
In Galois theory I we defined the étale fundamental group πet
1 (X) of a con-

nected scheme X, and saw an equivalence between R-local systems on X and
R-representations of πet

1 (X), where R = Z/n for some n. In this lecture we
discuss the pro-étale story.

1 Galois theory I: Review

Recall that the main theorem of classical Galois theory is: for any Galois1 field
extension L/k, there is an (inclusion reversing) isomorphism of partially ordered
sets {

subextensions
L/L′/k

}
∼=
{

subgroups
H ⊆ Aut(L/k)

}
.

Taking the limit over all Galois extensions turns this into an isomorphism{
finite subextensions

ksep/L′/k

}
∼=
{

finite index subgroups
H ⊆ Aut(ksep/k)

}
where finite index means the set of cosets Aut(ksep/k)/H is finite.

Exercise 1. Suppose that G is a group, acting on a set S. Show that if the
action is transitive, then there exists a (not necessarily unique) subgroup H ⊆ G
such that there is an isomorphism of G-sets S ∼= G/H where G acts on the set
G/H = {gH : g ∈ G} of cosets of H by multiplication on the left. (Hint: choose
an element s ∈ S and consider its stabiliser).

Using the above exercise, and the fact that every étale k-algebra is a product
of finite separable field extensions, the above isomorphism of partially ordered
sets becomes an equivalence of categories

FEtk ∼= Aut(ksep/k)-FinSet

between finite étale k-algebras and finite sets equipped with a continuous action
of Aut(ksep/k). More generally, for a connected scheme X with geometric point
x → X, we considered the functor F : FEtX → Set sending a finite étale
X-scheme Y to the set of points Fx(Y ) = |x×XY |. We defined

πet
1 (X,x) := Aut(Fx)

and obtained the equivalence of categories

FEtX ∼= Aut(Fx)-FinSet.

1A field extension L/k is Galois if any of the following equivalent conditions are satisfied:

1. L/k is finite separable and normal.

2. [L : k] = Aut(L/k).

3. Every k-morphism L→ ksep has the same image.
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On the other hand, there is a very similar equivalence associated to “nice”2

topological spaces3{
finite covering spaces

Y → X

}
∼= π1(X)-FinSet

between finite covering spaces4 and finite sets with an action of the classical
topological fundamental group. We saw these situations are axiomitised in the
notion of a Galois category. A Galois category is a pair (C,F ) consisting of a
“nice”5 category C, and a “nice”6 functor F : C → Set. The main theorem
about Galois categories is that F induces an equivalence

C ∼= Aut(F )-FinSet.

Finally, we saw linear versions of the above equivalences, where G-sets are
replaced by G-modules.

Definition 1. An R-local system of rank n is a sheaf of R-modules F such
that for some covering {Ui → X}i∈I there are isomorphisms F |Ui

∼= Rn to the
constant sheaf Rn. We write LocX(R) for the category of R-local systems.

Proposition 2. If X is a connected scheme, and R = Z/` for some prime `,
there is an equivalence of categories

LocX(R) ∼=
{

continuous finite dimensional
R-linear representations of πet

1 (X)

}
We would like this result for R a characteristic zero field, for example R = Ql

(the representation theory of characteristic zero fields is easier than positive
characteristic, for example). However, as usual, getting to this field involves
awkward limits. The pro-étale case on the other hand is better behaved. How-
ever, the theory of Galois categories must be generalised to allow the larger,
more interesting category Xproét.

2I.e., connected and locally simply connected.
3Indeed, this, and strong connection between étale morphisms of schemes and local home-

omorphisms of topological spaces is the motivation for the notation πet
1 .

4Y → X is a finite covering space if for all x ∈ X there is an open neighbourhood x ∈ U
such that f−1(U) ∼= qn

i=1U for some n.
5

1. C has all finite limits and finite colimits.

2. Every object of X is a finite coproduct of connected objects.

6

3. F (Y ) is finite for all Y ∈ X.

4. (a) F preserves all finite limits and finite colimits.

