
Reference: [BS] Bhatt, Scholze, “The pro-étale topology for schemes”
In this lecture we consider replete topoi. This is a nice class of topoi that

include the pro-étale topos, and whose derived categories are all complete.
Here are the main points:

X = Shvproét(X)

⇒ X is locally weakly contractible (next lecture)

⇒ X is replete

⇒ D(X ) is left complete

⇒ ∀ K ∈ D(X ) we have R lim←− τ
≥nK ∼= K.

In the last section we consider D(X , R) the derived category of sheaves of
R-modules for a dvr R with uniformiser π, and consider what it means for an
object of D(X , R) to be π-adically complete.

1 Replete topoi

Definition 1. A topos is a category equivalent to a category of the form Shvτ (C)
for some category C and some Grothendieck topology τ on C. Given an object
X ∈ C, we write hX for the sheaf represented by X. I.e., the sheafification of
the presheaf homC(−, X).

Example 2. Given a topos X , the category
∏

N X of sequences (. . . , F2, F1, F0)
of objects in X is also a topos.1 The category XN of sequences (. . .→F2→F1→F0)
of morphisms in X is also a topos.2

Definition 3. Let X = Shvτ (C) be a topos. A morphism F → G of objects of
X is surjective if for every object X ∈ C and s ∈ G(X), there exists a covering
{Ui → X}i∈I such that s|Ui is in the image of F (Ui)→ G(Ui) for each i ∈ I.

Remark 4. It can be shown that a morphism F → G of sheaves is surjective
if and only if for every sheaf H the induced map hom(G,H) → hom(F,H) is
injective. I.e., if and only if F → G is surjective in the categorical sense. Another
equivalent condition for F → G to be surjective is asking that im(F→G)→ G
become an isomorphism (of presheaves) after sheafification. Here, by im(F→G)
we mean the presheaf image, i.e., im(F→G)(U) = im(F (U)→G(U)) (this is not
necessarily a sheaf).

exer:epi Exercise 1. Note that:

1It is the category of sheaves on the disjoint union qn∈NC equipped with the coarsest
topology such that the inclusions C → qn∈NC send covers to covers.

2It is the category of sheaves on the category N×C whose objects are pairs (n,X) consisting
of an n ∈ N and an object X ∈ C. Morphisms are hom((n,X), (m,Y )) = ∅ if n > m and
hom(X,Y ) otherwise. Again, the topology is the coarsest topology such that the inclusions
C → N× C send covers to covers.
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(∗) For any presheaf F with sheafification aF , object X ∈ C, and section
s ∈ aF (X), there exists a covering {Ui → X}i∈I such that each s|Ui is in
the image of F (Ui)→ aF (Ui).

Let {Vi → Y }i∈I be a covering family in a site C. Using the axioms of a
Grothendieck topology, and (∗) show that qi∈IhVi → hY is a surjective mor-
phism of sheaves.

Remark 5. In the SGA definition of a covering family, the converse is also true:
a family {Vi → Y }i∈I is a covering family if and only if the induced morphism
of sheaves qi∈IhVi → hY is a surjective.

Definition 6 ([BS, Def.3.1.1]). A topos is replete (充実した) if for every se-
quence of surjective morphisms · · · → F2 → F1 → F0 the induced morphisms

lim←−i≥0 Fi

## (( ** ++. . . // F2
// F1

// F0

are surjective for all n.

rema:limits Remark 7. Note: the inclusion Shvτ (C) ⊆ PreShv(C) preserves limits (but
not all colimits). That is, (lim←−i∈I Fi)(X) = lim←−i∈I(Fi(X)) for any diagram of

sheaves I → Shvτ (C) and X ∈ C (to calculate colimits of sheaves, one takes the
colimit in the category of presheaves and then sheafifies).

Exercise 2.

1. Show that the category of sets is replete. (Note, this is a topos: Set is the

category of sheaves on the category
idy∗ with only one object equipped with

the trivial Grothendieck topology).

2. Let C be a category equipped with the trivial Grothendieck topology,3 so
every presheaf is a sheaf. Show that PreShv(C) is replete.

