Reference: [BS] Bhatt, Scholze, “The pro-étale topology for schemes”

In this lecture we consider replete topoi. This is a nice class of topoi that
include the pro-étale topos, and whose derived categories are all complete.

Here are the main points:

X = Shvproet(X)
= X is locally weakly contractible (next lecture)
= X is replete
= D(X) is left complete
= V K € D(X) we have R@TZ"K ~K.

In the last section we consider D(X, R) the derived category of sheaves of
R-modules for a dvr R with uniformiser 7, and consider what it means for an
object of D(X, R) to be m-adically complete.

1 Replete topoi

Definition 1. A topos is a category equivalent to a category of the form Shv.(C)
for some category C and some Grothendieck topology T on C. Given an object
X € C, we write hx for the sheaf represented by X. Le., the sheafification of
the presheaf home(—, X).

Example 2. Given a topos X, the category [[ X of sequences (..., Fs, Fy, Fy)
of objects in X is also a toposE| The category XN of sequences (... —Fy—F|—Fp)
of morphisms in X is also a topos

Definition 3. Let X = Shv.(C) be a topos. A morphism F — G of objects of
X is surjective if for every object X € C and s € G(X), there exists a covering
{U; = X }ier such that s|uy, is in the image of F(U;) — G(U;) for each i € I.

Remark 4. It can be shown that a morphism F — G of sheaves is surjective
if and only if for every sheaf H the induced map hom(G, H) — hom(F, H) is
injective. Le., if and only if FF — G is surjective in the categorical sense. Another
equivalent condition for F' — G to be surjective is asking that im(F—G) — G
become an isomorphism (of presheaves) after sheafification. Here, by im(F—G)
we mean the presheaf image, i.e., im(F—G)(U) = im(F(U)—G(U)) (this is not
necessarily a sheaf).

Exercise 1. Note that:

Tt is the category of sheaves on the disjoint union I,,enC equipped with the coarsest
topology such that the inclusions C — I1,,enC send covers to covers.

2Tt is the category of sheaves on the category N x C whose objects are pairs (n, X) consisting
of an n € N and an object X € C. Morphisms are hom((n, X),(m,Y)) = @ if n > m and
hom(X,Y) otherwise. Again, the topology is the coarsest topology such that the inclusions
C — N x C send covers to covers.



() For any presheaf F' with sheafification aF, object X € C, and section
s € aF(X), there exists a covering {U; — X };¢s such that each s|y, is in
the image of F(U;) — aF(Uj;).

Let {V; — Y}ier be a covering family in a site C. Using the axioms of a
Grothendieck topology, and (%) show that II;crhy, — hy is a surjective mor-
phism of sheaves.

Remark 5. In the SGA definition of a covering family, the converse is also true:
a family {V; — Y}er is a covering family if and only if the induced morphism
of sheaves Il;crhy, — hy is a surjective.

Definition 6 ([BS, Def.3.1.1]). A topos is replete (FCE L /=) if for every se-
quence of surjective morphisms - -+ — Fy — Fy — Fy the induced morphisms

F;

Iy Iy Fy

.,

are surjective for all n.

Remark 7. Note: the inclusion Shv.(C) C PreShv(C) preserves limits (but
not all colimits). That is, (@Z_GI F)(X) = @leI(FZ(X)) for any diagram of
sheaves I — Shv,(C) and X € C (to calculate colimits of sheaves, one takes the
colimit in the category of presheaves and then sheafifies).

Exercise 2.

1. Show that the category of sets is replete. (Note, this is a topos: Set is the
id
category of sheaves on the category ¥ with only one object equipped with
the trivial Grothendieck topology).

2. Let C be a category equipped with the trivial Grothendieck topologyﬂ SO
every presheaf is a sheaf. Show that PreShv(C) is replete.

3. Let G be a (discrete) group. Deduce that the category of G-sets is replete.
Note: G-sets is the category of presheaves on the category BG which has
one object, one morphism for every element of G, and composition is
defined by the multiplication in G.

Example 8. Let k be a field such that k°¢?/k is not finite. Then the category
Shv.: (k) of étale sheaves on k is not replete: Since k*°P/k is not finite there
exists a tower ... /La/L1 /Lo = k of nontrivial finite separable field extensions.
Since each Spec(L,) — Spec(L,—1) is a covering, each morphism in the tower
induces a surjective morphism of sheaves. However,

£ifInhSpec(Li) - hSPec(k) (1)
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31.e., the only covering families are families of the form {X d X}.



cannot be surjective.

