
In this talk we define the pro-étale site of a scheme, discuss the case of a
field in detail, see that in general the pro-étale topos is replete.

1 The pro-étale site

Recall that a morphism of schemes f : Y → X of finite presentation is étale, if
it is flat and the diagonal Y → Y ×X Y is flat.1

Definition 1 (Def.4.1.1). A map f : Y → X of schemes is weakly étale if it
is flat, and the diagonal ∆ : Y → Y ×X Y is flat. The category of weakly étale
X-schemes is denoted Xproét.

Example 2.

1. Suppose A→ B is an ind-étale morphism of rings (so Spec(B)→ Spec(A)
is pro-étale). Then we saw previously that A → B is a weakly étale
morphism of rings [Prop.2.3.3], so Spec(B) → Spec(A) is a weakly étale
morphism of schemes.

2. Bhatt, Scholze choose to work with weakly étale maps instead of pro-étale
morphisms of schemes in general because pro-étale morphisms of schemes
are not so well-behaved, cf. [Exa.4.1.12] reproduced below.

3. [Exa.4.1.9] Given a schemeX, and a profinite set S = lim←−Si, the morphism
X ⊗ S := lim←−i∈I(ts∈SiX)→ X is pro-étale. This defines a functor

ProFinSet×Xproét → Xproét; (S, Y ) 7→ S ⊗ Y

4. [Exa.4.1.12] Consider the set2

S = {eπi(1−
1
2n ) : n ∈ Z, n ≥ 0} ∪ {eπi(2

n−1) : n ∈ Z, n ≤ 0} ∪ {−1} ⊆ C
1The diagonal being flat is one of a number of equivalent definitions for a finite presentation

morphism to be unramified.
2I.e., the one point compactification of Z considered as a discrete set.
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equipped with the translation function T induced by n 7→ n + 1 on the
image of Z, and sending −1 ∈ C to −1.

Note that this is a profinite set

Now let X1, X2 ⊆ A2
C be two smooth curves meeting transversally at

points p and q, and X = X1 ∪X2.
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Then consider the X-scheme Y which is S⊗X1 glued to S⊗X2 using the
identity at p and the translation function T at q.

Then Y → X is locally pro-étale. Indeed, away from p (or q), it is just
S ⊗ (X \ {p}) → (X \ {p}). However, Y → X is not globally pro-étale.
By closely considering the topology on Y , one can see that it cannot be
written as Y = lim←−Yi for étale X schemes Yi.

5. [Exa.4.1.4] If k is a field, then a morphism Spec(R) → Spec(k) is weakly
étale if and only if k → R is ind-étale.3

6. [Exa.4.1.5] For any scheme X, point x ∈ X, and geometric point x→ X,
the morphisms

Spec(OX,x)→ X, Spec(OhX,x)→ X, Spec(OshX,x)→ X

are all weakly étale.

Recall that flat morphisms are preserved by base change and composition.

Exercise 1 ([Lem.4.1.6]). Weakly étale morphisms are preserved by base change.
Show that if f : Y → X is weakly étale then X ′ ×X Y → X ′ is weakly étale for
any morphism X ′ → X.

Exercise 2 ([Lem.4.1.6], [Lem.4.1.7]). Weakly étale morphisms are preserved
by composition, and all morphisms in Xproét are weakly étale. Let g : W → Y
and f : Y → X, f ′ : Y ′ → X be weakly étale morphisms, and h : Y ′ → Y any
X-morphism.

3By [BS, Thm.2.3.4], for every weakly étale morphism A → B there is a faithfully flat
ind-étale morphism B → C such that A→ C is ind-étale. In particular, B is a sub-A-algebra
of an ind-étale A-algebra. But for fields k, every sub-k-algebra B of an ind-étale k-algebra C
is again an ind-étale k-algebra: Indeed, write C = lim−→i∈I Ci where the Ci are étale k-algebras,

and recall that this means that each Ci is a finite product of finite separable k-field extensions.
Replacing each Ci with its image in C, we can assume all morphisms Ci → C are injective.
Then taking Bi = Ci∩B, we produce a system (Bi)i∈I such that each Bi is an étale k-algebra
and B = lim−→i∈I Bi.
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1. Use the fact that W ∼= (Y ×XW )×(Y×XY ) Y to show that W → Y ×XW
is flat.