3. Let G be a (discrete) group. Deduce that the category of G-sets is replete.
Note: G-sets is the category of presheaves on the category BG which has
one object, one morphism for every element of G, and composition is
defined by the multiplication in G.

exam:etNotReplete Example 8. Let k be a field such that ksep/k is not finite. Then the category
Shvet(k) of étale sheaves on k is not replete: Since ksep/k is not finite there
exists a tower . . . /L2/L1/L0 = k of nontrivial finite separable field extensions.
Since each Spec(Ln) → Spec(Ln−1) is a covering, each morphism in the tower
induces a surjective morphism of sheaves. However,

lim←−
i

hSpec(Li) → hSpec(k) (1) equa:idSurjEq

3I.e., the only covering families are families of the form {X id→ X}.
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cannot be surjective.

Exercise 3. By evaluating on X = Spec(k) and considering s = idk prove the
claim that Example 8(1) is not surjective. Hint: recall that the coverings of
Spec(k) are of the form {Spec(Kj) → Spec(k)}j∈J with Kj/k finite separable
field extensions.

Example 9 ([BS, Example 3.1.7]). The category of affine schemes with the
fpqc topology4 is replete. Suppose · · · → F2 → F1 → F0 is a tower of surjective
morphisms, and consider some affine scheme X = Spec(A) and some s ∈ F0(X).
Since F1 → F0 is surjective, there is a faithfully flat morphism A→ B0 such that
s|B0

is in the image of F1(B0) → F0(B0). That is, there is some s1 ∈ F1(B0)
mapping to s|B0

. Repeating the argument, we find a sequence of faithfully
flat morphisms A → B0 → B1 → B2 → . . . and elements si ∈ Fi(Bi−1)
such that si maps to si−1|Bi−1

. Set B = lim−→Bi. Now A → B is again a
faithfully flat morphism, and the sequence (sn ∈ Fn(Bn−1)) induces a sequence
(tn ∈ Fn(B)) such that tn 7→ tn−1 for all n. In other words, it induces an element
t ∈ (lim←−Fi)(B). By construction, s|B = t, and so we deduce that lim←−Fi → F0

is surjective. The same argument shows each lim←−Fi → Fn is surjective.

Remark 10. Note that the reason the fpqc site is replete and the étale site is
not replete is precisely because limits of coverings exist in the category, and are
still coverings.

Our first goal is to show that countable products are exact in replete topoi.
This is Proposition 14. Knowing that products are exact, makes derived limits
easy to calculate, cf. Remark 16. The first step is the following lemma.

lem:3.1.8 Lemma 11 ([BS, Lem.3.1.8]). Let

. . . // F2
//

��

F1
//

��

F0

��
. . . // G2

// G1
// G0

be morphisms in a replete topos, and suppose Fi → Gi and Fi+1 → Fi×Gi Gi+1

are surjective for all i. Then lim←−Fi → lim←−Gi is surjective.

Exercise 4. Prove Lemma 11 when the topos is the category of sets.

Exercise 5. This exercise shows that limits do not preserves surjections in
general. So the hypotheses of Lemma 11 are really necessary.

1. Show that (· · · → Z → Z → Z) → (· · · → Z/l3 → Z/l2 → Z/l) does not
satisfy the hypotheses of Lemma 11.

2. Show that the limit of the above sequence of morphisms is Z→ Zl. Show
that this is not surjective.

4I.e., the topology whose coverings are families {Spec(Bi) → Spec(A)}i∈I such that each
A→ Bi is flat, and qSpec(Bi)→ Spec(A) is surjective.
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exer:surjective Exercise 6. Suppose that (fi : Bi → Ci)i∈N is a sequence of surjections. Show
that the conditions of Lemma 11 are satisfied for Fn =

∏
0≤i≤nBi, and Gn =∏

0≤i≤n Ci. Note: X ×Y (Y × Y ′) ∼= X × Y ′ so

(B0 × · · · ×Bn)×(C0×···×Cn) (C0 × · · · × Cn+1) ∼= (B0 × · · · ×Bn × Cn+1)

Deduce that
∏
i∈N fi :

∏
i∈NBi →

∏
i∈N Ci is surjective.

exer:EpiLemma Exercise 7. Suppose that · · · → F2 → F1 → F0 is a sequence of surjections in
a replete topos X .

1. Show that each map
∏n+1
i=0 Fi

Shift−id−→
∏n
i=0 Fi is surjective.

2. Using Bn =
∏n+1
i=0 Fi and Cn =

∏n
i=0 Fi and Exercise 6, show that∏

N
Fi

t−id−→
∏
N
Fi

is surjective.

