
For easy of exposition, all presheaves will be presheaves of abelian groups,1

and all sites small.2 All schemes are assumed to be quasi-compact quasi-
separated (e.g., Noetherian), and we recall that étale morphisms are by defi-
nition locally of finite presentation (this means finite type if working only with
Noetherian schemes).3

1 Presheaf adjunctions

Definition 1. Suppose that π : C ′ → C is a functor. We denote the functor
induced by composition as

πp : PreShv(C)→ PreShv(C ′); F 7→ F ◦ π.

Exercise 1. If π′ : C ′′ → C ′ and π : C ′ → C are two functors, show that
(π ◦ π′)p = πp ◦ π′p.

Definition 2. Give a presheaf F ∈ PreShv(C ′) and X ∈ C define

(πpF )(X) = lim−→
X→π(Y )

F (Y )

where the colimit is over the comma category (X ↓ F ) whose objects are mor-
phisms X → π(Y ) in C, and hom(X→π(Y ), X→π(Y ′)) = {f : Y → Y ′ s.t. the

triangle
π(Y )

↖
−→

X

π(Y ′)

↗ commutes }.

Remark 3. There is also a right adjoint to πp defined in an analogous way, but
we will not use it.

Exercise 2. Using the universal property of the colimit, show that a morphism
X → X ′ in C induces a morphism (πpF )(X ′)→ (πpF )(X), and that this makes
πpF into a presheaf on C.

Exercise 3. Using the universal property of the colimit, show that there is a
canonical isomorphism homPreShv(C)(π

pF,G) ∼= homPreShv(C′)(F, πpG).

Corollary 4. The pair (πp, πp) is an adjunction PreShv(C) � PreShv(C ′).

Exercise 4. Using Exercise 1, Corollary 4, and the uniqueness properties of
adjunctions show that π′p ◦ πp = (π ◦ π′)p.

Exercise 5. Suppose that f : Y → X is a morphism of topological spaces,
and let π : Op(X) → Op(Y );U 7→ f−1U be the induced functor between
the categories of open subsets of X,Y . Show that πp is the usual push-forward
PreShv(Y )→ PreShv(X) and πp is the usual inverse image of presheaves functor
PreShv(X)→ PreShv(Y ).

1Sheaves of sets work just as well.
2This is to ensure that the colimits defining πp are well-defined. In practice, there are

many functors between large categories for which these colimits are still well-defined.
3These finiteness assumptions ensure that Et(X) are small (enough) categories (so that the

left adjoints πp existence is guaranteed), but otherwise are basically only used in the proof of
Proposition 12.
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Exercise 6. Suppose that the category C has a final objectX, and let π : ∗ → C
be the functor from the category with one morphism which sends the unique
object to X. Show that πp is the global sections functor F 7→ F (X), and πp is
the constant presheaf functor (πpA)(U) = A for A ∈ Ab = PreShv(∗).

Exercise 7. Let Y → X be an étale morphism of schemes, and consider the
functors

π : Et(X)→ Et(Y ); U 7→ Y ×X U (1)

and
γ : Et(Y )→ Et(X); (V→Y ) 7→ (V→Y→X) (2)

Show that (γ, π) is an adjunction. Show that γp = πp.

2 Sheaf adjunctions

Definition 5. Suppose that C ′, C are sites, i.e., categories equipped with Grothendieck
topologies. A functor π : C ′ → C is called continuous if for every sheaf F on
C, the presheaf πpF is a sheaf.

Exercise 8. Suppose π : C ′ → C sends fibre products to fibre products. Show
that π is continuous if it sends covers to covers.

Example 6. If Y → X is a morphism topological spaces then the induced
morphism of sites Op(X)→ Op(Y ) is continuous.

Example 7. If f : Y → X is a morphism of schemes, then π from Equation 1
is continuous. If f is an étale morphism of schemes then γ from Equation 2 is
also continuous.

Definition 8. Suppose π : C ′ → C is a continuous morphism of sites. The
induced functor on sheaves is denoted

π∗ : Shv(C)→ Shv(C ′).

