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Motivation. There are many way to define the cohomology of a smooth
manifold. For example, as the cohomology groups of an injective resolution
C → I0 → I1 → . . . , or as the cohomology groups of a flasque resolution
(such as the Godement resolution C → G0C → G1C → . . . or the singular
cochain complex C → Sing0 → Sing1 → . . . ), or as the cohomology groups of
a fine resolution such as the de Rham complex C → A0

C → A1
C → . . . . All of

these complexes calculate the same cohomology, i.e., they are quasi-isomorphic.
However, in general they contain more information than just their cohomology
groups. Sometimes it is useful to have a setting where quasi-isomorphic chain
complexes are not replaced by just their cohomology, but where they are none-
the-less considered as isomorphic.

Setting. In this lecture we work with a Grothendieck abelian category. We
have in mind the following examples:

1. R-mod, the category of R-modules for some ring R (for example, R = Z
or R a field),

2. Shv(X) the category of sheaves of abelian groups on a topological space,

3. Shvet(X), the category of étale sheaves of abelian groups on a scheme X,

4. G-mod, the category of discrete G-modules for some profinite group (such
as G = Gal(ksep/k) for some field k).

Definition 1. The derived category D(A) of an abelian category A is the lo-
calisation of the category of chain complexes Ch(A)[q.i.−1] at the class of quasi-
isomorphisms.

The cohomology of a sheaf F is its image under the right derived global
sections functor RΓ(X,−) : D(Shv(X))→ D(Ab).

Lets explain what this means.

1 Chain complexes

Definition 2. Let A be an abelian category. A chain complex C• is a sequence

of morphisms · · · d→ Cn−1
d→ Cn

d→ Cn+1 d→→ . . . such that d ◦ d = 0. We
define

the group of n-cycles as Zn = ker(Cn → Cn+1),
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the group of n-boundaries as Bn = im(Cn−1 → Cn),

and the n-th cohomology group as Hn = Zn/Bn.

A morphism of chain complexes C• → D• is a sequence of morphisms fn :
Cn → Dn such that dfn = fn+1d for all n. The category of chain complexes is
denoted Ch(A).

If Cn = 0 for n << 0 then C• is said to be bounded below. The correspond-
ing full subcategory is denoted Ch+(A).

Exercise 1. Show that a morphism of chain complexes C• → D• induces a
morphism on cohomology groups HnC → HnD.

Definition 3. A morphism of chain complexes f : C• → D• is called a quasi-
isomorphism if the induced maps Hnf : HnC → HnD are isomorphisms ∀ n.

Exercise 2. Show that

(· · · → 0→ Z 2→ Z→ 0→ . . . )

↓
(· · · → 0→ 0→ Z/2→ 0→ . . . )

is a quasi-isomorphism.

Definition 4. A chain homotopy h between two maps of chain complexes f, f ′ :
C• ⇒ D• is a sequence of maps hn : Cn → Dn−1 such that

dhn + hn−1d = f ′n − fn.

If such an h exists we say that f and f ′ are homotopic and write f ∼ f ′. If
f ∼ 0 we say that f is null homotopic. If we have two maps f : C• � D• : g
such that gf ∼ idC• and fg ∼ idD• then we say that f (and g) is a homotopy
equivalence and C• and D• are homotopy equivalent.

Exercise 3. Show that if f ∼ g thenHnf = Hng for all n. Show that homotopy
equivalences are quasi-isomorphisms. Show that the quasi-isomorphism from
Exercise 2 is not a homotopy equivalence, because there is no map in the other
direction.

Exercise 4. Show that chain homotopy defines an equivalence relation on
hom(C•, D•). Or in other words, show that the set of null homotopic mor-
phisms is a subgroup of homCh(A)(C

•, D•).

Exercise 5. Show that homotopy equivalence is preserved by pre-composition,
and post-composition. That is, if f ∼ f ′ then f ◦ g ∼ f ′ ◦ g and g′ ◦ f ∼ g′ ◦ f ′
for any morphisms g : B• → C• and g′ : D• → E•.