Definition 12. If X = Shvτ (C) is a topos we write D(X ) = D(Shvτ (C,Ab))
for its derived category.

Recall that if X is a topos, then the category
∏

N X of sequences of objects
and the category XN of sequences of morphisms are also topoi. We can this
consider the right derived functors associated to product and limit

RΠ : D(
∏
N
X )→ D(X ),

R lim←− : D(XN)→ D(X ).

We prove the following proposition in an appendix to this lecture.

prop:rlimDef Proposition 13 (See Proposition 40 below). Let A be a Grothendieck abelian

category with products and (. . .→C2
t→C1

t→C0) a sequence of chain complexes
(the t’s are different, but we ommit the indices). Then there is a isomorphism
in D(A)

R lim←−Cn
∼= Cone

(
RΠCn

t−id−→ RΠCn

)
[−1]

where t− id is the morphism (. . . , c2, c1, c0) 7→ (. . . , tc3−c2, tc2−c1, tc1−c0).

One of the reasons we are interested in replete topoi is that limits work very
well.

prop:derivedProd Proposition 14. Let X be a replete topos. Then the functor Π :
∏

N X → X
preserves injections and surjections. In particular, Π preserves quasi-isomorphism
of chain complexes and so induces a well-defined functor

Π : D(
∏
N
X )→ D(X )

which is just Π on each object.
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Proof. We want to show that if (fi : Fi → Gi)i∈N is a sequence of morphisms in
X which is injective (resp. surjective) then

∏
fi is injective (resp. surjective). It

is automatically injective because limits always preserve monomorphisms. The
surjective case is exactly Exercise 6.

Proposition 15 ([BS, 3.1.10]). Let X = Shvτ (C) be a replete topos and suppose

· · · → F2
t→ F1

t→ F0 is a sequence of surjective morphisms in Shvτ (C,Ab).
Then we have lim←−Fi

∼= R lim←−Fi in D(X ).

Proof. Since each Fi+1 → Fi is surjective, the morphism t− id is surjective by
Exercise 7. So, we have a short exact sequence

0→ lim←−Fi →
∏

Fi
t−id−→

∏
Fi → 0.

Since products are automatically derived by Proposition 13 and Lemma 14 , we
have

lim←−Fi
∼= Cone

(∏
Fi

shift− id−→
∏

Fi

)
[−1].

rema:derivedLimCalc Remark 16. Proposition 14 shows that in a replete topos, we could define
R lim←−Fi as Cone(

∏
Fi →

∏
Fi)[−1]. We will work with this definition from

now on.

2 Locally weakly contractible topoi

Definition 17. Let X be a topos. An object F ∈ X is called compact if for
every family {Yi → F}i∈I such that qIYi → F is surjective, there is a finite
sequence i1, . . . , in such that qni=1Yin → F is still surjective.

Exercise 8. Show that a set is compact in the category of sets if and only if it
is finite.

Definition 18. Let X be a topos. An object F ∈ X is called coherent if it is
compact, and for any pair of morphisms Y, Y ′ ⇒ F from compact objects Y, Y ′,
the fibre product Y ×F Y ′ is again compact.

Definition 19 ([Bs, Def.3.2.1]). An object F of a topos X is weakly contractible
if every surjective G → F has a section. We say that X is locally weakly
contractible if every object X ∈ X admits a surjection qi∈IYi → X with Yi
weakly contractible coherent objects.

Example 20. The pro-étale site that we define in the next lecture is locally
weakly contractible.

Proposition 21 ([BS, Prop.3.2.3). ] Let X be a locally weakly contractible topos.
Then X is replete, and for any object K ∈ D(X ) we have R limn τ

≥nK ∼= K
where

τ≥nK = (· · · → 0→ (Kn/dKn−1)→ Kn+1 → Kn+2 → . . . ).
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Remark 22. The property R limn τ
≥nK ∼= K means that all the information of

K is contained in its truncations. This lets us deduce properties of unbounded
complexes from bounded below complexes.

Sketch of proof. Since X is locally weakly contractible, a morphism f in X is
an isomorphism (resp. surjection) if and only if evaluating on each weakly
contractible object of C is an isomorphism (resp. surjection). It follows that X
is replete.

Similarly, for any complex of sheaves K and weakly contractible object U
we have (HiK)(U) = Hi(K(U)). It follows that R limn τ

≥nK ∼= K.

