in \Lambda \times M}$.

Exercise 5. Recall that if L/k is a (finite) Galois extension, then $\operatorname{Spec}(L \otimes_k L) \cong \prod_{Gal(L/k)} \operatorname{Spec}(L)$. Recall also that an separable closure k^{sep}/k is the union of the finite Galois subextensions $k \subseteq L \subseteq k^{sep}$ and $Gal(k^{sep}/k) \cong \lim_{k \in L \subseteq k^{sep}} Gal(L/k)$. Show that

$$\operatorname{Spc}(k^{sep} \otimes_k k^{sep}) \cong \operatorname{Gal}(k^{sep}/k)$$

as topological spaces.

Exercise 6. Let A be a ring and $\mathfrak{p} \in \operatorname{Spec}(A)$ a point. Show that the canonical morphism $\operatorname{Spec}(A_{\mathfrak{p}}) \to \operatorname{Spec}(A)$ is pro-étale.

Example 13. Let p_n be the *n*th prime number (so $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, p_7 = 17, ...$). For any $n \in \mathbb{N}$, the map

$$X_n := \operatorname{Spec}(\mathbb{Z}[\frac{1}{p_1}, \dots, \frac{1}{p_n}]) \amalg (\sqcup_{i=1}^n \operatorname{Spec}(\mathbb{Z}_{(p_i)})) \to \operatorname{Spec}(\mathbb{Z})$$

is pro-étale. Moreover, there are canonical morphisms $X_{n+1} \to X_n$ induced by the canonical pro-étale morphisms

$$\operatorname{Spec}(\mathbb{Z}[\frac{1}{p_1},\ldots,\frac{1}{p_n},\frac{1}{p_{n+1}}]) \amalg \operatorname{Spec}(\mathbb{Z}_{p_{n+1}}) \to \operatorname{Spec}(\mathbb{Z}[\frac{1}{p_1},\ldots,\frac{1}{p_n}])$$

Consequently, $X := \lim_{n \to \infty} X_n$ is a pro-étale $\operatorname{Spec}(\mathbb{Z})$ scheme. As a set, we have

$$X = \{\eta\} \amalg (\sqcup_{n \ge 1} \{\eta_i, \mathfrak{p}_i\})$$

where $\{\eta_i, \mathfrak{p}_i\}$ correspond to the points of $\operatorname{Spec}(\mathbb{Z}_{(p_i)})$, and η corresponds to the generic points of the $\operatorname{Spec}(\mathbb{Z}[\frac{1}{p_1}, \ldots, \frac{1}{p_n}])$'s. The open sets of X are disjoint unions of sets of the form

$$\{\eta_i\}, \qquad \{\eta_i, \mathfrak{p}_i\}, \qquad X\setminus (\sqcup_{i=1}^N\{\eta_i, \mathfrak{p}_i\}).$$

In particular, every open covering of X can be refined by one which is a finite family of sets of the above form. These sets' corresponding rings of functions are

$$\mathbb{Q}, \qquad \mathbb{Z}_{(p_i)}, \qquad \lim_{n \to \infty} \mathbb{Z}[\frac{1}{p_1}, \dots, \frac{1}{p_n}] \times (\mathbb{Z}_{(p_N)} \times \mathbb{Z}_{(p_{N+1})} \times \dots \times \mathbb{Z}_{(p_n)}).$$

The latter is a subring of $\prod_{i>N} \mathbb{Z}_{(p_i)}$ with $\mathbb{Z}[\frac{1}{p_1}, \ldots, \frac{1}{p_n}]$ embedded diagonally into $\prod_{i>n} \mathbb{Z}_{(p_i)}$. Here is a picture.

$$\eta \stackrel{\dots \eta_4}{\stackrel{\eta_3}{\bullet}} \eta \stackrel{\eta_2}{\stackrel{\circ}{\circ}} 0^{\gamma_1} \quad \left\{ \begin{array}{c} \eta_1 \\ 0 \end{array} \right\} \text{open points} \\ \bullet \\ \vdots \\ \mathfrak{p}_4 \end{array}$$

Exercise 7. Consider the X from Example 13. Show that for every open covering $\{U_i \to X\}_{i \in I}$ the associated morphism $\coprod U_i \to X$ admits a section.