2. Use part (1), the fact that Y ×X W ×X W ∼= (Y ×X W ) ×Y (Y ×X W ),
and a clever factorisation of W →W ×X W to show that f ◦ g : W → X
is weakly étale.

3. As in part (1), show that Y ′ → Y ×X Y ′ is flat.

4. Use part (3) and the fact that Y ′ ∼= (Y ′ ×Y Y ′) ×(Y ′×XY ′) (Y ′) to show
that Y ′ → Y is pro-étale.

Exercise 3 ([Lem.4.1.8]). Use Exercise 1 and Exercise 2 to show that Xproét

has fibre products. Deduce that Xproét has all finite limits. (Recall, that an
exercise earlier in the course was to show that a category has all finite limits if
and only if it has fibre products and a terminal object).

Definition 3. A family {Yi → Y }i∈I in Xproét is a covering, if for every open
affine U ⊆ Y , there is a finite subset J ⊆ I and open affines Vj ⊆ Yj for each
j ∈ J such that qj∈JVj → U is surjective.

The finiteness in the above definition is important, and affects the topology:

Example 4 ([Exa.4.1.13]). Consider Spec(Z). If p1, . . . , pn are finitely many
primes, then {

Spec(Zsh(p1)), . . . ,Spec(Zsh(pn)),Spec(Z[ 1
p1
, . . . , 1

pn
])
}

is a weakly étale cover. However,{
Spec(Zsh(p)) : p is prime

}
is not a weakly étale cover.
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2 The pro-étale site of a field

Example 5. Suppose that k is a separably closed field, and R is an ind-étale
algebra

k → R = lim−→Rλ.

So each Rλ is a finite product Rλ =
∏
i∈Iλ k. Moreover, every morphism∏

i∈Iλ k = Rλ → R′λ =
∏
j∈I′λ

k is induced by morphisms of sets φλ,λ′ : I ′λ → Iλ.

Since the underlying topological space of Spec of a filtered colimit of rings is
the inverse limit of the underlying topological spaces, [EGAIV, §8], we see that
the underlying topological space of Spec(R) is the profinite set I = lim←− Iλ.

Spec(R)top = I.

For any profinite set lim←−Sλ, and any discrete set X, one can see that we have4

homcont.(lim←−Sλ, X) = lim−→ hom(Sλ, X). Hence,

Γ(Spec(R),OSpec(R)) = homcont.(I, k)

is the set of continuous morphisms where k is given the discrete topology. More-
over, for any open subset of the form Uλ,i = φ−1λ (i) where i ∈ Iλ and φλ : I → Iλ
is the canonical projection, Uλ,i is again ind-étale, and so Γ(Uλ,i,OSpec(R)) =
homcont.(Uλ,i, k). Finally, if U ⊆ I is any open subset, and {Ui ⊂ U} an open
covering, we have

Γ(U,OSpec(R)) = Eq

(∏
i∈I

Γ(Ui,OSpec(R)))⇒
∏
i,j∈I

Γ(Ui ∩ Uj ,OSpec(R)))

)
4 If f : lim←−Sλ → X is a continuous morphism, then for every point x ∈ X, f−1x is open, and

by definition of the limit topology, admits a covering of the form Ux = {Uλ,s : λ ∈ Λx, s ∈ Sλ}
where Uλ,s = φ−1(s) is the preimage of s under the canonical projection φ : S → Sλ. Since
S is profinite, it is quasicompact, so the coverling family ∪x∈XUx admits a finite subcovering
{Vλi,s : 1 ≤ i ≤ n, s ∈ Si}. Then by construction any λ with λ ≤ λ1, . . . , λn, has the property
that f is constant on the fibres of S → Sλ. Hence, f factors as S → Sλ → X.
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By definition, every open of I is covered by opens of the form Uλ,i so we deduce
that in general,

Γ(U,OSpec(R)) = homcont.(U, k).