3 Truncation completing derived categories

Recall that if X is a category, then XN is the category of sequences (. . .→F2→F1→F0)
of morphisms in X . If X = Shvτ (C) is a topos, then D(XN) is the derived cate-
gory of the abelian category Shvτ (C,Ab)N.

Now that we are working with sequences of chain complexes, we will have
two indices: an upper index for the terms in the chain complex, and a lower
index for the terms in the sequence.

...
...

...

. . . // Ki+1
2

t //

d

OO

Ki+1
1

t //

d

OO

Ki+1
0

d

OO

. . . // Ki
2

t //

d

OO

Ki
1

t //

d

OO

Ki
0

d

OO

. . . // Ki−1
2

t //

d

OO

Ki−1
1

t //

d

OO

Ki−1
0

d

OO

...

OO

...

OO

...

OO

Here, the d’s and t’s should have indices too, but we did not write them. Note
that Ch(A)N = Ch(AN). That is, we can think about objects in this category

as sequences of chain complexes
t2→
(

...

)
t1→
(

...

)
t0→
(

...

)
or chain complexes of

sequences

(. . . )

di+1

OO

(. . . )

di
OO

OO
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Definition 23 ([BS, 3.3.1]). Let X = Shvτ (C) be a topos. We define the left-

completion D̂(X ) of D(X ) as the full subcategory of D(XN) spanned by the
projection systems (. . .→K2→K1→K0) in Ch(Shvτ (C,Ab)N) such that

1. Kn ∈ D≥−n(X ). That is, HiKn = 0 for i < −n.

2. The canonical map τ≥−nKn+1 → Kn is an equivalence. In other words,
the map HiKn+1 → HiKn is an isomorphism for all i ≥ −n.

We say that D(X ) is left-complete if the map

τ : D(X )→ D̂(X ); K 7→ {τ≥−nK}

is an equivalence.

Remark 24. The definition is equivalent to asking that when we take coho-
mology, we get the following picture:

...
...

...

. . .
∼= // H2K2

∼= // H2K1

∼= // H2K0

. . .
∼= // H1K2

∼= // H1K1

∼= // H1K0

. . .
∼= // H0K2

∼= // H0K1

∼= // H0K0

. . .
∼= // H−1K2

∼= // H−1K1
// 0

. . .
∼= // H2K2

// 0 // 0

. . . // 0 // 0 // 0

...
...

...

Remark 25. The inclusion D̂(X ) ⊆ D(X ) is not an inclusion of triangulated

categories (because D̂(X )) is not preserve by the deshift [−1] from D(X ).

We just state the main facts about completions without giving too many
details.

Theorem 26. Let X = Shvτ (C) be a topos.

1. [BS, Lem.3.3.2] The functor R lim←− : D̂(X )→ D(XN)→ D(X ) is the right

adjoint of τ . In particular, if D(X ) is left-complete, then K ∼= R lim←− τ
−nK

for any K ∈ Ch(Shvτ (C,Ab)).

2. [BS, Prop.3.3.3] If X is a replete topos then D(X ) is left-complete.

3. [BS, Exam.3.3.5] If k = C(x1, x2, . . . ), then D(Spec(k)et) is not left-
complete.
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4. [BS, Prop.3.3.7] If U ∈ C is an object such that Γ(U,−) is exact then for
any K ∈ D(X ) we have RΓ(U,K) ∼= R lim←−RΓ(U, τ−nK).

5. [BS, Prop.3.3.7] If for each K ∈ D(X ) and U ∈ C there exists some d ∈ N
such that Hp(U,HqK) = 0 for p > d, then D(X ) is left-complete.

Example 27. The finiteness condition of [BS, Prop.3.3.7] above is satisfied for
the étale sites of Spec(Fq), and X when X is a smooth affine variety over an
algebraically closed field.

4 π-adically completing objects

Through-out this section we work with a discrete valuation ring R, with maximal
ideal m and uniformiser π (so m = (π)). We also fix a replete topos X = Shvτ (C),
and now our derived category will always be the derived category of sheaves of
R-modules

D(X , R) = D(Shvτ (C, R)).

Definition 28. We say that M ∈ ModR is classically complete if M ∼= lim←−M/πnM .
We write ModR,comp ⊆ ModR for the full subcategory of classically complete
modules.