Definition 5 (Weibel Def.1.4.4). The homotopy category K(A) of an abelian
category A, is the category whose objects are chain complexes, and

homK(A)(C
•, D•) = homCh(A)(C

•, D•)/ ∼ .

The full subcategory of K(A) consisting of bounded below chain complexes is
denoted K+(A).
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2 Resolutions

Definition 6. Recall that an object I of an abelian category A is injective if
homA(−, I) sends monomorphisms to surjections.

Exercise 6 (Omitted from lecture).

1. Show that I is injective if and only if hom(−, I) sends exact sequences to
exact sequences.

2. Show that if I is an injective abelian group then I is divisible.1

3. Advanced: show that any divisible abelian group is injective.

4. Show that if I is an injective abelian group, X is a topological space, and
x ∈ X a point, then the skyscraper sheaf2 skxI at x with value I is an
injective object of Shv(X).

5. Show that a product of injective objects is injective.

Exercise 7. Recall that Q/Z is an injective abelian group.

1. Show that for every abelian group A and nonzero a ∈ A, there exists a
morphism φ : A→ Q/Z that φ(a) 6= 0. (Hint: consider the inclusion of the
subgroup 〈a〉 ⊆ A generated by a; note that either 〈a〉 ∼= Z or 〈a〉 ∼= Z/n
for some n).

2. Show that A→
∏

hom(A,Q/Z) Q/Z is a monomorphism from A to an injec-
tive abelian group. Note that it is functorial in A.

3. Let X be a topological space and F a sheaf. Show that F →
∏
x∈X skxIFx

is a monomorphism of sheaves to an injective sheaf, where Fx is the stalk
of F at x, and skxIFx is the skyscraper sheaf at x with value the injective
abelian group

∏
homAb(Fx,Q/Z) Q/Z.

Theorem 7 (Grothendieck 1957,東北数学雑誌). If A is a Grothendieck abelian
category, then A has enough injectives. That is, for any object C ∈ A, there is
a monomorphism C ↪→ I with I injective.

Exercise 8. Suppose that C• is a chain complex, that f i : Ci → Ii for i ≤ n is

a sequence of morphisms with Ii injective, that · · · d→ In−1
d→ In is a sequence

of morphism such that

1. d ◦ d = 0,

2. df i = f i−1d for i ≤ n,

3. HiC ∼= HiI for i < n,

1That is, multiplication by any nonzero integer n : I → I; a 7→ na is surjective.
2This is the sheaf which sends an open U ⊆ X to I if x ∈ U and zero otherwise. It is

characterised by the property that homShv(X)(F, skxI) = homAb(Fx, I).
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4. Cn−1 → Cn ⊕ In−1 → In is exact.

Define D to be the cokernel of Cn⊕In−1 → Cn+1⊕In; (c, i) 7→ (dc, di−fc), and
let D ↪→ In+1 be an inclusion into an injective object. Show that the above four
points are still satisfied after we add In+1 to the above data with the canonical
morphisms In → In+1 and Cn+1 → In+1 (now with n replaced by n+ 1).

We deduce the following from the above exercise.

Corollary 8. If A has enough injectives, then every bounded below complex is
quasi-isomorphic to a complex of injectives.

Definition 9. A chain complex Q• is called fibrant if for any monomorphic
quasi-isomorphism f : C• → D• in Ch(A), any map C• → Q• factors through D•.

Lemma 10. If I• is a bounded below complex, then I• is fibrant if and only if
its a complex of injectives.

Proof. (Omitted from lecture). We will see in Exercise 9 that fibrant ⇒ injec-
tives, so we prove the converse.

Let f : C• → D• be a monomorphism which is a quasi-isomorphism, and
suppose that C• → I• is a map. We will construct the factorisation by induction
on In. It is easy to start the induction because I• is bounded below. So suppose

that we have a factorisation Ci
fi

→ Di g
i

→ Ii such that dgi−1 = gid for all i < n for
some n. Since In is injective, and Cn → Dn injective, there exists a factorisation
Cn → Dn → In, however the square

Dn g′ // In

Dn−1

d

OO

gn−1

// In−1

d

OO

may not commute. That is, γ = dgn−1 − g′d may not be zero. Let E• =
coker(C• → D•) and note that since f is a quasi-isomorphism, E• is an exact

complex. Since γfn−1 = 0, there is a factorisation Dn−1 → En−1
η→ In of γ.

