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1 Introduction

We report on our attempt to formulate an algorithm to associate a bipartite graph on
a torus called a brane tiling to a lattice polygon, introduced by physicists Hanany and
Vegh [4]. We also discuss its relation with coamoebas following Feng, He, Kennaway
and Vafa [2].

A lattice polygon is a convex hull of a finite subset of Z? in R?2. We always assume
that the origin 0 € R? is in its interior. To a lattice polygon A, one can associate a
triangulated category of geometric origin in two different ways.

(A) Take a Laurent polynomial W € Cl[z*!,y*!] whose Newton polygon coincides
with A. Consider the derived category D’ Fut” W of the directed Fukaya cate-
gory of W.

(B) Take the toric Fano surface (or stack, to be more precise) Xa associated to A.
Consider the derived category D®coh XA of coherent sheaves on Xa.

The directed Fukaya category of a holomorphic function is an A.-category whose
set of objects is a distinguished basis of vanishing cycles and whose spaces of morphisms
are Lagrangian intersection Floer complexes. It is defined by Seidel [7] following an idea
of Kontsevich [6]. An A-category is a generalization of a category where the spaces of
morphisms are not only vector spaces but complexes of vector spaces, and the composi-
tion of morphisms are not necessarily associative but satisfy complicated compatibility
conditions which ensure the associativity at the level of cohomologies. Although the
directed Fukaya category u€” W depends on the choice of a distinguished basis of
vanishing cycles, its derived category D°Fut™” W is known to be independent of this
choice by Seidel [7]. Note that D® Fut” W does not depend on the choice of a general
Laurent polynomial whose Newton polygon coincides with A, since Floer cohomologies
are symplectic invariants and do not depend on the complex structure.

The toric Fano stack associated to A is defined as follows: Let {v;}X, be the set
of vertices of A numbered clockwise and K C (C*)" be the kernel of the map

P ®z C* : (C)Y = (C),

where ¢ : ZY — Z? is a homomorphism sending the i-th coordinate vector ¢; € Z" to
v;. Put U = {(z1,22,23) € C | (x1,29,73) # (0,0,0)} if N =3 and U = {(z;)X, €
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C" | (z4,z;) # (0,0) if [¢ — j| > 1} if N > 4. Then X is the quotient stack

Xa =[U/K]
of U by the natural action
K > U — U
w w w
(1,...,ay)  (21,...,z5) +— (121,...,QNTN)

of K.
The following conjecture is due to Kontsevich [5, 6]:

Conjecture 1 (homological mirror symmetry). There exists an equivalence
DPcoh Xp = DO Fut” W
of triangulated categories.

Hanany and Vegh [4] introduced another way to associate a triangulated category
to a lattice polygon:

(C) Take a brane tiling associated to A, which encodes the information of a quiver
' with relations. Consider the derived category D® mod CI'™ of representations
of this quiver.

Hanany, Herzog and Vegh [3] proposed a method to associate a sequence (E1,..., Ey)
of line bundles on XA, which conjecturally gives a full strong exceptional collection
in D®coh Xa whose total morphism algebra is isomorphic to the path algebra of the
quiver with relations obtained from A through the algorithm of Hanany and Vegh;

N
P Hom(E;, E;) = Cr'™.
1,j=1

This conjecture, together with a theorem of Bondal [1, Theorem 6.2], implies the

equivalence
Db coh Xp = D’ mod CI'™.

On the other hand, Feng, He, Kennaway, and Vafa [2] conjectured a relation between
the brane tiling and geometry of vanishing cycles of W, which implies the equivalence

D Fut” W = D’ mod CI'.

We have shown these conjectures when X is a toric orbifold of a toric del Pezzo
surface, from which homological mirror symmetry in this case follows as a corollary
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2 The algorithm of Hanany and Vegh

2.1 Basic definitions

Let T = R?/Z? be a real two-torus equipped with an orientation. A bipartite graph on
T consists of

e aset B C T of black vertices,
e aset W C T of white vertices, and

e aset F of edges, consisting of embedded intervals e on T" such that one boundary
of e belongs to B and the other boundary belongs to W. We assume that two
edges intersect only at the boundaries.