We say that K ∈ D(X , R) is derived complete if T (K) ∼= 0 in D(X , R)
where

T (K) := R lim←−(· · · π→ K
π→ K

π→ K).

Here the transition maps are multiplication by the uniformiser π. We use the
notation Dcomp(X , R) ⊆ D(X , R) for the full subcategory of derived complete
objects.

Remark 29. Since we are assuming that X is replete, by Proposition 14 we
have

T (K) = Cone

(∏
N
K

id−π−→
∏
N
K

)
[−1].

Exercise 9. Show that Zl is a complete Z(l)-module.

exer:derivedCompleteCone Exercise 10.

1. Show that if K is derived complete then so is K[n] for any n.

2. Suppose that 0 → A → B → C → 0 is a short exact sequence of chain
complexes in Ch(Shvτ (C, R)). Using the fact that products in a replete
topos are exact, show that 0 → TA → TB → TC → 0 is also a short
exact sequence. Deduce that if two of A,B,C are derived complete, then
so is the third.

3. Consider a morphismK → L in Ch(Shvτ (C, R)) and define C = Cone(K →
L). Use the second part above to show that if two of K,L,C are derived
complete then the third is also derived complete.
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exer:derivedCompleteLim Exercise 11. Using the fact that for any double sequence of chain complexes
(Kn,m) we haveR lim←−nR lim←−mKn,m

∼= R lim←−mR lim←−nKn,m, show that if (. . .→K2→K1→K0)
is a sequence of derived complete chain complexes then R lim←−Kn is derived com-
plete.

The relationship between classical complete and derived complete is the
following.

Proposition 30 ([BS, Prop.3.4.2]). An R-module M ∈ ModR is classically
complete if and only if it is π-adically separated5 and derived complete.

In particular, for classicalR-modules, classical completeness is strictly stronger
than derived completeness.

We omit the proof of 3.4.2 as it is not used elsewhere.

Proposition 31 ([BS, Prop.3.4.4]). An R-complex K ∈ D(X , R) is derived
complete if and only if each HiK ∈ Shvτ (C, R) is derived complete.

Recall that for a chain complex K we define

τ≥nK = [· · · → 0→ 0→ (Kn/dKn−1)→ Kn+1 → Kn+2 → . . . ]

τ≤nK = [· · · → Kn−2 → Kn−1 → (ker d)→ 0→ 0→ . . . ]

Exercise 12. Show that Hiτ≤nK = HiK for i ≤ n and Hiτ≤nK = 0 for i > n.
Similarly, show that Hiτ≥nK = HiK for i ≥ n and Hiτ≥nK = 0 for i < n.

Proof. Suppose that each HiK is derived complete. We will show that K is
derived complete. For any i ∈ N, n ∈ Z we have

Cone
(
τ≤n+iτ≥nK → τ≤n+i+1τ≥nK

) q.i.→
∼
Hi+1K

so by induction on i, and Exercise 10, each τ≤n+iτ≥nK is derived complete.
Now we are assuming that X is replete, so in particular, we have

τ≤mK ∼= R lim←−
n∈N

τ−nτ≤mK.

So by Exercise 11, we find that τ≤mK is derived complete. Now consider the
short exact sequence of complexes

0→ K → Cone
(
τ≤mK→K

)
→ τ≤mK[1]→ 0

By Exercise 10 the functor T takes short exact sequence to short exact sequences.
Since τ≤mK is derived complete, we deduce that

TK
q.i.→ T Cone

(
τ≤mK → K

)
5π-adically separated means that ∩n∈Nπ

nM = 0.
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But
Cone

(
τ≤mK → K

) q.i.→ τ≥m+1K

so
TK

q.i.→ Tτ≥m+1K

Finally, from the definition we see that (Tτ≥m+1K)i = 0 for i < m. Since this
is valid for any m, we deduce that HiTK = 0 for all i.

Definition 32. Suppose that K ∈ Ch(Shvτ (C, R)) is a chain complex. Then
we define

K
L
⊗R R/mn := Cone(K

πn

→ K).

Remark 33. The functor −
L
⊗R R/mn that we defined above actually calculates

the left derived functor of −⊗RR/mn where here ⊗R is the usual tensor product.
Since we only need the derived product in this case, we just take this as the
definition.

exer:derCompletion Exercise 13.