Exercise 3. By evaluating on X = Spec(k) and considering s = idy, prove the
claim that Example [§f[1]) is not surjective. Hint: recall that the coverings of
Spec(k) are of the form {Spec(K;) — Spec(k)};jecs with K;/k finite separable
field extensions.

Example 9 ([BS, Example 3.1.7]). The category of affine schemes with the
fpqce topologyﬂ is replete. Suppose --- — Fo — F} — F{ is a tower of surjective
morphisms, and consider some affine scheme X = Spec(A) and some s € Fy(X).
Since Fy — Fj is surjective, there is a faithfully flat morphism A — By such that
s|B, is in the image of Fy(By) — Fy(By). That is, there is some s; € F1(By)
mapping to s|p,. Repeating the argument, we find a sequence of faithfully
flat morphisms A — By — By — By — ... and elements s; € F;(B;_1)
such that s; maps to s;—1|p,_,. Set B = limB;. Now A — B is again a
faithfully flat morphism, and the sequence (s, € F,, (B, —1)) induces a sequence
(tn € F,(B)) such that t,, — t,_1 for all n. In other words, it induces an element
te (@1 F;)(B). By construction, s|g = t, and so we deduce that Wm F; — Fy
is surjective. The same argument shows each @FZ — F,, is surjective.

Remark 10. Note that the reason the fpqc site is replete and the étale site is
not replete is precisely because limits of coverings exist in the category, and are
still coverings.

Our first goal is to show that countable products are exact in replete topoi.
This is Proposition Knowing that products are exact, makes derived limits
easy to calculate, cf. Remark [T6] The first step is the following lemma.

Lemma 11 ([BS, Lem.3.1.8]). Let

Fy Fy Fy
Go Gy Gy

be morphisms in a replete topos, and suppose Fy — G; and Fiy1 — F; Xq, Git1
are surjective for all i. Then @Fi — @Gi 1s surjective.

Exercise 4. Prove Lemma [l1| when the topos is the category of sets.

Exercise 5. This exercise shows that limits do not preserves surjections in
general. So the hypotheses of Lemma [11] are really necessary.

1. Show that (- = Z —Z = Z) — (-+- = ZJI13 — Z/I*> — 7Z/I) does not
satisfy the hypotheses of Lemma

2. Show that the limit of the above sequence of morphisms is Z — 7Z;. Show
that this is not surjective.

4I.e., the topology whose coverings are families {Spec(B;) — Spec(A)};er such that each
A — B, is flat, and II Spec(B;) — Spec(A) is surjective.



Exercise 6. Suppose that (f; : B; = C})ien is a sequence of surjections. Show
that the conditions of Lemma are satisfied for F,, = [[y<;<, Bi, and G, =
[lo<icn Ci- Note: X xy (Y x V") 2 X x Y’ s0 o

(Bo X -+ X Bp) X(cyx-xcy) (Co X -+ X Cpy1) = (Bo X -+ X By X Cpy1)
Deduce that [ ;o fi @ [Tien Bi = [Lien Ci is surjective.

Exercise 7. Suppose that --- — F, — F} — Fj is a sequence of surjections in
a replete topos X.

Shift—id . -
1. Show that each map []/) F; iy [T, F; is surjective.

2. Using B, = H;’:()l F; and C,, = []]_, F; and Exercise @ show that
N N

is surjective.

Definition 12. If X = Shv,(C) is a topos we write D(X) = D(Shv,(C, Ab))
for its derived category.

Recall that if X' is a topos, then the category [[ A of sequences of objects
and the category X of sequences of morphisms are also topoi. We can this
consider the right derived functors associated to product and limit

RIL: D(J[x) — D(x),
N
. . N
R@l : D(XY) = D(X).
We prove the following proposition in an appendix to this lecture.

Proposition 13 (See Propositionbelow). Let A be a Grothendieck abelian

category with products and (... %C’ggclﬁco) a sequence of chain complezes
(the t’s are different, but we ommit the indices). Then there is a isomorphism

in D(A)
Rlim C,, = Cone (RHC’n t=id RHC’n) (1]
where t — id is the morphism (..., ca,c1,¢0) — (..., tcg3—ca, tea—cy, ter—cp).

One of the reasons we are interested in replete topoi is that limits work very
well.

Proposition 14. Let X be a replete topos. Then the functor I : [[( X — &
preserves injections and surjections. In particular, II preserves quasi-isomorphism
of chain complexes and so induces a well-defined functor

: D(J]x) — D(x)
N

which is just 11 on each object.



