1 Sheaves

Definition 1. A (Grothendieck) topology on a category C is the data of: for
every object U € C, a collection of families of morphisms {U; — U}icr. The
families in these collections are called coverings of U. This data is required to
satisfy the following axioms:

1. {U iq U} is a covering, for every object U.

2. If {U; = Ulier is a covering of U, and V- — U is a morphism, then each
fibre product U; xy V exists, and {U; xy V. — V}ier is a covering of V.

3. If {U; = Ulier is a covering of U, and for each i € I we have a covering
{Uij = U;}jeq, of Ui, then {U;; — U}licr jeg; is a covering of U.

Exercise 1. Suppose that X is a topological space in the conventional senseE|
Define Op(X) to be the category whose objects are open sets of X, and mor-
phisms are inclusions. For U € Op(X), define the coverings of U to be the fam-
ilies {U; — U};cr such that U;e;U; = U. Show that this defines a Grothendieck
topology on Op(X). (Note that in this category V xyg W =V NW.)

Exercise 2. Let X be a topological space, and define LH(X) to be the cat-
egory whose objects are local homeomorphismﬂ Y — X and morphisms are
Y' =Y
commutative triangles N\, . Show that this category has fibre products.
X

ForY € LH(X), define the coverings of Y to be the families {f; : Y; = Y }ier
such that U;er fi(Y:) = Y. Show that this defines a Grothendieck topology on
LH(X).

Exercise 3. Recall that a morphism f : Y — X of schemes is étale if it is locally
of finite presentation, and for every y € Y, the ring morphism Ox ;) — Oy,
is étale. Let Et(X) denote the category whose objects are étale morphisms
Y — X, and morphisms are commutative triangles. Do Exercise [2f with Et(X)
instead of LH(X).

Definition 2. A presheaf F' on a category C is just a functor C°P — Set.
A morphism of presheaves F — G is just natural transformation of functors

F— Q.

Definition 3. If C is equipped with a Grothendieck topology, then a presheaf F
is called a sheaf if for any object U and any covering {U; — U}ier we have

FU)=eq|[[FW) = [] FWO: xu Uy) |- (I11)

icl IS

e., a set equipped with a collection of subsets of X declared to be open, preserved by
finite intersection, arbitrary union, and containing X and &.

2A morphism f: Y — X is a local homeomorphism if for every point y € Y, there is an
open neighbourhood V' 3 y such that f: V — f(V) is a homeomorphism.



A morphism of sheaves is just a morphism of presheaves. A sheaf on Et(X) for
some scheme X is called an étale sheaf on X.

Example 4. We have the following important examples of étale sheaves on
Et(k), cf. Exercise [10]

1. O: L (L,+).
2. O*: L (L*,%).
3. pn: Lo {a€L*:a" =1}

Remark 5. If a presheaf takes values in the category of abelian groups, then
the sheaf condition (|III) is equivalent to asking that the sequence

0= FU) = [[FW:) = ] FU: xu Uy)
icl ijel
be exact, where the last morphism is the difference of the two morphisms induced
by the two projections U; xy U; = U, U;.

Exercise 4. Let X be a topological space in the conventional sense. Consider
the Grothendieck topology defined on Op(X) in Exercise Show that a presheaf
on X is the same thing as a presheaf on Op(X), and a preseheaf on X is a sheaf
if and only if its associated presheaf on Op(X) is a sheaf. That is, Definition
is an honest generalisation of the classical notion of a sheaf.

Exercise 5. Let Spec(L) — Spec(L’) be a morphism in Et(k) such that L/L’
is Galois with Galois group G = Aut(L/L’). Recall that there is a canonical
isomorphism

L®L/L2HL
G

where two morphisms L = L ®;, L;a — 1 ® a,a ® 1 are identified with a +—
(a,a,...,a) and a — (a%,...,a%") where g; are the elements of G. Show that
if F'is an étale sheaf on Spec(k), then F([[. L) = [[ F(L), and

F(L') = F(L)¢

where F(L)Y = {s € F(L) : g*s = s V g € G}. Deduce that if F; — F; is a
morphism of étale sheaves such that Fy(L) = Fy(L) for every Galois extension
L/k, then F1 = FQ.