Given any point x ∈ I, and any open x ∈ U , there is a smaller open containing
x of the form Uλ,i. For any continuous function f : U → k, there is a refinement
x ∈ Uλ,i ⊆ U . But Uλ,i is profinite, and therefore quasicompact, so the image
f(Uλ,i) is finite, so there is a further refinement x ∈ V ⊆ Uλ,i such that f : V →
k is constant. It follows that all local rings of Spec(R) are isomorphic to k.

OSpec(R),x
∼= k.

Conversely, if (X,OX) is a locally ringed space such thatX = lim←−Xλ is profinite,
and OX(U) = homcont.(U, k) for some separable closed field k, then (X,OX) ∼=
Spec(lim−→

∏
Xλ

k), i.e., (X,OX) is the affine scheme associated to an ind-étale
k-algebra.

Proposition 6. Suppose k is a separable closed field and X ∈ Spec(k)proét. The
following are equivalent.

1. X is affine.

2. X is the spectrum of an ind-étale algebra.

3. X is qcqs.

4. X is of the form Spec(k)⊗ S for a profinite set S.

Proof. (1 ⇐⇒ 2) We have seen, Exa.2(5) that the affine schemes in Spec(k)proét

are precisely the spectra of ind-étale k-algebras.
(2 ⇐⇒ 3) All affine schemes are qcqs, so consider the other direction.

Suppose that X is qcqs. A scheme is qcqs if and only if it admits a finite open
affine cover {Ui → X}ni=1 such that each Ui ∩ Uj for 1 ≤ i, j ≤ n is also affine.
Since affines in Spec(k)proét have profinite underlying topological space (i.e.,
compact, Hausdorff, totally disconnected topological space), it follows that any
qcqs X also has profinite underlying topological space (see the lemma below).
Moreover, the structure sheaf of X has the form V 7→ homcont.(V, k) since those
of the Ui and Ui ∩ Uj have this form. Hence, it follows from Example 5 that if
X is qcqs, it is the spectum of an ind-étale algebra.

(2 ⇐⇒ 4) This follows from the definition of − ⊗ S and the equivalence
between the category of finite sets and the category of étale k-algebras.

Lemma 7. Suppose that X is a topological space admitting a finite open cover
{Ui → X}ni=1 such that all Ui and Ui ∩ Uj are compact, Hausdorff, totally
disconnected topological spaces. Then show that X is also compact, Hausdorff,
and totally disconnected.

Proof. X is compact: Suppose that {Vj → X}j∈J is an open covering. then each
{Vj ∩Ui} is an open covering. But each Ui is compact, so for each i = 1, . . . , n,
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there is a finite subset Ji ⊆ J such that Ui = ∪j∈JiUi ∩ Vj . It follows that
X = ∪ni=1 ∪j∈Ji Vj .

X is Hausdorff: Suppose that x 6= y ∈ X are two points. Choose ix, iy such
that x ∈ Uix and y ∈ Uiy and set Ux = Uix , Uy = Uiy , Uxy = Uix ∩ Uiy . If,
say, y ∈ Uxy ⊆ Ux, then since Ux is Hausdorff, we can find opens x ∈ V, y ∈ W
such that V ∩W = ∅. So suppose that x, y /∈ Uxy. Since Uxy is compact, and
Ux, Uy are both profinite, Uxy is both closed and open in both Ux and Uy. In
particular, V = (Ux \Uxy) ⊆ Ux and W = (Uy \Uxy) ⊆ Uy are also both closed
and open in Ux, Uy respectively. This means that V and W are both open in
X. By construction, x ∈ V and y ∈W and V ∩W = ∅, so we are done.

X is totally disconnected: First recall that a subset W ⊆ X is open (resp.
closed) if and only if W ∩Ui is open (resp. closed) for all i. Let us write Y bW
to indicate that Y is both open and closed in W . Suppose that W ⊆ X is a
subset containing more than one point. We want to find a proper nonempty
Y b W . If W ∩ Ui has a single point, say w, for some i, then {w} is open in
W . But all Ui are totally disconnected, so {w} is closed in all Ui, and therefore
closed in X, and therefore closed in W . Hence, Y = {w} bW works.

