
1 Étale cohomology

1.1 From Weil conjectures to l-adic cohomology

We began with the question:

Question 1. Given a smooth projective variety X/Fq, how many Fqn -points
does X have for each n? That is, calculate

Z(X, t) = exp

( ∞∑
n=1

|X(Fqn)| t
n

n

)
.

This lead to the Weil conjectures:

Theorem 2 (Weil conjectures). If X is a smooth projective variety of dimension
d over Fq.

1. (Rationality) Z(X, t) is a rational function of t, i.e., it is in Q(t) ⊆ Q((t)).

2. (Functional equation) There is an integer e such that

Z(X, q−dt−1) = ±qed/2teZ(X, t).

3. (Riemann Hypothesis) We can write

Z(X, t) =
P1(t)P3(t) . . . P2d−1(t)

P0(t)P2(t) . . . P2d(t)

with Pi(t) ∈ Z[t], and such that the roots of Pi(t) have absolute value
q−i/2. Moreover, P0(t) = 1− t and P2d(t) = 1− qdt.

4. (Betti numbers) If X comes from a smooth projective variety over Z(p),
then

degPi(t) = dimQH
i(X(C),Q).

The strategy was to develop a cohomology theory

H• : (Varieties/k)op → graded Q-vector spaces

for arbitrary varieties, which satisfied the following properties for smooth pro-
jective varieties X.

1. (Finiteness) dimH•(X) is finite, andHi(X) = 0 for i 6∈ {0, 1, . . . , 2 dimX}.

2. (Poincaré Duality) There is a canonical isomorphism H2 dimX(X) ∼= Q
and a natural perfect pairing

Hi(X)×H2d−i(X)→ Q
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3. (Lefschetz Trace Formula)

|X(Fqm)| =
2 dimX∑
i=0

(−1)i Tr(φmi )

where XFq
= X ×Fq Fq, φ : XFq

→ XFq
is the Frobenius morphism, and

φi : Hi(XFq
)→ Hi(XFq

) is the induced morphism.

4. (Compatibility) If k = C then H•(X) is isomorphic to singular cohomol-
ogy.

Then,

(Lefschetz Trace Formula) ⇒ (Rationality)

(Poincaré Duality) ⇒ (Functional equation)

(Compatibility) ⇒ (Betti numbers)

Eigenvalues αi,j of φi|Hi(XFq
) have |αi,j | = q−i/2 ⇒ (Riemann Hypothesis)

We saw that:

1. (Serre) Due to the existence of supersingular elliptic curves, there cannot
be any cohomology theory with the above properties taking values in Q-
vector spaces.

2. For curves, étale cohomology with Z/ln-coefficients has Poincaré Duality
and

rankZ/ln H
i
et(XFq

,Z/ln) = dimQH
i
sing(X(C),Q)

This leads us to define:

Hi
et(X,Ql) :=

(
lim←−
n≥1

Hi
et(X,Z/ln)

)
⊗Zl

Ql. (1)

1.2 Successes of l-adic cohomology

Theorem 3. The Ql-vector spaces Hi
et(X,Ql) satisfy (Finiteness), (Poincaré

Duality), (Lefschetz Trace Formula), and (Riemann Hypothesis).

We also saw that the Z/ln cohomology groups had a very strong Poincaré
Duality formalism.

Theorem 4. For any finite type morphism between noetherian schemes f :
Y → X, and object E ∈ D(Xet,Z/ln) there are adjunctions

(f∗, f∗) : D(Yet,Z/ln) � D(Xet,Z/ln)

(f!, f
!) : D(Xet,Z/ln) � D(Yet,Z/ln)

(−⊗ E,hom(E,−)) : D(Xet,Z/ln) � D(Xet,Z/ln)

satisfying a number of properties such as a Proper Base Change and Smooth
Base Change formulas.

2



In order to have these functors for Zl-sheaves, some work is needed.

Definition 5 ([BS, Def.3.5.3]). For a scheme X, define Shvet(X)N to be the
category of N-indexed projective systems in Shvet(X). The derived category of
this abelian category is denoted by D(XN

et).
We write D(Xet, (Zl)•) ⊆ D(XN

et) for the full subcategory of those objects
(· · · → K2 → K1) such that Km ∈ D(Xet,Z/lm) and Km⊗Z/lmZ/lm−1 → Km−1

is a quasi-isomorphism. Here, ⊗ is the left derived tensor product.

Theorem 6 (Ekedahl). The functors f∗, f∗, f!, f
!,⊗,hom can be extended to

the categories D(Xet, (Zl)•) in a sensible way.

We also had a very nice Galois theory.

Theorem 7 (Stacks Project, Tags 0BNB, 0BMY,0BN4). Let X be a connected
scheme, x ∈ X a geometric point, FEtX the category of finite étale X-schemes,
and consider the functor

F : FEtX → Set; Y 7→ |Yx|.