3 The pro-étale topology

The property in the above example is extremely important.

Definition 14. An object in a site is weakly contractible if for every covering $\{U_i \to X\}$ the morphism $\amalg U_i \to X$ admits a section.

Example 15.

- 1. Strictly hensel rings are weakly contractible with respect to étale coverings.
- 2. The scheme Spec(B) constructed in Exercise 2 is weakly contractible with respect to étale coverings (use the fact that any étale covering of $\text{Spec}(\lim B_{\lambda})$ is the base change of an étale covering of some B_{λ}).
- 3. The scheme X constructed in Example 13 is weakly contractible with respect to Zariski coverings, but not étale coverings, since none of the residue fields are separably closed.

Lemma 16. If X is a weakly contractible object, then $H^n(X, F) = 0$ for all i and all F. More interestingly, the evaluation at X functor $Shv(C, Ab) \rightarrow Ab$ is exact.

Proof. To calculate cohomology we choose an injective resolution (or fibrant replacement) $F \to I^{\bullet}$. By definition, the cohomology sheaves $a\underline{H}^n(-, I^{\bullet})$ are zero for n > 0. This means that for every $s \in H^n(X, F)$, there exists a covering $\{U_i \to X\}$ such that $s|_{U_i} = 0$ for all i. But every covering of X admits a section, and there fore s = 0.

Suppose $0 \to F \to G \to H \to 0$ is a short exact sequence. Evaluation on an object is left exact, so it suffices to show that $G(X) \to H(X)$ is surjective. By definition of a surjective morphism of sheaves, for every $s \in H(X)$ there is a covering $\{U_i \to X\}$ such that for each *i* the section $s|_{U_i}$ is in the image of $G(U_i) \to H(U_i)$. But $\amalg U_i \to X$ admits a section, so $s \in H(X)$ is in the image of $G(X) \to H(X)$.

Definition 17. A site is locally weakly contractible if every object admits a covering by weakly contractible objects.

Proposition 18. If C is a locally weakly contractible site, then for any system $(\dots \to F_2 \to F_1)$ of surjective morphisms of sheaves, $R \lim_{n \in \mathbb{N}} F_n = \lim_{n \in \mathbb{N}} F_n$.

It turns out that if we add pro-étale morphisms to Et(X), then the new bigger site is locally weakly contractible. Limits are so nice in this new site that it fixes the problems described above.

Theorem 19. Let X be a connected noetherian scheme.

1. We have

$$H^i(X_{\mathsf{proet}}, \mathbb{Q}_l) \cong H^i(X_{\mathsf{et}}, \mathbb{Q}_l)$$

where the right hand side is the limit Eq.(1), and the left hand side is honest sheaf cohomology \mathbb{Z}_l .

- 2. The six functors of Theorem 4 work for the honest derived categories $D(X_{\text{proet}}, \mathbb{Z}_l)$.
- 3. If X = Spec(k) is the spectrum of a field, then the subcategory of quasicompact quasiseparated objects X_{proet}^{qcqs} is canonically isomorphic to the category of profinite continuous (not necessarily finite) $\text{Gal}(k^{sep}/k)$ -sets

 $\operatorname{Spec}(k)_{\operatorname{proet}}^{qcqs} \cong \operatorname{Pro-Fin-Gal}(k^{sep}/k)\operatorname{-Set}.$

4. Honest \mathbb{Q}_l -local systems on X are equivalent to continuous representations of $\pi_1^{\text{proet}}(X)$ on finite dimensional \mathbb{Q}_l -vector spaces.