(b) A morphism f in C is an isomorphism if and only if F (f) is an isomorphism.
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2 Noohi groups

One of the consequences of the classical theory of Galois categories is that for
any profinite group G, there is a canonical isomorphism of profinite groups
G ∼= Aut(F ) where F : G-FinSet → Set is the functor forgetting the action.
This is not true more generally, but many groups do still satisfy this. These are
called Noohi groups in [BS].

Definition 3. Let S be a set, and consider the set Aut(S) of automorphisms of
S. For any finite subset S′ ⊆ S and morphism τ : S′ → S we define U(s, τ) =
{φ ∈ Aut(S) : φ|S′ = τ}. Then Aut(S) is given the topology generated by
U(S′, τ).

Exercise 2.

1. Show that if S is a finite set, then the topology defined above on Aut(S)
is the discrete topology.

2. Show that for any finite family {U(S′i, τi)}ni=1 the intersection
⋂n

i=1 U(S′i, τi)
is either empty, or of the form U(∪ni=1S

′
i, τ
′) for some τ ′. Deduce that ev-

ery open subset of Aut(S) is of the form
⋃

i∈I U(Si, τi) for some (possibly
infinite, possibly empty) collection {U(Si, τi)}i∈I .

3. Show that if S is not finite, then Aut(S) is not the discrete topology.

Definition 4. Suppose that C is a small category, and F,G : C → Set two
functors. Then the set hom(F,G) of natural transformations is canonically a
subset of

∏
S∈Ob(C) hom(F (S), G(S)), where the product is over all objects of

C. We equip Aut(F ) with the topology induced from the product topology on∏
S∈Ob(C) Aut(F (S)), where Aut(F (S)) are given the topology from Def.3.

Exercise 3. Suppose that C is a small category and F : C → FinSet a functor
taking values in finite sets. Show that Aut(F ) is a profinite set.

Recall that a topological group is a topological space G equipped with a point
e ∈ G and continuous morphisms m : G × G → G, i : G → G satisfying the
axioms of a group.

Exercise 4. Let S be any set. Show that Aut(S) is a topological group. That
is, show that the morphisms of composition Aut(S) × Aut(S) → Aut(S), the
inclusion of the identity {id} → Aut(S), and inverse Aut(S)→ Aut(S);φ 7→ φ−1

are all continuous for the topology on Aut(S) defined above.

Definition 5. Suppose that G is a topological group G. Let G-Set be the category
of discrete sets equipped with a continuous G-action, and let FG : G-Set → Set
be the forgetful functor. We say that G is a Noohi group if the natural map
induces an isomorphism G ∼= Aut(FG) of topological groups, where the topology
of Aut(FG) is induced by the product topology, cf. Definition 4.
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Remark 6. In [BS, Def.7.1.1] the compact-open topology is used, but for dis-
crete topological spaces X,Y , the compact-open topology on hom(X,Y ) agrees
with the product topology on

∏
X Y , so our definition is the same.

Many groups that we are interested in are Noohi groups.

Example 7. The following are Noohi groups.

1. Aut(S) for any set S, [Exam.7.1.2].

2. Any profinite group, [Exam.7.1.6].

3. The group G(E) for any local field E (such as Ql and any finite type
E-group scheme (such as GLn), [Exam.7.1.6].

4. Any (not necessarily finite) discrete group, [Exam.7.1.6].

5. Any topology group G which admits an open subgroup U such that U is
a Noohi group, [Lem.7.1.8].

3 Infinite Galois theory

In the étale case, a central rôle is played by Galois categories. Here we consider
their infinite generalisation.

Definition 8 ([Def.7.2.1, 7.2.3]). An infinite Galois category is a pair (C,C
F→Set)

satsifying:

1. C is a category admitting (all small) colimits and finite limits.

2. Each X ∈ C is a (possibly infinite) disjoint union of connected objects.

3. C is generated under colimits by a set of connected objects.

4. (a) F commutes with colimits and finite limits.

(b) A morphism f is an isomorphism if and only if F (f) is an isomor-
phism.

The fundamental group of (C,F ) is the topological group π1(C,F ) = Aut(F )
(topologised as above, cf. Def.4). An infinite Galois category is tame if for any
connected X ∈ C, the action of π1(C,F ) on F (X) is transitive.