The étale fundamental group of X is the profinite group

πet
1 (X,x) = Aut(F )

and F induces an equivalence of categories

FEtX ∼= Fin-πet
1 (X,x) -Set

with the category of finite sets equipped with a continuous πet
1 (X,x)-action.

There is also a linear version of this. Recall that LocX(R) is the category of
local systems with R-coefficients. That is, sheaves F of R-modules such that for
some covering {fi : Ui → X}, each f∗i F is isomorphic to the constant sheaf Rn

for some n. Similar to the case of topological spaces, π1 determines the category
of local systems.

Proposition 8. If X is a connected locally noetherian Z(l)-scheme, then there
is an equivalence of categories

Ql ⊗Zl
lim←−LocX(Z/ln) ∼=

{
continuous finite dimensional

Ql-linear representations of πet1 (X)

}
.

1.3 Shortcomings of l-adic cohomology

All of this is not quite as nice as it could be though.

Problem 9.

1. The definition Hi
et(X,Ql) :=

(
lim←−n≥1

Hi
et(X,Z/ln)

)
⊗Zl

Ql is a ad hoc,

and not very pleasant to work with.
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2. The categories D(Xet, (Zl)•) are horrible to work with.

3. The equivalence between local systems and π1-representations is no longer
true in general if one uses, honest Ql-local systems.

Question 10. So why can’t we just use sheaves of Zl-coefficients?

Representability!

Finite coefficients work so well due to the equivalence of categories.

Theorem 11. There is equivalence of categories

FEt(X) ∼= LocX(FinSet)

between the category of finite étale X-schemes and the category of locally con-
stant étale sheaves.

This suggests that we should enlarge the category Et(X) to include filtered
limits.

2 Pro-étale schemes

Definition 12. A morphism Spec(B)→ Spec(A) of affine schemes is pro-étale
if there exists a cofiltered1 system (Bλ)λ∈Λ of étale finite presentation A-algebras
such that B = lim−→Bλ. The system (Bλ) is called a presentation for B.

Exercise 1. Let (Bλ)λ∈Λ be a cofiltered system of rings. Let Primes(C) denote
the set of prime ideals of a ring C, and Spc(C) the underlying topological space
of Spec(C), i.e., Spc(C) is Primes(C) equipped with its Zariski topology.

1. Show that Primes(lim−→B) = lim←−Primes(Bλ).

2. Show that for any f ∈ Bλ with image f ∈ lim−→Bλ, the set D(f) ⊆
Primes(lim−→Bλ) of primes not containing f is the preimage of the set
D(f) ⊆ Primes(Bλ) of primes not containing f , under the canonical map
π : Primes(lim−→Bλ)→ Primes(Bλ). That is, show D(f) = π−1(D(f)).

3. Deduce that Spc(lim−→Bλ) = lim←− Spc(Bλ).

Exercise 2. Let k be an algebraically closed field. Using Exercise 1, show that
for every pro-finite set S, there exists a pro-étale k-scheme Spec(B)→ Spec(k)
with S ∼= Spc(B).

Exercise 3. Let k be a field and k ⊆ ksep a separable closure. Show that the
Spec(ksep)→ Spec(k) is pro-étale.

1A system is cofiltered if (i) it is nonempty, (ii) for every pair of objects Bλ, Bλ′ there is
a third object Bλ′′ and morphisms in the system Bλ → Bλ′′ , Bλ′ → Bλ′′ , and (iii) for any
pair of parallel morphisms in the system Bλ ⇒ Bλ′ there exists a morphism in the system
Bλ′ → Bλ′′ such that the two compositions are equal.
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Exercise 4. Suppose that Spec(B) → Spec(A),Spec(C) → Spec(A) are pro-
étale with B = lim−→λ∈Λ

Bλ and C = lim−→µ∈M Cµ presentations. Show that

Spec(B) ×Spec(A) Spec(C) → Spec(A) is pro-étale. Hint: consider the system
(Bλ ⊗A Cµ)(λ,µ)∈Λ×M .

Exercise 5. Recall that if L/k is a (finite) Galois extension, then Spec(L ⊗k
L) ∼= qGal(L/k) Spec(L). Recall also that an separable closure ksep/k is the
union of the finite Galois subextensions k ⊆ L ⊆ ksep and Gal(ksep/k) ∼=
lim←−k⊆L⊆ksep Gal(L/k). Show that

Spc(ksep ⊗k ksep) ∼= Gal(ksep/k)

as topological spaces.

Exercise 6. Let A be a ring and p ∈ Spec(A) a point. Show that the canonical
morphism Spec(Ap)→ Spec(A) is pro-étale.