Remark 6. We will be able to show later on that a presheaf F' on Et(k) is a
sheaf if and only if

1. F(HierUs) = [;e; F(Us) for any collection U;,i € I, and

2. F(L') = F(L)A“"(L/L) for every Galois extension L/L/.



Theorem 7 (cf.Milne, Thm.I1.1.9). Suppose that k is a field, k*°P /k is a separa-
ble closure, and G = Gal(k*? /k). Then there is a canonical equivalence between
the category G-set of discreteﬂ G—setﬁ and the category Shv(Et(Spec(k)) of étale
sheaves on k.

Proof. For F € Shv(Et(Spec(k))) we define

Xp= lim F(Spec(L)) (1)
keer /L /k

as the colimit over all subfields L of k*“? which are finite Galois extensions of k.
X is a discrete G-set. For any Galois L/k and any o0 € G we have o(L) = L
so o restricts to a (finite) automorphism of L/k (and hence an automorphism
of F(L)) via the canonical map G — Gal(L/k) = G/Fix(L) where Fiz(L) =
{9 € G:g(a) =aV ae L}. These actions inclusions L' C L (and hence, the
morphisms F(L') — F(L)), hence we get an action of G on Xp. Moreover,
every € X is the image of some 2’ € F(Spec(L)), so X is a discrete G-set.
The assignment F' +— Xp is clearly natural in F', that is, it defines a functor.
For future reference, we note that since F' is an étale sheaf, for each extension
L'/L, the morphism F(L) — F(L’) is injective, and moreover, for any two
Galois extensions L'/L/k of k, by Exercise [5| we have F(L) = F(L/)Aut(L'/L) —
F(L)F®=(L) | Since the action of G commutes with the colimit (D), we get

XEeW — g PP = m F(L) = F(D). (2)
ksep/L//L/k kscP/L,/L/k

Now suppose we have a discrete G-set X, we define a presheaf on Et(Spec(k))
as

Fx(U) = homg (homspec(k) (Spec(ksep)7 U) , X) ,

where hom means G-equivariant morphisms, and G = Gal(k*?? /k) = homy, (k*P, k3°P)
acts on homgpec(r) (Spec(k*?), U) by composition.

Fx s an étale sheaf. Cf. Milne, Lem.I.1.8. Recall that every étale mor-
phism Y — Spec(k) is a of the form IT;e; Spec(L;) — Spec(k) for some set of
finite separable field extensions L;,7 € I. Clearly, as Spec(k®¢P) is connected,
homgpec(x) (Spec(k*P), 11;U;) = H homgpec(r) (Spec(k*P), U;) and so

Fx (IISpec(L;)) = H Fx (Spec(L;)).
So by Remark [f] to show Fx is a sheaf, it suffices to check that

for finite Galois extensions L/L’. Note that for any Galois extension L/k and
any subextension L/L’/k we have

homy, (L, k*P) aye(r/ 1y — homy (L', k>P).

3Here discrete means that for every z € X, there is a finite Galois extension L/k with
fixed field Fiz(L) C G such that © € X Fiz(L),
4That is, a set X equipped with an action of G.



Using the identification Aut(L/L') = Fixz(L')/Fiz(L) C G/Fix(L), it follows
from this that Fx (L') = Fx (L)A*(£/L) Note that for any finite Galois subex-
tension k*P/L/k we have homgpeq(x) (Spec(k*?), Spec(L)) = Gal(L/k). So

Fx (L) = homg(Gal(L/k), X) = X Fie(l), (3)

Combining (1)) and (3) we get
Xpy = ligFX(L) = li_n}XF”(L) = X.
L L

On the other hand, combining and we get
Fx, (L) = Xp"" = F(L)

for Galois extensions L/k. Then by Exercise [5| we have Fx, = F.
So the assignements X — Fx and F — X are inverse equivalences. O

Exercise 6 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {U; — U}ier and
{Ui; = U;}je, are coverings. Using the diagram

FU)——11FU;) [[F(Ui xu Uy)

| |

FU)——=11F(Uy;) == 1 F(Ui; xv Upj)

show that if F' satisfies the sheaf condition for {U;; — Ulier,jes, and
each F'(U;) — [[;, F(Ui;) is injective, then F satisfies the sheaf condition for
{UZ — U}ie].

