In Galois theory I we defined the étale fundamental group 7§'(X) of a con-
nected scheme X, and saw an equivalence between R-local systems on X and
R-representations of 7$*(X), where R = Z/n for some n. In this lecture we
discuss the pro-étale story.

1 Galois theory I: Review

Recall that the main theorem of classical Galois theory is: for any Galoiﬁﬂ field
extension L/k, there is an (inclusion reversing) isomorphism of partially ordered

sets
subextensions ~ subgroups
L/L'/k | HCAw(L/k) [

Taking the limit over all Galois extensions turns this into an isomorphism

~ finite index subgroups

= { H C Aut(k* /k) }

where finite index means the set of cosets Aut(k*¢P/k)/H is finite.

~

finite subextensions
kSEp/L//k

Exercise 1. Suppose that G is a group, acting on a set S. Show that if the
action is transitive, then there exists a (not necessarily unique) subgroup H C G
such that there is an isomorphism of G-sets S = G/H where G acts on the set
G/H = {gH : g € G} of cosets of H by multiplication on the left. (Hint: choose
an element s € S and consider its stabiliser).

Using the above exercise, and the fact that every étale k-algebra is a product
of finite separable field extensions, the above isomorphism of partially ordered
sets becomes an equivalence of categories

FEt;, = Aut(k*“? /k)-FinSet

between finite étale k-algebras and finite sets equipped with a continuous action
of Aut(k®*P /k). More generally, for a connected scheme X with geometric point
T — X, we considered the functor F' : FEty — Set sending a finite étale
X-scheme Y to the set of points Fx(Y) = [Tx xY|. We defined

(X, 7) = Aut(Fy)
and obtained the equivalence of categories

FEtx = Aut(Fz)-FinSet.

LA field extension L/k is Galois if any of the following equivalent conditions are satisfied:
1. L/k is finite separable and normal.
2. [L: k] = Aut(L/k).

3. Every k-morphism L — k°°P has the same image.



On the other hand, there is a very similar equivalence associated to “nice”ﬂ
topological spacesE|

{ finite covering spaces } ~ 7, (X)-FinSet

Y - X

between finite covering spacerﬂ and finite sets with an action of the classical
topological fundamental group. We saw these situations are axiomitised in the
notion of a Galois category. A Galois category is a pair (C, F') consisting of a
“nice”EI category C, and a “nice”EI functor F' : C — Set. The main theorem
about Galois categories is that F' induces an equivalence

C = Aut(F)-FinSet.

Finally, we saw linear versions of the above equivalences, where G-sets are
replaced by G-modules.

Definition 1. An R-local system of rank n is a sheaf of R-modules F such
that for some covering {U; — X }icr there are isomorphisms F|y, = R™ to the
constant sheaf R™. We write Locx (R) for the category of R-local systems.

Proposition 2. If X is a connected scheme, and R = Z/{ for some prime £,
there is an equivalence of categories

- continuous finite dimensional

Locx (R) = { R-linear representations of w$t(X) }

We would like this result for R a characteristic zero field, for example R = Q;
(the representation theory of characteristic zero fields is easier than positive
characteristic, for example). However, as usual, getting to this field involves
awkward limits. The pro-étale case on the other hand is better behaved. How-
ever, the theory of Galois categories must be generalised to allow the larger,
more interesting category Xprogt-

2Ie., connected and locally simply connected.

3Indeed, this, and strong connection between étale morphisms of schemes and local home-
omorphisms of topological spaces is the motivation for the notation w§t.

4y — X is a finite covering space if for all # € X there is an open neighbourhood = € U
such that f~1(U) 2 I, U for some n.

5

1. C has all finite limits and finite colimits.
2. Every object of X is a finite coproduct of connected objects.
6

. F(Y) is finite for all Y € X.

3
4. (a) F preserves all finite limits and finite colimits.

(b) A morphism f in C is an isomorphism if and only if F(f) is an isomorphism.



2 Noohi groups

One of the consequences of the classical theory of Galois categories is that for
any profinite group G, there is a canonical isomorphism of profinite groups
G = Aut(F) where F : G-FinSet — Set is the functor forgetting the action.
This is not true more generally, but many groups do still satisfy this. These are
called Noohi groups in [BS].

Definition 3. Let S be a set, and consider the set Aut(S) of automorphisms of
S. For any finite subset S C S and morphism 7 : S — S we define U(s,7) =
{¢p € Aut(S) : ¢l = 7}. Then Aut(S) is given the topology generated by
Uu(s,).

Exercise 2.

1. Show that if S is a finite set, then the topology defined above on Aut(S)
is the discrete topology.

2. Show that for any finite family {U (S}, 7;) }I_, the intersection (\;—, U (S}, 7;)
is either empty, or of the form U (U5}, 7’) for some /. Deduce that ev-
ery open subset of Aut(S) is of the form (J,.; U(S;, 7;) for some (possibly
infinite, possibly empty) collection {U(S;, ;) }ier-

3. Show that if S is not finite, then Aut(S) is not the discrete topology.

Definition 4. Suppose that C is a small category, and F,G : C — Set two
functors. Then the set hom(F,G) of natural transformations is canonically a
subset of [[seopcy hom(F(S5), G(S)), where the product is over all objects of
C. We equip Aut(F) with the topology induced from the product topology on
[Tscobic) Aut(F(S)), where Aut(F(S)) are given the topology from Def@.

Exercise 3. Suppose that C is a small category and F': C' — FinSet a functor
taking values in finite sets. Show that Aut(F') is a profinite set.

Recall that a topological group is a topological space G equipped with a point
e € G and continuous morphisms m : G x G — G, i : G — G satisfying the
axioms of a group.