1. Show that there is a canonical morphism of sequences of chain complexes

from (. . .
π→K π→K π→K) to (. . .

id→K id→K id→K)

2. Deduce that there is a canonical morphism from (. . .
id→K id→K id→K) to

(. . .→K
L
⊗R R/m2→K

L
⊗R R/m→K).

3. Show that there is a short exact sequence

0→ K → K̂ → TK → 0

where

K̂ := R lim←−(K
L
⊗R R/mn).

Deduce that K is derived complete if and only if the morphism K → K̂
is a quasi-isomorphism.

Proposition 34 ([BS, Lem.3.4.9, Prop.3.5.1]). The functor sending K to K̂
defines a left adjoint to the inclusion Dcomp(X , R) ⊆ D(X , R).

Sketch of proof. By Exercise 13 we see that K̂ is derived complete. Suppose
that L ∈ D(X , R) is also derived complete. Then we want to show that

homD(X ,R)(K̂, L)→ homD(X ,R)(K,L)

is an isomorphism. By the short exact sequence in Exercise 13(3) it suffices to
show that

homD(X ,R)(TK,L) = 0

(this uses some homological algebra that we have not covered, but it is not
difficult homological algebra). Now we make two claims.
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Claim 1. [BS, Lem.3.4.7] We have that hom(M,L) = 0 for allM ∈ D(X , R[ 1π ]).
Claim 2. [BS, Lem.3.4.8] We have that TK is in the essential image of the

canonical functor D(X , R[ 1π ])→ D(X , R).
The proof of these claims is not difficult, but is omitted.

Definition 35. We define a tensor product on Dcomp(X , R) using the tensor
product on D(X , R):

K⊗̂RL :=
̂
K

L
⊗R L.

Here,
L
⊗R is the derived tensor product on D(X , R).

A Derived limits

In this subsection we consider a Grothendieck abelian category A that admits
products (in other words, satisfies Grothendieck’s axiom (AB3*)). We are con-
cerned with the derived functors

RΠ : D(
∏
N
A)→ D(A)

R lim←− : D(AN)→ D(A)

associated to product Π :
∏

NA → A and limit lim←− : AN → A. Note that∏
NA and AN are again Grothendieck abelian categories (since they are functor

categories from a small category to a Grothendieck abelian category).
Recall from the lecture Homological Algebra I that for a general left exact

functor between Grothendieck abelian categories F : B → B′, the derived func-
tor RF : D(B) → D(B′) can be calculated as follows. If C ∈ Ch+(B) is a
bounded below chain complex, then there exists a quasi-isomorphism C → I
with I a bounded below chain complex of injective objects,6 and RF (C) ∼= F (I)
in D(B′). More generally, for any chain complex C ∈ Ch(B), there exists a
quasi-isomorphism C → Q to a fibrant chain complex,7 and RF (C) ∼= F (Q) in
D(B′).

lemm:injProd Lemma 36. An object (Ii)i∈N in
∏

NA is injective if and only if each Ii is
injective in A.

Exercise 14. Prove Lemma 36.

lemm:injectiveSequences Lemma 37. An object (· · · → A2 → A1 → A0) in AN is injective if and only
if each Ai is injective and each Ai+1 → Ai is a split surjection.

6Recall that an object I ∈ B is injective if for every monomorphism A→ B, every morphism
A→ I factors through A→ B.

7Recall that a chain complex Q ∈ Ch(B) is fibrant if for every monomorphic quasi-
isomorphism A→ B of chain complexes, every morphism A→ Q factors through A→ B.
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Proof. Suppose I• = (· · · → I2 → I1 → I0) is an injective object in AN. Let

λn : A → AN be the functor sending A ∈ A to (· · · → 0→ A
id→ · · · id→ A︸ ︷︷ ︸

n morphisms

). Then

λn is exact and a left adjoint to the “evaluation at n” functor Evn (which sends
(· · · → B2 → B1 → B0) to Bn). Since Evn has an exact left adjoint it sends
injectives to injectives, and hence, each In = EvnI• is injective in A. To see
that each In+1 → In is split surjective, consider the canonical monomorphism
λnIn → λn+1In. Since I• is injective, the canonical morphism λnIn → I•
factors as λnIn → λn+1In → I•. The degree n + 1, n, n − 1 piece of this
factorisation is

...

��

...

��

...

��
0

��

// In //

id

��

In+1

��
In

id

��

// In
id //

id

��

In

��
In

id ��

// In //

id ��

In−1

��
...

...
...