Proof. We want to show that if (f; : F; — G;);en is a sequence of morphisms in
X which is injective (resp. surjective) then [] f; is injective (resp. surjective). It
is automatically injective because limits always preserve monomorphisms. The
surjective case is exactly Exercise [0} O

Proposition 15 ([BS, 3.1.10]). Let X = Shv.(C) be a replete topos and suppose
- = Fy N F 4 Fy is a sequence of surjective morphisms in Shv.(C, Ab).
Then we have lim F; = Rlim F; in D(Xx).

Proof. Since each F;. 1 — F; is surjective, the morphism ¢ — id is surjective by
Exercise[7l So, we have a short exact sequence

0—>1'£1Fi—>HFi‘i§HFi—>o.

Since products are automatically derived by Proposition [I3]and Lemma[T4], we

have .
lim F; = Cone (H F S E F) 1]
0

Remark 16. Proposition shows that in a replete topos, we could define
Rlim F; as Cone(J[ F; — [[Fi)[-1]. We will work with this definition from

now on.

2 Locally weakly contractible topoi

Definition 17. Let X be a topos. An object F' € X is called compact if for
every family {Y; — F}ier such that 11;Y; — F is surjective, there is a finite
sequence i1, ... ,1, such that I7?_Y; — F is still surjective.

Exercise 8. Show that a set is compact in the category of sets if and only if it
is finite.

Definition 18. Let X be a topos. An object F' € X is called coherent if it is
compact, and for any pair of morphisms Y,Y' = F from compact objects Y,Y”,
the fibre product Y x g Y’ is again compact.

Definition 19 ([Bs, Def.3.2.1]). An object F' of a topos X is weakly contractible
if every surjective G — F has a section. We say that X is locally weakly
contractible if every object X € X admits a surjection ;c;Y; — X with Y;
weakly contractible coherent objects.

Example 20. The pro-étale site that we define in the next lecture is locally
weakly contractible.

Proposition 21 ([BS, Prop.3.2.3). | Let X be a locally weakly contractible topos.
Then X is replete, and for any object K € D(X) we have Rlim, 7°"K = K
where

2K = (= 0= (K"/dK"™ 1) = K" — K2 ).



Remark 22. The property Rlim,, 72" K = K means that all the information of
K is contained in its truncations. This lets us deduce properties of unbounded
complexes from bounded below complexes.

Sketch of proof. Since X is locally weakly contractible, a morphism f in X is
an isomorphism (resp. surjection) if and only if evaluating on each weakly
contractible object of C is an isomorphism (resp. surjection). It follows that X

is replete.
Similarly, for any complex of sheaves K and weakly contractible object U
we have (H'K)(U) = HY(K(U)). It follows that Rlim, 72"K = K. O

3 Truncation completing derived categories

Recall that if X is a category, then XN is the category of sequences (... —Fy— F;—Fp)
of morphisms in X. If X = Shv,(C) is a topos, then D(X") is the derived cate-
gory of the abelian category Shv, (C, Ab)N.

Now that we are working with sequences of chain complexes, we will have
two indices: an upper index for the terms in the chain complex, and a lower
index for the terms in the sequence.

Here, the d’s and t’s should have indices too, but we did not write them. Note
that Ch(A)N = Ch(AY). That is, we can think about objects in this category

as sequences of chain complexes iEY () b <) Ly () or chain complexes of

sequences

waﬂ
(...)
ba



Definition 23 ([BS, 3.3.1]). Let X = Shv,(C) be a topos. We define the left-
completion D(X) of D(X) as the full subcategory of D(XY) spanned by the
projection systems (... —Ko—K;—Kg) in Ch(Shv,(C, Ab)Y) such that

1. K, € DZ7"(X). That is, H'K, =0 fori < —n.

2. The canonical map 72" "K, 11 — K, is an equivalence. In other words,
the map H'K,,+1 — H'K,, is an isomorphism for all i > —n.

We say that D(X) is left-complete if the map
7:D(X) = D(X); K {T27"K}
s an equivalence.

Remark 24. The definition is equivalent to asking that when we take coho-
mology, we get the following picture:

= H’Ky — = > H?K, —— > %K,

S H'Ky—— > H'K, ——~ H'K,

= H9Ky, —= > HOK, —= > HOK,

S H 'Ky S s HK, 0
H2K, 0 0
0 0 0

Remark 25. The inclusion ﬁ(X ) € D(X) is not an inclusion of triangulated
categories (because D(X)) is not preserve by the deshift [—1] from D(X).