Remark 9. Bhatt-Scholze also ask that F is faithful but this is automatic, cf.
Exercise 5.

Exercise 5. We will show that F is automatically faithful. Suppose that f, g :
X ⇒ Y are two morphisms such that F (f) = F (g). Using property (4) in Def.8
above, show that f = g. Hint: Consider the equaliser of f and g.

Remark 10. Lets note the differences between a Galois category and an infinite
Galois category:
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1. Galois categories only have finite colimits.

2. Each X ∈ C in a Galois category is a finite disjoint union of connected
objects.

3. Instead of Axiom 3 above, the fibre functor F of a Galois category is
required to take values in finite sets.

Theorem 11 ([Thm.7.2.5]). There is an adjunction

{ Noohi groups }� {infinite Galois categories}op

G 7→ G-Set

π1(C,F )←[ (C,F )

and C ∼= π1(C,F )-Set for any tame (C,F ). In particular, π1 is fully faithful
when restricted to tame infinite Galois categories.

4 Locally constant sheaves

Fix a scheme X which is connected and locally topologically noetherian.That
is, for every point x ∈ X there is an open neighbourhood x ∈ U ⊆ X such that
U is topologically noetherian. Topologically noetherian means that for every
decreasing family of closed subsets Z0 ⊇ Z1 ⊇ Z2 ⊇ . . . there is some N such
that Zn = Zn+1 for all n ≥ N .

Definition 12 ([7.3.1]). We say that F ∈ Shv(Xproét) is locally constant if there
exists a cover {Xi → X} in Xproét with F |Xi

isomorphic to a constant sheaf on
(Xi)proét. We write LocX for the category of locally constant sheaves.

Locally constant sheaves are particularly nice and have a number of charac-
terisations (when X is locally topologically noetherian).

Definition 13. We say that a morphism Y → X satisfies the valuative criterion
for properness if for every valuation ring R, and every commutative square

Spec(Frac R) //

��

Y

��
Spec(R) //

99

X

there exists a unique diagonal morphism making the diagram commutative.

Proposition 14 ([Lem.7.3.9]). Let F ∈ Shv(Xproét). The following are equiva-
lent.

1. F is locally constant.

2. There is an X-scheme Y → X, locally etale (on Y ) satisfying the valuative
criterion for properness such that F ∼= homX(−, Y ).
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5 Fundamental groups

Let X be locally topological noetherian and connected, and x → X is a geo-
metric point. Write evx : LocX → Set for the functor F 7→ Fx.

Lemma 15 ([Lem.7.4.1]). The pair (LocX , evx) is a tame infinite Galois cate-
gory.

Definition 16 ([Def.7.4.2]). The pro-étale fundamental group is

πproét
1 (X,x) = Aut(evx).

Lemma 17 ([Lem.7.4.5]). Under the equivalence

LocX ∼= πproét
1 (X,x)-Set,

The full subcategory LocXet ⊆ LocX corresponds to the the full subcategory of

those S ∈ πproét
1 (X,x)-Set where an open subgroup acts trivially.

Lemma 18 ([Lem.7.4.7]). There is an equivalence of categories

LocX(Q`) ∼= RepQl,cont
(πproét

1 (X,x)).

Definition 19. A local ring A is geometrically unibranch if Ash has a unique
minimal prime ideal (equivalently, Spec(Ash) has a unique irreducible compo-
nent). A scheme X is geometrically unibranch if OX,x is geometrically uni-
branch for all x ∈ X.

Exercise 6. Show that Spec(k[x, y]) is not geometrically unibranch.

Lemma 20 ([Lem.7.4.10]). If X is geometrically unibranch, then πproét
1 (X,x) ∼=

πet
1 (X,x).

Example 21. Y = P1/{0 =∞}. πet
1 (Y ) = Ẑ, πproét

1 (Y ) = Z.

6


	Galois theory I: Review
	Noohi groups
	Infinite Galois theory
	Locally constant sheaves
	Fundamental groups