Deduce that a presheaf F' on LH(X) from Exercise [2] is a presheaf if and
only if F|op(yy is a sheaf on Op(Y) from Exercise [1| for every Y € LH(X).

Exercise 7 (Omitted from lecture). Suppose that F is a presheaf on a category
C equipped with a Grothendieck topology. Suppose that {V — U} and {U —
X} are coverings consisting of single morphisms. Using the diagram

F(VxxV) [[F(U xx U)

| S I

[[F(V xy V) ==]IF(V) F(U)
F(X)

show that if F' satisfies the sheaf condition for {V — U} (cf.middle row)
and {U — X} (cfright column), and each F(U xxU) — F(V xx V) is injective
(cf. top row), then F satisfies the sheaf condition for {V — X} (cf. diagonal).



Exercise 8 (Advanced. Omitted from lecture). Do Exercise [7] for coverings
{Ui; = X }ier and {Vi; — U} e, containing more than one element.

Exercise 9 (Advanced). Let X be a scheme. Deduce from Exercises [f] and
Exercise [§ that a presheaf F' on Et(X) is a sheaf if and only if F|opy is a
sheaf for every Y € Et(X), and F satisfies the sheaf condition for every
covering {Y; — Y };cr such that Y and each Y; are affine schemes.

Exercise 10. Recall that for any faithfully flat ring morphism A — B the
sequence 0 = A — B — B ®4 B is exact. Deduce from this and Exercise [J]
that for any scheme X and any affine scheme T, the presheaf hom(—,T) is a
sheaf on Ft(X). (Actually, its also true without the affine hypothesis, and for

the category Fppf(X)).

Corollary 8. The following representable presheaves are étale sheaves.
1. hom(—,A'); X — I'(X, Ox),
2. hom(—,G,,); X —» I'(X,0%),

3. pn, = hom(—, SpeC(TZn[i]l)); X {ael(X,0%):a" =1},

4. GL, = hom(—, Spec (W)) X 3 GLo(D(X, Ox)),

2 Sheafification

Definition 9. A presheaf F' on a category equipped with a Grothendieck topology
is called separated if the morphism F(U) — [[,c; F(U;) is injective for every
covering {U; = U}icr.

Remark 10. Every sheaf is separated.

Exercise 11. Suppose that C is a category equipped with a Grothendieck topol-
ogy, and let F' be a presheaf. For U € C define F*(U) as the quotient group

F3(U) = F(U)/Uker <F(U) o HF(Ui)>

iel
where the union is over all covering families {U; — U};er. Show that for any
morphism V' — U in C, there is an induced morphism F*(U) — F*(V), that
is, F'* is a presheaf. Show that F'*® is separated. Show that if FF — G is any
morphism from F' to a separated presheaf GG, there exists a unique factorisation
F — F? — G. In particular, this is true for every sheaf G.

Proposition 11. Let C be a category equipped with a Grothendieck topology.
For every presheaf F' on C, there exists a universal morphism F — F® to a
sheaf. That is, a morphism towards a sheaf such that for any other morphism
F — G towards a sheaf, there is a unique factorisation F — F* — G.

In other words, the (fully faithful) inclusion Shv(C) — PreShv(C) admits a
left adjoint (—)® : PreShv(C) — Shv(C).



Proof. By Exercise it suffices to consider the case that F' is separated. For
U € C define

HY(U,F) = lim eq HF(Ul) = H F(U; xy Uj)

i€l ij€l

Omitted from lecture: Note that this is functorial in F', and if F' is a sheaf we
have H°(U, F) = F(U) by the sheaf condition. It follows from this (with a little
bit of work) that we get a unique factorisation F — HF — G for any sheaf G.
So it suffices to show that HOF is a sheaf. For simplicity we assume that F is a
sheaf of abelian groups, and all covers have a single element. The general case
is the same proof, just more confusing chasing indices around.