So suppose each W ∩ Ui has more than one point. Since the U are totally
disconnected, for each i there is some proper nonempty Yi b W ∩ Ui. For any
other j, we then have that Yi∩Uj b (W ∩Ui)∩Uj . Now as above, since Ui∩Uj
is quasicompact, Ui ∩ Uj b Uj , so, W ∩ Ui ∩ Uj b W ∩ Uj , and we find that in
fact, Yi ∩ Uj b W ∩ Ui ∩ Uj b W ∩ Uj . Now define Ti inductively by setting
T0 = W . If one of Ti−1 ∩ Yi or Ti−1 ∩ (W ∩ Ui \ Yi) are nonempty then choose
one and set Ti to be this nonempty intersection. If both are empty, then define
T ai = T ai−1. Now note that since Yi ∩ Uj bW ∩ Uj for every i, j, it follows that
each Ti bW ∩Uj for every 1 ≤ j ≤ i. In particular, Tn bW ∩Uj for all j, and
therefore Tn bW . It is nonempty and proper by construction.

Corollary 8. If k is a separably closed field, there is an equivalence of categories

ProFinSet ∼= Spec(k)aff
proét

S 7→ Spec(k)⊗ S
X(k)←[ X

Under this identification, coverings of Spec(k)⊗ S are precisely the jointly sur-
jective families of profinite sets {Si → S}i∈I that admit a jointly surjective finite
subfamily {Sij → S}nj=1.

Example 9. If S is any nonfinite profinite set then the family {s → S}s∈S of
inclusions of its points is not a covering family.

The following is basically a version of the equivalence we saw in Galois theory
between étale k-algebras and finite G-sets.

Proposition 10. Let k be any field, choose a separable closure ksep/k, and let
G = Gal(ksep/k). There is an equivalence of categories between profinite sets

7



equipped with a continuous G-action and the affine objects in Spec(k)proét.

G-ProFinSet ∼= Spec(k)aff
proét

Under this identification, coverings of Spec(k)⊗ S are precisely the jointly sur-
jective families of profinite sets {Si → S}i∈I that admit a jointly surjective finite
subfamily {Sij → S}nj=1.

Sketch of proof. In one direction, we use the functor

Spec(k)aff
proét

ksep⊗k−−→ Spec(ksep)aff
proét

and the equivalence
Spec(ksep)aff

proét
∼= ProFinSet

The G-action is induced by the canonical G-action on Spec(ksep). In the other
direction, given a pro-finite set S equipped with a continuous G-action, we
take Spec(homcont(S, k

sep)G), i.e., the spectrum of the ring of those continuous
functions which are invariant for the action of G acting via its action on S.

3 The pro-étale topos

Definition 11 ([Def.4.2.1]). Let X be a scheme. An object U ∈ Xproét is called
a pro-étale affine if it is of the form U = lim←−Ui for some small filtered diagram
(Ui)i∈I of (absolutely) affine schemes Ui = Spec(Ai) in Xet. The expression
U = lim←−Ui is called a presentation of U . The full subcategory of Xproét spanned

by pro-étale affines is denoted Xaff
proét. We make it a site by saying a family in

Xaff
proét is a covering in Xaff

proét if it is a covering in Xproét.

Lemma 12. For X a scheme, every scheme Y ∈ Xproét admits a pro-étale
covering {Yi → Y } such that each Yi is in Xaff

proét.

Proof. Choose an open affine covering {Spec(Ai) → X}i∈I of X, and for each
i, choose an open affine covering {Spec(Bij) → Spec(Ai) ×X Y }i∈Ji of the
preimage of Spec(Ai) in Y . Now by [Thm.2.3.4], since the morphisms Ai → Bij
are weakly étale for each i, j, there is a faithfully flat ind-étale morphism Bij →
Cij such that Ai → Cij is ind-étale. Consequently, {Spec(Cij) → Y }i∈I,j∈Ji is
a covering of the desired form.

Corollary 13 ([Lem.4.2.4, Rem.4.2.5). For any scheme X, the canonical re-
striction functor induces an equivalence of categories of sheaves

Shv(Xproét)
∼→ Shv(Xaff

proét).