Now since E• is exact, In is injective, and ηd = 0, there is a further factorisation

Dn−1 → En−1
d→ En

ι→ In. Composing ι with Dn → En gives a morphism
φ : Dn → In. The diagram looks like this,

Dn //
φ

,,En
ι
// In

Cn−1
fn−1

// Dn−1

d

OO

surj.
//

γ

88

En−1

d

OO

η

<<

En−2

d

OO
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but we really only care that φd = γ = dgn−1 − g′d. Defining gn = g′ + φ, one
checks that gnd = dgn−1 as desired.

Exercise 9. If C• is fibrant, then C• is a complex of injectives: Given an

object M , let Dn(M) denote the complex (· · · → 0 → M
id→ M → 0 → . . . )

concentrated in degrees n and n + 1. Show that homCh(A)(D
n(M), C•) =

homA(M,Cn) for any complex C•. Show that for any morphism M →M ′, the
induced map Dn(M) → Dn(M ′) is a quasi-isomorphism. Show that if C• is
fibrant, then each Cn is injective.

Remark 11. The converse to Exercise 9 is not necessarily true. While a
bounded below complex is a complex of injectives if and only if it is fibrant,
in general there are unbounded complexes of injectives which are not fibrant.

The real reason we are interested in fibrant objects is the following.

Proposition 12. Suppose Q• is fibrant, and f : C• → D• is a quasi-isomorphism.
Then

f∗ : homK(A)(D
•, Q•)

∼→ homK(A)(C
•, Q•).

Proof. We can assume that f is a monomorphism: Consider the canonical
factorisation C• → Cyl(f) → D• via the mapping cylinder.3 The second
morphism is a split quasi-isomorphism. Therefore C• → Cyl(f) is also a
quasi-isomorphism. So if the result is true for the two monomorphic quasi-
isomorphisms C• → Cyl(f) and D• → Cyl(f), then it will be true for C• → D•.
(Even though the triangle doesn’t commute).

So now f is a monomorphic quasi-isomorphism, so f∗ is surjective by def-
inition of fibrant, and it suffices to show surjectivity. Recall that two mor-
phisms g, g′ : D• → Q• are homotopic if and only if they factor through
the cyclinder g + g′ : D• ⊕ D• → Cyl(idD) → Q•. If we have two mor-
phisms which become homotopic after composition with f , then gf + g′f fac-
tors through some Cyl(idC) → Q•. This induces a morphism on the pushout
(D• ⊕ D•) qCyl(idC) Cyl(idD) → Q•. But the canonical morphism (D• ⊕
D•) qCyl(idC) Cyl(idD) → Cyl(idD) is a monomorphic quasi-isomorphism (be-
cause f is), hence, by the definition of “fibrant”, we get our desired factorisation
Cyl(idD)→ Q•, and therefore a homotopy g ∼ g′.

Corollary 13. A morphism between fibrant complexes is a quasi-isomorphism
if and only if it is a homotopy equivalence.

3[Weibel 1.5.5] The cyclinder is the complex

Cyl(f)n = Dn ⊕ Cn+1 ⊕ Cn; d : (b, a′, a) 7→ (db− fa′,−da′, a′ + da).

It is equipped with canonical morphisms

C• → Cyl(f); a 7→ (0, 0, a),

D• → Cyl(f); b 7→ (b, 0, 0),

Cyl(f)→ D•; (b, a′, a) 7→ b+ f(a)
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Proof. Let K(Fib) ⊆ K(A) denote the full subcategory of fibrant objects. The
corollary follows directly from Proposition 12 by applying Yoneda’s lemma to
K(Fib).

It is a major theorem that there are an ample supply of fibrant complexes.

Theorem 14 (Beke, cf.Cisinski, Deglise, Thm.2.1). Suppose A is a Grothendieck
abelian category. Then there exists a functor Q : Ch(A)→ Ch(A) and a natu-
ral transformation id → Q such that for each complex C•, the complex QC• is
fibrant, and the morphism C• → QC• is a quasi-isomorphism.