We just state the main facts about completions without giving too many
details.

Theorem 26. Let X = Shv.(C) be a topos.

1. [BS, Lem.3.3.2] The functor Rlim : D(X) = D(XN) = D(X) is the right
adjoint of T. In particular, if D(X) is left-complete, then K = R@T’”K
for any K € Ch(Shv.(C, Ab)).

2. [BS, Prop.3.3.3] If X is a replete topos then D(X) is left-complete.

3. [BS, Exam.3.3.5] If k = C(x1,22a,...), then D(Spec(k)ct) is not left-
complete.



4. [BS, Prop.3.3.7] If U € C is an object such that T'(U,—) is exact then for
any K € D(X) we have RT'(U, K) & R@RF(U,T_"K),

5. [BS, Prop.3.3.7] If for each K € D(X) and U € C there exists some d € N
such that HP(U,H'K) = 0 for p > d, then D(X) is left-complete.

Example 27. The finiteness condition of [BS, Prop.3.3.7] above is satisfied for
the étale sites of Spec(Fy), and X when X is a smooth affine variety over an
algebraically closed field.

4 m-adically completing objects

Through-out this section we work with a discrete valuation ring R, with maximal
ideal m and uniformiser 7 (so m = (7)). We also fix a replete topos X = Shv..(C),
and now our derived category will always be the derived category of sheaves of

R-modules
D(X,R) = D(Shv,(C, R)).

Definition 28. We say that M € Modgp, is classically complete if M = @ M/7"M.
We write ModRg,comp & Modg for the full subcategory of classically complete
modules.

We say that K € D(X,R) is derived complete if T(K) = 0 in D(X,R)
where

T(K):=Rlm(--- % K = K & K).

Here the transition maps are multiplication by the uniformiser w. We use the
notation Deomp(X, R) C D(X,R) for the full subcategory of derived complete
objects.

Remark 29. Since we are assuming that X is replete, by Proposition [I4] we

have
T(K) = Cone (HK d-r HK> [—1].
N N
Exercise 9. Show that Z; is a complete Z)-module.
Exercise 10.

1. Show that if K is derived complete then so is K[n| for any n.

2. Suppose that 0 -+ A — B — C' — 0 is a short exact sequence of chain
complexes in Ch(Shv.(C, R)). Using the fact that products in a replete
topos are exact, show that 0 - TA — TB — TC — 0 is also a short
exact sequence. Deduce that if two of A, B, C' are derived complete, then
so is the third.

3. Consider a morphism K — L in Ch(Shv,(C, R)) and define C = Cone(K —
L). Use the second part above to show that if two of K, L, C are derived
complete then the third is also derived complete.



Exercise 11. Using the fact that for any double sequence of chain complexes
(Kym)wehave Rlim Rlim K, ,, 2 Rlim Rlim K, ., showthatif (... 2Ky—K;—K))
A ’ <—n —m ’ . m —n o . .

is a sequence of derived complete chain complexes then R 1&1 K, is derived com-

plete.

The relationship between classical complete and derived complete is the
following.

Proposition 30 ([BS, Prop.3.4.2]). An R-module M € Modpg is classically
complete if and only if it is w-adically sepamtecﬂ and derived complete.

In particular, for classical R-modules, classical completeness is strictly stronger
than derived completeness.
We omit the proof of 3.4.2 as it is not used elsewhere.

Proposition 31 ([BS, Prop.3.4.4]). An R-complex K € D(X,R) is derived
complete if and only if each H'K € Shv,(C, R) is derived complete.

Recall that for a chain complex K we define
2K == 0—=0— (K"/dK" 1) - K"l 5 K2 5 ]
TSPK =[5 K" 2 5 K" — (ker d) - 0—=0—...]

Exercise 12. Show that H'7<"K = H'K for i < nand H'7<"K = 0 for i > n.
Similarly, show that Hi72"K = H'K for i > n and H'72"K = 0 for i < n.

Proof. Suppose that each H'K is derived complete. We will show that K is
derived complete. For any ¢ € N,n € Z we have

. . .i. .
Cone (7="Hip2n K — pSntitle2n) 8 gt

so by induction on ¢, and Exercise each 7"t 72" K is derived complete.
Now we are assuming that X is replete, so in particular, we have

TS~ R l&n rTrSmEK,
neN

So by Exercise we find that 7™ K is derived complete. Now consider the
short exact sequence of complexes

0 — K — Cone (TSmK—>K) — TSmK[l] -0

By Exercise[I0]the functor T takes short exact sequence to short exact sequences.
Since 7= K is derived complete, we deduce that

TK ™% T Cone (15" K — K)

5r-adically separated means that Npenm™ M = 0.