Exercise 4. Let S be any set. Show that Aut(S) is a topological group. That
is, show that the morphisms of composition Aut(S) x Aut(S) — Aut(S), the
inclusion of the identity {id} — Aut(S), and inverse Aut(S) — Aut(S); ¢ +— ¢~ *
are all continuous for the topology on Aut(S) defined above.

Definition 5. Suppose that G is a topological group G. Let G-Set be the category
of discrete sets equipped with a continuous G-action, and let Fg : G-Set — Set
be the forgetful functor. We say that G is a Noohi group if the natural map
induces an isomorphism G =2 Aut(Fg) of topological groups, where the topology
of Aut(Fg) is induced by the product topology, cf. Definition [4}



Remark 6. In [BS, Def.7.1.1] the compact-open topology is used, but for dis-
crete topological spaces X, Y, the compact-open topology on hom(X,Y) agrees
with the product topology on []y Y, so our definition is the same.

Many groups that we are interested in are Noohi groups.
Example 7. The following are Noohi groups.

1. Aut(S) for any set S, [Exam.7.1.2].

2. Any profinite group, [Exam.7.1.6].

3. The group G(F) for any local field E (such as Q; and any finite type
E-group scheme (such as GL,,), [Exam.7.1.6].

4. Any (not necessarily finite) discrete group, [Exam.7.1.6].

5. Any topology group G which admits an open subgroup U such that U is
a Noohi group, [Lem.7.1.8].

3 Infinite Galois theory

In the étale case, a central role is played by Galois categories. Here we consider
their infinite generalisation.

Definition 8 ([Def.7.2.1, 7.2.3]). An infinite Galois category is a pair (C, CgSet)
satsifying:

1. C is a category admitting (all small) colimits and finite limits.

2. Each X € C is a (possibly infinite) disjoint union of connected objects.

3. C' is generated under colimits by a set of connected objects.

4. (a) F commutes with colimits and finite limits.

(b) A morphism f is an isomorphism if and only if F(f) is an isomor-
phism.

The fundamental group of (C, F) is the topological group m1(C, F) = Aut(F)
(topologised as above, cf. Def, An infinite Galois category is tame if for any
connected X € C, the action of m1(C, F) on F(X) is transitive.

Remark 9. Bhatt-Scholze also ask that F' is faithful but this is automatic, cf.
Exercise [

Exercise 5. We will show that F' is automatically faithful. Suppose that f, g :
X = Y are two morphisms such that F(f) = F(g). Using property (4) in Def[§]
above, show that f = g. Hint: Consider the equaliser of f and g.

Remark 10. Lets note the differences between a Galois category and an infinite
Galois category:



1. Galois categories only have finite colimits.

2. Each X € C in a Galois category is a finite disjoint union of connected
objects.

3. Instead of Axiom 3 above, the fibre functor F' of a Galois category is
required to take values in finite sets.

Theorem 11 ([Thm.7.2.5]). There is an adjunction

{ Noohi groups } = {infinite Galois categories}°?
G — G-Set
m(C,F) < (C,F)

and C = 71(C, F)-Set for any tame (C,F). In particular, w1 is fully faithful
when restricted to tame infinite Galois categories.

4 Locally constant sheaves

Fix a scheme X which is connected and locally topologically noetherian. That
is, for every point x € X there is an open neighbourhood x € U C X such that
U s topologically noetherian. Topologically noetherian means that for every
decreasing family of closed subsets Zy O Z1 O Zy D ... there is some N such
that Z,, = Zn41 for alln > N.

Definition 12 ([7.3.1]). We say that F' € Shv(Xpoet) is locally constant if there
exists a cover {X; — X} in Xproer with F|x, isomorphic to a constant sheaf on
(Xi)prost- We write Locx for the category of locally constant sheaves.

Locally constant sheaves are particularly nice and have a number of charac-
terisations (when X is locally topologically noetherian).

Definition 13. We say that a morphismY — X satisfies the valuative criterion
for properness if for every valuation ring R, and every commutative square

Spec(Frac R) ——=Y

-
-
-
-
e
7

Spec(R) X

there exists a unique diagonal morphism making the diagram commutative.

Proposition 14 ([Lem.7.3.9]). Let F' € Shv(Xpost). The following are equiva-
lent.

1. F is locally constant.

2. There is an X-schemeY — X, locally etale (onY' ) satisfying the valuative
criterion for properness such that F = homx(—,Y).



5 Fundamental groups

Let X be locally topological noetherian and connected, and ¥ — X is a geo-
metric point. Write ev, : Locx — Set for the functor F' +— F.

Lemma 15 ([Lem.7.4.1]). The pair (Locx,evy) is a tame infinite Galois cate-
gory.

Definition 16 ([Def.7.4.2]). The pro-étale fundamental group is
TP X, T) = Aut(evy).

Lemma 17 ([Lem.7.4.5]). Under the equivalence
Locx = 7% (X, T)-Set,

The full subcategory Locx, C Locx corresponds to the the full subcategory of
those S € ﬂi’roet(X, T)-Set where an open subgroup acts trivially.

Lemma 18 ([Lem.7.4.7]). There is an equivalence of categories

LOCX(QZ) = Rele,cont(Tri)rOét(X7f))'

Definition 19. A local ring A is geometrically unibranch if A" has a unique
minimal prime ideal (equivalently, Spec(A®*") has a unique irreducible compo-
nent). A scheme X is geometrically unibranch if Ox , is geometrically uni-
branch for all x € X.

Exercise 6. Show that Spec(k[z,y]) is not geometrically unibranch.

Lemma 20 ([Lem.7.4.10]). If X is geometrically unibranch, then 77°% (X, T) =
(X, ).

Example 21. Y = P!/{0 = co}. 7$8(Y) = Z, 7P (Y) = Z.
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