The composition of πp with sheafification a : PreShv(C)→ Shv(C) is denoted

π∗ = a ◦ πp : Shv(C ′)→ Shv(C).

Exercise 9. Suppose we are in the situation of Definition 8. Using the fact
that sheafification a : PreShv(C) → Shv(C) is the left adjoint to the canonical
inclusion ι : Shv(C)→ PreShv(C), show that

π∗ : Shv(C) � Shv(C ′) : π∗

is an adjunction.

Exercise 10. Using Exercise 1 and Exercise 4, show that if C,C ′, C ′′ are
equipped with Grothendieck topologies, and π, π′ are continuous, then (π◦π′)∗ =
π∗ ◦ π′∗ and π′∗ ◦ π∗ = (π ◦ π′)∗.
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Definition 9. If f : Y → X is a morphism of schemes, and π the pullback
functor from Equation (1), we write

f∗ := π∗, f∗ := π∗.

If f is étale, so π has a left adjoint γ from Equation 2 then we write

f! := γ∗

Note that since γ∗ = π∗, cf. Exercise 7, in addition to the adjunction (f∗, f∗),
we have another adjunction (f!, f

∗).

Lemma 10. Let f : Y → X be a morphism of schemes. Then f∗ preserves
exact sequences.

Proof. It automatically commutes with colimits because it is a left adjoint. On
the other hand, πp commutes with finite limits because limits of presheaves are
calculated object wise, and πp is defined using filtered colimits, which commute
with finite limits. To deduce that f∗ = π∗ commutes with finite limits from
πp commuting, we just recall that sheafification is exact, so π∗ = a ◦ πp is a
composition of two functors which commute with finite limits.

Lemma 11. Let f : Y → X and X ′ → X be morphisms of schemes. Let h′X
denote the étale sheaf of sets hX′ = homX(−, X ′) ∈ Shvet(X), and similarly,
hY×XX′ = homY (−, Y ×X X ′) ∈ Shvet(Y ). We have

f∗hX′ = hY×XX′ .

Proof. By Yoneda, it suffices to produce isomorphisms

homShv(f
∗hX′ , F ) ∼= homShv(hY×XX′ , F )

for each F ∈ Shvet(Y ), which are natural in F . But we have

homShv(f
∗hX′ , F ) ∼= homShv(hX′ , f∗F ) adjunction

∼= (f∗F )(X ′) Yoneda
∼= F (Y ×X X ′) definition
∼= homShv(hY×XX′ , F ) Yoneda.

Exercise 11. Using the same argument as in Lemma 11 show that if f : Y → X
is an étale morphism of schemes, and Y ′ → Y any morphism then

f!hY ′ = hY ′

where the left Y ′ is considered as a Y -scheme, and the right one as an X-scheme.
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3 Immersions

Exercise 12. Suppose that j : U → X is an open immersion. Show that in this
case, γ : Et(U)→ Et(X) from Equation 2 is the inclusion of a full subcategory.
Show that since this subcategory is full, the functor j∗ : Shv(X) → Shv(U) is
none-other-than the restriction functor

j∗F = F |Et(U).

Show that j! : Shv(U)→Shv(X) is “extension by zero” in the sense that for any
H ∈ Shv(U),

(j!H)(V ) =

{
H(V ) V ∈ Et(U)

0 V 6∈ Et(U)

Show that
(j∗H)(V ) = H(V ) if V ∈ Et(U),

but give an example where V 6∈ Et(U), and (j∗H)(V ) 6= 0.
Deduce that

j∗j! = id = j∗j∗.

Exercise 13. Let X be a scheme, and ι : x→ X a geometric point. Show that

ι∗F = Fx

is the stalk of F at x, where we implicitly use the identification Shv(x) ∼= Ab.

Proposition 12 (Milne Cor.II.3.5). Let i : Z → X be the inclusion of a closed
immersion, x→ X a geometric point, and G ∈ Shv(Z). Then

(i∗G)x =

{
Gx im(x) ∈ Z
0 im(x) 6∈ Z

If j : U → X is the open complement of Z, then we have j∗i∗ = 0.