But )
Cone (TSmK — K) L p2mtl e

SO .
TK &% 7rzmtig

Finally, from the definition we see that (T'72™*1K)! = 0 for i < m. Since this
is valid for any m, we deduce that H'TK = 0 for all i. O

Definition 32. Suppose that K € Ch(Shv,(C,R)) is a chain complex. Then
we define

L o
K @r R/m"™ := Cone(K — K).

Remark 33. The functor — é% r R/m"™ that we defined above actually calculates
the left derived functor of —®r R/m™ where here ®p is the usual tensor product.
Since we only need the derived product in this case, we just take this as the
definition.

Exercise 13.

1. Show that there is a canonical morphism of sequences of chain complexes
from (... SKSKSK) to (... SKS K K)
2. Deduce that there is a canonical morphism from (. l—d>K1—>K1—>K) to
L L
(...»K ®p R/m*>K ®p R/m—K).
3. Show that there is a short exact sequence
0—+K—K—TK—0
where .
K = R@(K ®pg R/m™).
Deduce that K is derived complete if and only if the morphism K — K
is a quasi-isomorphism.

Proposition 34 ([BS, Lem.3.4.9, Prop.3.5.1]). The functor sending K to K
defines a left adjoint to the inclusion Deomp(X, R) C D(X,R).

Sketch of proof. By Exercise we see that K is derived complete. Suppose
that L € D(X, R) is also derived complete. Then we want to show that

homD(X,R)([?v L) = hompx g (K, L)

is an isomorphism. By the short exact sequence in Exercise 3) it suffices to
show that
homD(XR) (TK, L) =0

(this uses some homological algebra that we have not covered, but it is not
difficult homological algebra). Now we make two claims.

10



Claim 1. [BS, Lem.3.4.7] We have that hom(}M, L) = O for all M € D(X, R[]).

Claim 2. [BS, Lem.3.4.8] We have that TK is in the essential image of the
canonical functor D(X, R[1]) — D(X, R).

The proof of these claims is not difficult, but is omitted. O
Definition 35. We define a tensor product on Deomp(X, R) using the tensor
product on D(X, R):

—

~ L
K®QrL := K ®g L.

L
Here, ®@p is the derived tensor product on D(X, R).

A Derived limits

In this subsection we consider a Grothendieck abelian category A that admits
products (in other words, satisfies Grothendieck’s axiom (AB3*)). We are con-
cerned with the derived functors

RIL: D(J[A) - D(A)

N
Rlim : D(A"Y) = D(A)

associated to product IT : [[y A — A and limit ]gl : AN — A. Note that
[Iy A and AN are again Grothendieck abelian categories (since they are functor
categories from a small category to a Grothendieck abelian category).

Recall from the lecture Homological Algebra I that for a general left exact
functor between Grothendieck abelian categories F' : B — B’, the derived func-
tor RF : D(B) — D(B’) can be calculated as follows. If C' € Cht(B) is a
bounded below chain complex, then there exists a quasi-isomorphism C' — [
with I a bounded below chain complex of injective objectsﬂ and RF(C) = F(I)
in D(B’). More generally, for any chain complex C € Ch(B), there exists a
quasi-isomorphism C' — @ to a fibrant chain complex[] and RF(C) = F(Q) in
D(B).

Lemma 36. An object (I;)ien in [[y.A is injective if and only if each I; is
injective in A.

Exercise 14. Prove Lemma [36]

Lemma 37. An object (--- — Ay — A1 — Ag) in AV is injective if and only
if each A; is injective and each A;11 — A; is a split surjection.

6Recall that an object I € B is injective if for every monomorphism A — B, every morphism
A — I factors through A — B.

"Recall that a chain complex Q € Ch(B) is fibrant if for every monomorphic quasi-
isomorphism A — B of chain complexes, every morphism A — @ factors through A — B.