Remark 15. A proof of the case where A is the category of modules over a
ring is in Hovey, “Model categories”, see Theorem 2.3.13.

3 Localisation

Definition 16. If C is a category and S is a class of morphisms, the localisation
C → C[S−1] is the universal functor which sends every element of S to an
isomorphism. In other words, every functor C → D sending elements of S to
isomorphisms factors in a unique4 way through D.

Exercise 10. If R is a ring, let CR denote the category with one object ∗, and
hom(∗, ∗) = R. Composition is given by the multiplication of R. If S ⊆ R is a
multiplicatively closed set, show that any functor CR → D inverting elements
of S factors through CR[S−1].

Exercise 11 (Advanced). For K a field, we will show that

D(K) ∼= Gr(K)

where D(K) is the derived category of K-vector spaces and Gr(K) is the cate-
gory of Z-graded vector spaces. Using a decomposition Cn = Zn⊕Bn+1⊕Hn

show that for any chain complex C•, there is a quasi-isomorphism C•
q.i.→

⊕nHn[−n] (where Hn[−n] = (· · · → 0→ Hn → 0→ . . . ) is the chain complex
concentrated in degree n).

Let Ch(K) → Gr(K) be the functor C• 7→ ⊕nHn[−n]. Show that this
functor is a localisation of Ch(K) at the class of quasi-isomorphisms.

Exercise 12. Using the fact that quotients of injective abelian groups are in-
jective5 we will show that for every complex C• of abelian groups, there are
quasi-isomorphisms

C•
q.i.→ K•

q.i.← ⊕Hn[−n]

4More concretely, let FuncS(C,D) denote the category of those functors which send el-
ements of S to isomorphisms. Then C → C[S−1] is a localisation if Func(C[S−1], D) →
FuncS(C,D) is an equivalence of categories.

5This is because an abelian group is injective if and only if its divisible. This is because Z is
a principle ideal domain, and this fact does not generalise to more general abelian categories.
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for some K•.
Let ι : Cn/Bn ↪→ I be an immersion into an injective group, and define J

as the cokernel of the canonical map (Cn/Bn)
(d,ι)−→ Bn+1⊕I →→ J . Show that

because Cn → Bn+1 is surjective, the induced map I → J is surjective. Using
the fact that J is again an injective abelian group, show that the canonical map
Cn → J factors through Cn+1. Note that this produces a map of complexes
C• → (· · · → 0 → I → J → 0 → . . . ). Show that this map induces an
isomorphism on degree n cohomology, and that (· · · → 0 → I → J → 0 →
. . . ) is quasi-isomorphic to Hn[−n]. Deduce that there are quasi-isomorphisms
C• → K• ← ⊕Hn[−n] for some appropriately chosen complex K•.

Remark 17. Even though every object ofD(Ab) is isomorphic to some⊕Hn[−n],
we have D(Ab) 6∼= Gr(Ab). In fact,

homD(Ab)(⊕Hn[−n],⊕H ′n[−n])

∼=
(∏

n

homAb(Hn, H ′n)

)
⊕
(∏

n

Ext1(Hn, H ′n−1)

)
Theorem 18. Let A be a Grothendieck abelian category. Then the derived
category is equivalent to the subcategory of K(A) whose objects are fibrant.

D(A) ∼= K(FibA).

If we are working with bounded below chain complexes, we can instead use com-
plexes of injectives.

D+(A) ∼= K+(InjA).

Proof. This follows from Lemma 10, Corollary 13, Theorem 14

4 Derived functors and cohomology

Definition 19. Suppose that F : A→ B is a left exact6 functor between abelian
categories. Its right derived functor is the universal functor

RF : D(A)→ D(B)

equipped with a natural transformation qF ⇒ RFq

K(A)
F //

q

��
⇓
q◦F

��RF◦q ((

K(B)

q

��
D(A)

RF
// D(B)

6Left exact means it preserves kernels and products
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Proposition 20. If A is a category with enough injectives, then the composition

D+(A) ∼= K+(InjA)→ K+(A)
F→ K+(B)→ D+(B)

is the derived functor of F . If A is a Grothendieck abelian category, and F has
a left adjoint E : B → A which preserves monomorphisms and monomorphic
quasi-isomorphisms, then the composition

D(A) ∼= K(FibA)→ K(A)
F→ K(B)→ D(B)

is the derived functor of F .