Easy parts of the proof (Omitted from the lecture). The second claim follows from
the first claim, since a sheaf is zero if and only if all its stalks are zero, and the
stalks of j∗i∗ are all zero by Exercises 10, 12, and 13.

Certainly, if im(x) 6∈ Z, then (i∗G)x = 0, since every x→ V → X is refinable
by some x→ U×XV → X, and (i∗G)(U×XV ) = G(Z×XU×XV ) = G(∅) = 0.

The difficult part is to show that for any x → V → Z, there is some x →
V ′ → X and a factorisation x→ Z ×X V ′ → V → Z. If we know this, then the
system defining (i∗G)x is cofinal in the system defining Gx.

The proof of this claim is omitted. See Milne Thm.II.3.2(b) for details.
Really, check it out. Its a very neat argument using properties of limit schemes
from EGA, in particular, EGA IV, Part 3, Cor.8.13.2.

Exercise 14. Suppose that F ∈ Shvet(U) is a constant sheaf (that is, F (V ) = A
for connected V , for some abelian group A). If i : Z → X is a nowhere dense
closed immersion with open complement j : U → X, using the fact that étale
morphisms send generic points to generic points, show that j∗F and i∗j∗F are
constant sheaves on X and Z respectively.
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4 The localistion sequences

Definition 13. Let i : Z → X be a closed immersion of schemes, and j :
U→X the open complement. Define T (X) to be the category4 whose objects are
triples (F1, F2, φ) consisting of F1 ∈ Shv(Z), F2 ∈ Shv(U), and a morphisms
φ : F1 → i∗j∗F2. Morphisms (F1, F2, φ) → (F ′1, F

′
2, φ
′) are pairs of morphisms

(F1
ψ1→ F ′1, F2

ψ2→ F ′2) such that the square commutes.

F1
φ //

ψ1

��

i∗j∗F2

i∗j∗ψ2

��
F ′1

φ′
// i∗j∗F ′2

We define a functor t : Shv(X)→ T (X) by

F 7→ (i∗F, j∗F, i∗(F
η→ j∗j

∗F ))

where η : id→ j∗j
∗ is the unit of the adjunction (j∗, j∗).

Theorem 14 (Milne Thm.II.3.10). The functor t : Shv(X) → T (X) is an
equivalence of categories.

Proof. Given a triple (F1, F2, φ) in T (X) define

s(F1, F2, φ) := ker

(
i∗F1 ⊕ j∗F2

i∗φ + η−→ i∗i
∗j∗F2

)
.

Here, η : id→ i∗i
∗ is the unit of the adjunction (i∗, i∗). Notice that this defines

a functor
s : T (X)→ Shv(X).

So it suffices to check that st ∼= id and ts ∼= id. Consider stF . By definition,
this is

stF = ker

(
i∗i
∗F ⊕ j∗j∗F

i∗φ + η−→ i∗i
∗j∗j

∗F

)
.

This comes equipped with a canonical morphism F → stF , and so we are trying
to show that the sequence

0→ F → i∗i
∗F ⊕ j∗j∗F

i∗φ + η−→ i∗i
∗j∗j

∗F

is exact. One can check exactness on stalks, so consider a geometric point
x→ X. If im(x) ∈ U = X \ Z then our sequence becomes

0→ Fx → 0⊕ Fx −→ 0.

4This is just the comma category (Shv(Z) ↓ i∗j∗).
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If im(x) ∈ Z = X \ U then our sequence becomes

0→ Fx → Fx ⊕ (j∗j
∗F )x −→ (j∗j

∗F )x.

Hence, we have confirmed exactness, and F
∼→ stF .

Now consider ts(F1, F2, φ). We have

i∗s(F1, F2, φ) = i∗ ker

(
i∗F1 ⊕ j∗F2 −→ i∗i

∗j∗F2

)
= ker

(
i∗i∗F1 ⊕ i∗j∗F2 −→ i∗i∗i

∗j∗F2

)
= ker

(
F1 ⊕ i∗j∗F2 −→ i∗j∗F2

)
= F1

One similarly checks that j∗s(F1, F2, φ) ∼= F2, and that the canonical morphism
i∗s(F1, F2, φ)→ i∗j∗j

∗s(F1, F2, φ) is none-other-than φ, under these identifica-
tions. Hence, ts(F1, F2, φ) = (F1, F2, φ).