11



Proof. Suppose Iy = (-++- — Iy — I} — I) is an injective object in AN. Let
An o A — AN be the functor sending A € A to (- - S0 AaM. . 2i>A) Then
n morphisms
A is exact and a left adjoint to the “evaluation at n” functor Fv,, (which sends
(+++ = By — By — By) to B,,). Since Ev, has an exact left adjoint it sends
injectives to injectives, and hence, each I,, = Fv,Z, is injective in A. To see
that each I,,+1 — I, is split surjective, consider the canonical monomorphism
Andn — Apgi1ln. Since Z, is injective, the canonical morphism A\,I, — Z,
factors as A\pI,, — Apt1l, — Z,. The degree n + 1,n,n — 1 piece of this
factorisation is

OHIn *>In+1

— 1, _

id id

So I, 41 — I, is split surjective.

Conversely, suppose that Iy = (--- — Iy — I; — Io) is an object of A" such
that each I,, is injective in A, and each I,,+1 — I, is split surjective. Suppose
that Ag = (... >A2—>A1—Ay) — (... By—>B1—By) = B, is a monomor-
phism in AN, and that A, — I, is some morphism. We will show by induction
that it factors through A, — B,. In degree 0, this follows from the fact that I
is injective: Ay — By is a monomorphism and I injective so Ay — I factors
as Ag — Bg — Iy. Suppose that we have factorisations A; — B; — I, for all
0 < i < n which are compatible with the transition morphisms of A,, B,, Is
respectively. In particular, we have the following diagram

T

Ao B, - -3,
A‘I’L—l Bn—l In—l

and we are looking for the dashed morphism which makes the diagram commute.
By hypothesis, I,, — I,,_; is split surjective. That is, I,, & I,,_1 & J for some J,
which is also injective as it is a direct summand of the injective object I,,. As J is
injective, the induced morphism A,, — J factors as A,, — B,, — J. On the other
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hand, we have the morphism b : B, — B,_1 — I,,_1 from the above diagram.
Then we define the dashed morphism to be (b,a) : B, = I,_1 & J = I,,. On
checks that this makes the diagram commute. O

Now that we consider chain complexes in [[y.A and A" we will have two
indices, (an upper) one for the chain complex direction, and (a lower) one for
the [y A, AN direction. We will implicitly use the canonical equivalences of

categories Ch([ ]y A) = [Iy Ch(A) and Ch(AY) = Ch(A)N.

ﬁ Beware, however, that the canonical inclusions Ch™ ([[A) C [y Ch* (A)
and Cht(AY) C Cht(A)Y are not essentially surjective.

Lemma 38. A chain complex (QF)ien in Ch(][y.A) is fibrant if and only if
each QY is fibrant in Ch(A).

Proof. Tt suffices to note that a morphism (A?);en — (B} )ien iS @ monomor-
phic quasi-isomorphism if and only if each A} — B is a monomorphic quasi-
isomorphism. O

Lemma 39. If a chain complex (Q?)ien in Ch(AY) is fibrant then each Q? is
fibrant in Ch(A).

Proof. As in the proof of Lemma the “evaluation at n” functor Ewv, :
Ch(AY) — Ch(A) has a left adjoint A, : Ch(A) — Ch(AY) which preserves
monomorphisms and quasi-isomorphisms. Consequently, Fv,, sends fibrant ob-
jects to fibrant objects. O

Proposition 40. Suppose that A is a Grothendieck abelian category with prod-
ucts. Then for any object (... —C3—C?—Cg) in Ch(AY), there is an isomor-
phism

Rlim O}, 2 Cone (Rnc,; wdzshift Rnc;)

in D(A).

Proof. In order to calculate R1lim CF, replace (... =Cs—=Cr—CY) with a quasi-
isomorphic fibrant complex (... —Q3$—Q1—Q}) in Ch(AY). Recall that every
fibrant chain complex is a chain complex of injective objects (the converse is
true if the complex is bounded below). In particular, for each i the sequence
(... —Qi—Qi1—QP) is injective in AN, and therefore by Lemma the mor-
phisms @, 11— Q! are split surjective. We will use this fact later.

Now by Lemma (39| each Q¢ is fibrant. Hence, (Q3) can also be used to
calculate the derived products as well. That is,

RimCs =limQ,  RICS =TIQ;
So it suffices to show that the canonical morphism

. . o id—shift N
lim @, — Cone (HQn .l HQn) [~1]
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is a quasi-isomorphism. But since each Q?, 11 Q¢ is split surjective, it follows

that each T1QY, id—shift Q! is surjective. So the sequence

0 — lim Q) — M@, =" 11}, — 0

is exact, and therefore the left term is quasi-isomorphic to the shifted cone of
the right morphism. O
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