Remark 21. It is quite common that all criteria of Proposition 20 are fulfilled.

Exercise 13 (Omitted from lecture.). Consider the functor F = hom(Z/2,−) :
Ab→ Ab which sends a group to its subgroup of 2-torsion elements. Using the

short exact sequence 0 → ( 1
2Z)/Z → Q/Z 2→ Q/Z → 0 and the isomorphism

( 1
2Z)/Z ∼= Z/2, show that RF (Z/2) = (· · · → 0 → Z/2 0→ Z/2 → 0 → . . . ).

(Note that Q/Z is injective).

Definition 22. Suppose that X is a small category equipped with a Grothendieck
topology and admitting a terminal object X (for example, Op(X) for a topological
space X). Let Γ(X,−) : Shv(C) → Ab denote the global sections functor F 7→
F (X).

The cohomology of a sheaf of abelian groups F ∈ Shv(C) is the image under
the right derived functor of Γ(−, F ).

RΓ(X,F ) ∈ D(Ab).

The cohomology groups of F are the cohomology groups of this complex

Hn(X,F ) = Hn(RΓ(X,F )).

Exercise 14. Show that if 0 → F → I0 → I1 → . . . is any exact complex of
sheaves with each Ii injective, then

Hn(X,F ) =
ker(In(X)→ In+1(X))

im(In−1(X)→ In(X))

5 (Pre)Triangulated categories

Triangulated categories are a formalism which isolate key properties of K(A)
and D(A), Using these properties, many things can be proven without having
to touch chain complexes (any more).

Definition 23 (Weibel Def.10.2.1). A pretriangulated category is an additive
category T equipped with an autoequivalence [1] : T → T and a collection of
distinguished triangles, i.e., diagrams of the form A→ B → C → A[1] satisfying
the following:
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TR1 (a) The class of distinguished triangles is closed under isomorphism.

(b) For every object A, the triangle A
id→ A→ 0→ A[1] is distinguished.

(c) For every morphism f : A → B there exists a distinguished triangle
A→ B → C → A[1] containing f .

TR2 If A→ B → C → A[1] is a distinguished triangle, then so are B → C →
A[1]→ B[1] and C[−1]→ A→ B → C.

TR3 For any two distinguished triangles, and morphisms f, g there exists a
( usually not unique!) morphism h making the diagram commute:

A //

f

��

B //

g

��

C //

h

��

A[1]

f [1]

��
A′ // B′ // C ′ // A′[1]

Definition 24. The shift C•[1] of a chain complex C• is the chain complex

C•[1]n = Cn+1, dC•[1] = −dC• .

Definition 25 (Weibel 1.5.1). Let f : A• → B• be a morphism of chain com-
plexes. The cone of f is the complex

Cone(f)n = Bn ⊕An+1; d : (b, a) 7→ (db− fa,−da).

Exercise 15. Show that the differentials defined above satisfy the condition
d ◦ d = 0.

Exercise 16. Show that there is a canonical morphism of complexes Cone(f)→
A•[1], and that this induces a long exact sequence

· · · → HnA→ HnB → HnCone(f)→ Hn+1A→ . . . .

(Hint: it suffices to check that the map Hn+1A→ Hn+1B defined by the Snake
Lemma applied to the short exact sequence of complexes 0→ B → Cone(f)→
A[1]→ 0 is the same as the map induced by f).

Proposition 26. Let A be an abelian category. Define a triangle in K(A) to be

distinguished if it is isomorphic (in K(A)) to a triangle of the form A
f→ B →

Cone(f) → A[1]. Then K(A) equipped with [1] and this class of triangles is a
pretriangulated category.

Remark 27. The category K(A) also satisfies the octohedral axiom, making
it a triangulated category, but we will not discuss this.

Exercise 17 (Advanced). Prove Proposition 26.
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