So suppose that {V — U} is a covering of U. We want to show that

0— H°(UF)— H(V,F) — H°(V xy V, F)

is exact. Let (U’,s € F(U’)) represent an element of H°(U, F') and suppose that
it gets sent to zero in V. Putting in the definitions, we see that this means that
there is a refinement V' — V xy U’ — V of the covering V xy U’ — V such
that s|y» = 0. But this is also a refinement of {U’ — U}, so (U',s € F(U’))
and (V’,0 € F(V")) represent the same element of H°(U, F).
Showing exactness in the middle is fiddly and not very informative, so we
omit it. It can be found in [Artin, Grothendieck topologies, 1962, Lemma.2.1.2(ii)].
O

Definition 12. The sheaf F* in Proposition [I]] is called the sheafification or
associated sheaf of F.

Corollary 13. Let C be a category equipped with a Grothendieck topology. Then
the category Shv(C, Ab) of sheaves of abelian groups is an abelian category.

Sketch of proof. Limits (i.e., products and kernels) can be calculated section-
wise. E.g., ker(F — G)(U) = ker(F(U) — G(U)). Colimits (i.e., sums and cok-
ernels) are calculated sectionwise, and then sheafified. E.g., the sheaf cokernel
of ' — G is the sheafification of the presheaf U +— coker(F(U) — G(U)). O

3 Stalks

Definition 14. A geometric point of a scheme X is a morphism T — X such
that T = Spec(Q)) for some separably closed field €.

Definition 15. Let F be a a presheaf on Et(X). For a geometric point T — X
we define the stalk at T as

Fr= lm F(Y)

=Y =X

where the colimit is over factorisations of T — X via some Y € Et(X).



Remark 16. If F' is a presheaf defined on all schemes that commutes with
fiwhere O%', where = im(Z) € X and O¥', is the strict henselisation of Ox .
defined by the separably closed extension k(T)/k(z).

Remark 17. If k%P /k is a separable closure, then T = Spec(k*¢?) — Spec(k)
is a geometric point, and F3 is the G-set X defined above.

Proposition 18. Suppose that F is a sheaf of abelian groups on Et(X) and
Y € Et(X). Then a section s € F(Y) is zero if and only if for any geometric
point T — Y its image in each Fg is zero.

Proof. Since all sheaves are separated, it suffices to show that for every s €
F(Y), there exists a covering {U; — Y };er such that s|y, = 0 for all ¢ € I.
For every point © € Y, choose a separable closure k(x)®/k(z), and let T — X
be the corresponding geometric point. Since Fz = 0, the image of s in Fy is
zero, so there is some T — V — Y such that s|y = 0. Since V is associated
to z, let us write V, = V. We do this for every point x € Y, and obtain
a family {V, — Y}.cy of étale morphisms indexed by points of Y. Since
x € im(V, — Y) for each x € Y, the family is surjective, and therefore is a
covering. By construction s|y, = 0 for each Y, so s = 0. O

Corollary 19. A sheaf of abelian groups F on Et(X) is zero if and only if
Fz =0 for each x € X.

Proof. (Omitted from lecture). We want to show that s = 0 for every Y €
Et(X), s € F(Y). By Proposition it suffices to show that Fz = 0 for
every geometry point * — Y. We claim that Fz .,y = Fz_,y_ x. Indeed, there
is a canonical morphism

Fryox= lm FU)— lm F(V)=Fry

z—-U—X V=Y

defined by sending a representative (U,s € F'(U)) to (UxyV,s|lux,v). Injec-
tivity is straight-forward. For surjectivity, note that any representative (V,s €
F(V)) of Fz_y can be considered as a representative of an element s’ €
Fz_v_x. Then due to the factorisation V" — V xx Y — Y the image of
s’ is precisely the element represented by (V,s € F(V)). O

Corollary 20. A morphism of sheaves of abelian groups ¢ : F — G is a
monomorphism, (resp. epimorphism, resp. isomorphism) if and only if ¢z :
Fz — Gz is for each geometric point T — X.

Proof. (Omitted from lecture). Since the definition of (—)z is defined by a fil-
tered colimit, it commutes with kernels and cokernels. Applying Corollary
to ker ¢ and coker ¢ gives the result. O
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