Theorem 15 (Milne Prop.II.3.14). Its possible to define six functors

Shvet(Z)
i∗ // Shvet(X)

i∗oo

i!oo

j∗ // Shvet(U)
j∗oo

j!oo

such that under the identification Shvet(X) ∼= T (X), they correspond to:

F1 ← [ (F1, F2, φ) (0, F2, 0) ← [ F2

F1 7→ (F1, 0, 0) (F1, F2, φ) 7→ F2

ker(φ) ← [ (F1, F2, φ) (i∗j∗F2, F2, id) ← [ F2

1. Each functor is left adjoint to the one below it.

2. The functors i∗, i∗, j
∗, j! preserve exact sequences; j∗, i

! preserve monomor-
phisms.

3. The composites i∗j!, i
!j!, i

!j∗, j
∗i∗ are zero.

4. The functors i∗, j∗ are fully faithful.

5. The functors j∗, j
∗, i!, i∗ map injective objects to injective objects.

Remark 16. Heuristicaly, j∗ “fills in the gaps” over Z in a canonical way, and
i! isolates the part of F which cannot be recovered from F |Et(U) by this “filling
in the gaps” process.

Exercise 15 (Not advanced). Prove Theorem 15 using what we have seen so
far. Note that if a functor has a left adjoint preserving monomorphisms then it
preserves injectives.
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Exercise 16 (Not advanced). In the situation of Theorem 15 show that there
are short exact sequence

0→ j!j
∗ → id→ i∗i

∗ → 0

0→ i∗i
! → id→ j∗j

∗ → 0

Remark 17. Sometimes one defines j∗ := j! and i! := i∗ so that the short
exact sequences can be written as

0→ j!j
! → id→ i∗i

∗ → 0

0→ i!i
! → id→ j∗j

∗ → 0

5 Curves

Example 18 (Milne, Exam.II.3.12). Let A be a discrete valuation ring (e.g.,
C[[z]],Fp[[z]],Zp, . . . ). Let

1. K = Frac(A),

2. k = A/m,

3. GK = Gal(Ksep/K),

4. Gk = Gal(ksep/k),

Since A is a discrete valuation ring, X = Spec(A) has one open point, and
one closed point. Let U = Spec(K), Z = Spec(k) be the corresponding open
and closed subschemes. Recall that the category of étale sheaves over a field
is equivalent to the category of discrete Galois modules. That is, Shvet(Z) ∼=
Gk-mod and Shvet(U) ∼= GK-mod. We can give an analogous description of
Shvet(X) using a similar construction to T (X). It suffices to work out what
functor GK-mod→ Gk-mod corresponds to i∗j∗ : Shvet(U)→ Shvet(Z).

Let Ah be the henselisation of A, and Ash a strict henselisation. Since Ksep

is separable closed, there are factorisations A → Ah → Ash → Ksep which are
actually inclusions. The choice of Ash and the inclusion define subgroups I =
Gal(Ksep/Frac(Ash)) and D = Gal(Ksep/Frac(Ah)), with I ⊆ D ⊆ GK , and it
turns out that D/I is canonically isomorphic to Gal(ksep/k) where we identify
ksep = Ash/mAsh . Then we claim that the functor i∗j∗ : Shvet(U) → Shvet(Z)
corresponds to the functor of I-invariants.

(−)I : GK-mod→ Gk-mod.

Hence, the category Shvet is equivalent to the category of triples (M1,M2, φ)
where M1 ∈ Gk-mod, M2 ∈ GK-mod, and φ : M1 →M2 is compatible with the
actions of Gk ∼= D/I and GK .

Example 19. Example 18 can be generalised to any normal curve, see Milne
Exer.II.3.16 for details.
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