Proof. This is a general fact about Grothendieck sites. Consider any site (C, τ)
and full subcategory D ⊆ C equipped with the induced topology. If every object
of C has a covering by objects of D, then there is an equivalence Shv(C) ∼=
Shv(D).
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Proposition 14 ([Prop.4.2.8]). For any scheme X, the topos Shv(Xproét) is
locally weakly contractible [Def.3.2.1]. In particular, it is replete [Def.3.1.1],
and so D(Xproét) is left-complete [Def.3.3.1].

Proof. [Prop.3.2.3] says that a locally weakly contractible topos is replete. [Prop.3.3.3]
says that the derived category of a replete topos is left-complete. It suffices to
show that for every scheme Y ∈ Xproét there is a covering {Yi → Y }i∈I with
each Yi coherent and locally weakly contractible. Lemma 12 says that every
scheme admits a pro-étale affine covering. So it remains only to see that affine
schemes are coherent objects. This follows from the fact that affine schemes are
qcqs.

On the pro-étale site, one can define interesting “constant” sheaves associ-
ated to topological spaces.

Lemma 15 ([Lem.4.2.12]). Suppose X is a scheme and T is a topological space.
Then the presheaf

FT : Xop
proét → Set; U 7→Mapcont(U, T )

which sends a scheme U to the set of continuous maps from the underlying
topological space of U to T is a sheaf.

Sketch of proof. This uses [Lem.4.2.6] which we did not do. It says that a
presheaf F on Xproét is a sheaf if and only if it satisfies the sheaf condition
for Zariski covers, and surjective maps in Xaff

proét. In the category of topologi-
cal spaces, any representable presheaf is a sheaf for the topology generated by
usual open coverings of topological spaces, and surjective morphisms Y → X
such that X has the quotient topology induced from Y . Hence, in our setting,
it suffices to check that for any surjective morphism f : Spec(B) → Spec(A)
in Xaff

proét a subset U ⊆ Spec(A) is open if and only if f−1 is open. This is
proved in a really neat way using the constructible topology, and the fact that
a subset of a scheme is open if and only if it is constructible and closed under
generisation.

4 Addendum

We did not have time for the following comments. There are of course many
more details in Bhatt, Scholze.

Let k be a field, ksep a separable closure, and G = Gal(ksep/k). Recall that
we had an equivalence of categories

Shv(ket,Ab) ∼= G-mod

between the category of étale sheaves on k, and discrete G-modules. A conse-
quence of this was that for any discrete G-module M with associated sheaf FM ,
the group cohomology of M is isomorphic to the étale sheaf cohomology of FM ,

Hn
et(k, FM ) ∼= Hn(G,M).
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The pro-étale site allows us to upgrade this, although things become more
technical and complicated.

Recall that we have already seen an equivalence of categories

kaff
proét
∼= G-ProFinSet

between the subcategory of affine objects in kproét and the category of profinite
sets equipped with a continuous action. The covering families in the left side
are just surjective families.

Definition 16. Given an arbitrary profinite group G, we define a topology on
the category G-ProFinSet whose covering families are surjective families.

Definition 17. Let G-Spc be the category of topological spaces equipped with a
continuous G-action. Let G-Spccg ⊆ G-Spc be the full subcategory of X ∈ G-Spc
whose underlying topological space can be written as a quotient of a disjoint
union of compact Hausdorff spaces. These spaces are called compactly gener-
ated.

Lemma 18 ([Lem.4.3.2]). The association T 7→ homcont,G(−, T ) produces a
functor G-Spc → Shv(G-ProFinSet). This functor is fully faithful on G-Spccg,
admits a left adjoint (everywhere), and its essential image generates Shv(G-ProFinSet)
under colimits.

Definition 19. We write G-Mod for the category of topological abelian groups
equipped with a continuous G-action. We write G-Modcg for the full subcategory
whose underlying space is compactly generated (i.e., lies in G-Spccg).

As above, givenM ∈ G-Mod, we get an abelian sheaf FM : X 7→ homcont,G(−,M)
on G-ProFinSet.

We did not define continuous cohomology, but the main result about it is
the following.

Lemma 20 ([Lem.4.3.9]). For a large class of “nice” M ∈ G-Mod we have

Hn
cont(G,M) ∼= Hn

proét(G-ProFinSet, FM ).
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