So In+1 → In is split surjective.
Conversely, suppose that I• = (· · · → I2 → I1 → I0) is an object of AN such

that each In is injective in A, and each In+1 → In is split surjective. Suppose
that A• = (. . .→A2→A1→A0) → (. . .→B2→B1→B0) = B• is a monomor-
phism in AN, and that A• → I• is some morphism. We will show by induction
that it factors through A• → B•. In degree 0, this follows from the fact that I0
is injective: A0 → B0 is a monomorphism and I0 injective so A0 → I0 factors
as A0 → B0 → I0. Suppose that we have factorisations Ai → Bi → Ii for all
0 ≤ i < n which are compatible with the transition morphisms of A•, B•, I•
respectively. In particular, we have the following diagram

An // ((

��

Bn //

��

In

��
An−1 // Bn−1 // In−1

and we are looking for the dashed morphism which makes the diagram commute.
By hypothesis, In → In−1 is split surjective. That is, In ∼= In−1⊕J for some J ,
which is also injective as it is a direct summand of the injective object In. As J is
injective, the induced morphism An → J factors as An → Bn

a→ J . On the other
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hand, we have the morphism b : Bn → Bn−1 → In−1 from the above diagram.
Then we define the dashed morphism to be (b, a) : Bn → In−1 ⊕ J ∼= In. On
checks that this makes the diagram commute.

Now that we consider chain complexes in
∏

NA and AN we will have two
indices, (an upper) one for the chain complex direction, and (a lower) one for
the

∏
NA, AN direction. We will implicitly use the canonical equivalences of

categories Ch(
∏

NA) ∼=
∏

N Ch(A) and Ch(AN) ∼= Ch(A)N.

注意 Beware, however, that the canonical inclusions Ch+(
∏

NA) ⊆
∏

N Ch
+(A)

and Ch+(AN) ⊆ Ch+(A)N are not essentially surjective.

Lemma 38. A chain complex (Q•i )i∈N in Ch(
∏

NA) is fibrant if and only if
each Q•i is fibrant in Ch(A).

Proof. It suffices to note that a morphism (A•i )i∈N → (B•i )i∈N is a monomor-
phic quasi-isomorphism if and only if each A•i → B•i is a monomorphic quasi-
isomorphism.

lemm:seqFibrant Lemma 39. If a chain complex (Q•i )i∈N in Ch(AN) is fibrant then each Q•i is
fibrant in Ch(A).

Proof. As in the proof of Lemma 37, the “evaluation at n” functor Evn :
Ch(AN) → Ch(A) has a left adjoint λn : Ch(A) → Ch(AN) which preserves
monomorphisms and quasi-isomorphisms. Consequently, Evn sends fibrant ob-
jects to fibrant objects.

prop:limTriangle Proposition 40. Suppose that A is a Grothendieck abelian category with prod-
ucts. Then for any object (. . .→C•2→C•1→C•0 ) in Ch(AN), there is an isomor-
phism

R lim←−C
•
n
∼= Cone

(
RΠC•n

id−shift−→ RΠC•n

)
in D(A).

Proof. In order to calculate R lim←−C
•
n, replace (. . .→C•2→C•1→C•0 ) with a quasi-

isomorphic fibrant complex (. . .→Q•2→Q•1→Q•0) in Ch(AN). Recall that every
fibrant chain complex is a chain complex of injective objects (the converse is
true if the complex is bounded below). In particular, for each i the sequence
(. . .→Qi2→Qi1→Qi0) is injective in AN, and therefore by Lemma 37, the mor-
phisms Qin+1 → Qin are split surjective. We will use this fact later.

Now by Lemma 39 each Q•n is fibrant. Hence, (Q••) can also be used to
calculate the derived products as well. That is,

R lim←−C
•
n
∼= lim←−Q

•
n, RΠC•n

∼= ΠQ•n

So it suffices to show that the canonical morphism

lim←−Q
•
n → Cone

(
ΠQ•n

id−shift−→ ΠQ•n

)
[−1]
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is a quasi-isomorphism. But since each Qin+1 → Qin is split surjective, it follows

that each ΠQin
id−shift−→ ΠQin is surjective. So the sequence

0→ lim←−Q
•
n → ΠQ•n

id−shift−→ ΠQ•n → 0

is exact, and therefore the left term is quasi-isomorphic to the shifted cone of
the right morphism.
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