Example 13. Let pn be the nth prime number (so p1 = 2, p2 = 3, p3 = 5, p4 =
7, p5 = 11, p6 = 13, p7 = 17, . . . ). For any n ∈ N, the map

Xn := Spec(Z[ 1
p1
, . . . , 1

pn
])q (tni=1 Spec(Z(pi)))→ Spec(Z)

is pro-étale. Moreover, there are canonical morphisms Xn+1 → Xn induced by
the canonical pro-étale morphisms

Spec(Z[ 1
p1
, . . . , 1

pn
, 1
pn+1

])q Spec(Zpn+1
)→ Spec(Z[ 1

p1
, . . . , 1

pn
]).

Consequently, X := lim←−Xn is a pro-étale Spec(Z) scheme. As a set, we have

X = {η} q (tn≥1{ηi, pi})

where {ηi, pi} correspond to the points of Spec(Z(pi)), and η corresponds to

the generic points of the Spec(Z[ 1
p1
, . . . , 1

pn
])’s. The open sets of X are disjoint

unions of sets of the form

{ηi}, {ηi, pi}, X \ (tNi=1{ηi, pi}).

In particular, every open covering of X can be refined by one which is a finite
family of sets of the above form. These sets’ corresponding rings of functions
are

Q, Z(pi), lim−→
n→∞

Z[ 1
p1
, . . . , 1

pn
]× (Z(pN ) × Z(pN+1) × · · · × Z(pn)).

The latter is a subring of
∏
i>N Z(pi) with Z[ 1

p1
, . . . , 1

pn
] embedded diagonally

into
∏
i>n Z(pi). Here is a picture.

}open points

}closed points

dtdtdtdtcsbraqp̀t η1

p1

η2

p2

η3

p3

η4

p4

. . .

. . .
η

Exercise 7. Consider the X from Example 13. Show that for every open
covering {Ui → X}i∈I the associated morphism qUi → X admits a section.
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3 The pro-étale topology

The property in the above example is extremely important.

Definition 14. An object in a site is weakly contractible if for every covering
{Ui → X} the morphism qUi → X admits a section.

Example 15.

1. Strictly hensel rings are weakly contractible with respect to étale coverings.

2. The scheme Spec(B) construcred in Exercise 2 is weakly contractible
with respect to étale coverings (use the fact that any étale covering of
Spec(lim−→Bλ) is the base change of an étale covering of some Bλ).

3. The scheme X constructed in Example 13 is weakly contractible with
respect to Zariski coverings, but not étale coverings, since none of the
residue fields are separably closed.

Lemma 16. If X is a weakly contractible object, then Hn(X,F ) = 0 for all i
and all F . More interestingly, the evaluation at X functor Shv(C,Ab)→ Ab is
exact.

Proof. To calculate cohomology we choose an injective resolution (or fibrant
replacement) F → I•. By definition, the cohomology sheaves aHn(−, I•) are
zero for n > 0. This means that for every s ∈ Hn(X,F ), there exists a covering
{Ui → X} such that s|Ui

= 0 for all i. But every covering of X admits a section,
and there fore s = 0.

Suppose 0 → F → G → H → 0 is a short exact sequence. Evaluation on
an object is left exact, so it suffices to show that G(X) → H(X) is surjective.
By definition of a surjective morphism of sheaves, for every s ∈ H(X) there is
a covering {Ui → X} such that for each i the section s|Ui

is in the image of
G(Ui) → H(Ui). But qUi → X admits a section, so s ∈ H(X) is in the image
of G(X)→ H(X).

Definition 17. A site is locally weakly contractible if every object admits a
covering by weakly contractible objects.

Proposition 18. If C is a locally weakly contractible site, then for any system
(· · · → F2 → F1) of surjective morphisms of sheaves, R limn∈N Fn = limn∈N Fn.

It turns out that if we add pro-étale morphisms to Et(X), then the new
bigger site is locally weakly contractible. Limits are so nice in this new site that
it fixes the problems described above.

Theorem 19. Let X be a connected noetherian scheme.

1. We have
Hi(Xproet,Ql) ∼= Hi(Xet,Ql)

where the right hand side is the limit Eq.(1), and the left hand side is
honest sheaf cohomology Zl.
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2. The six functors of Theorem 4 work for the honest derived categories
D(Xproet,Zl).

3. If X = Spec(k) is the spectrum of a field, then the subcategory of qua-
sicompact quasiseparated objects Xqcqs

proet is canonically isomorphic to the
category of profinite continuous (not necessarily finite) Gal(ksep/k)-sets

Spec(k)qcqsproet
∼= Pro-Fin- Gal(ksep/k)-Set.

4. Honest Ql-local systems on X are equivalent to continuous representations
of πproet

1 (X) on finite dimensional Ql-vector spaces.
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