A quiver consists of
e aset V of vertices,
e aset A of arrows, and
e two maps s,t: A — V from A to V.

For an arrow a € A, s(a) and t(a) are said to be the source and the target of a
respectively. A path on a quiver is an ordered set of arrows (ay, an_1, - - ., a1) such that
s(ai41) = t(a;) for i = 1,...,n — 1. We also allow for a path of length zero, starting
and ending at the same vertex. The path algebra CQ of a quiver Q = (V) A, s,1) is the
algebra spanned by the set of paths as a vector space, and the multiplication is defined
by the concatenation of paths;

(by - -2y b1, Gy .y a1)  s(by) = t(ay),
R {0 otherweise.
A quiver with relations is a pair of a quiver and a two-sided ideal Z of its path algebra.
For a quiver I' = (@, Z) with relations, its path algebra CI" is defined as the quotient
algebra CQ/Z.

For a choice of an order < on the set V of vertices, the directed subquiver QQ—
is obtained from () by eliminating the arrows a € A satisfying s(a) > t(a). The
path algebra CQ™ is a subalgebra of CQ, and an ideal Z of CQ induces an ideal
I7=INCR" of CQ.

2.2 Admissible families

Let A C R? be a lattice polygon, i.e., the convex hull of a finite subset of Z2. An edge
of A is a connected component of the boundary A \ (0A N Z?) of A minus its lattice
points. For example, both the convex hull A, of (—1,0), (1,0) and (0,1) shown in
Figure 1 and the convex hull A4 of (1,0), (0,1), (—1,0) and (—1,—1) shown in Figure
2 have four edges.



For each edge a of A, draw an oriented line L, on 7 in the direction of its primitive
outward normal vector. Since the choice of L, is unique up to translations, the set
Conf(A) of families {L,}, of oriented lines is a torus (S')", where n is the number
of edges of A. Let S be the set of families {L,}, such that more than two lines
meet at one point. We will restrict ourselves to families {L,}, from the complement
Conf(A)\ S henceforth, i.e., we assume that no three lines meet at one point. A family
{L.}. divides T into a finite number of polygons { P;}™,. A polygon P; is called white
if the orientations of L, N P; induced from those of L, and P; coincide for all the
edges a, and black if they are opposite for all the edges. A connected component of
(UaLa) \ (Uap(La N Lp)) can bound at most one colored polygon, and the family {L,},
is called admissible if it always does.

The set mo(Conf(A)\S) classifies families of oriented lines up to small perturbations
which do not chage the combinatorial structure. The fundamental question is the
following;:

Problem 2.

1. Is there an admissible family of oriented lines for any lattice polygon A¥?

2. If there is one, then is the class of admissible families in mo(Conf(A)\ S) unique?

We know the answer when X is a toric del Pezzo surface by a brute-force case-
by-case analysis: When X, is P2, P! x P!, or P? blown-up at one point, then there is
a unique class of admissible family. When X is P? blown-up at two or three points,
then there are two classes of admissible families related by a reflection, so that the
resulting quivers with relations are isomorphic.

As an example, consider families of oriented lines for the triangle A, in Figure 1.
There are two combinatorially distinct ways shown in Figure 3 and Figure 4 to arrange
four lines in the directions of outward normal vectors of the edges of A,. In Figure
3, all the connected components of (UyLg) \ (Uas(La N Ly)) bound colored polygons,
whereas in Figure 4, the connected components of (UsLg,) \ (Uap(La N Ly)) drawn in
dotted lines do not bound any colored polygon. Hence the polygon A, in Figure 1
has a unique class of admissible families. In the same way, one can show that the
quadrilateral A4 in Figure 2 has a unique class of admissible families shown in Figure
7.

2.3 Brane tilings and quivers

To an admissible family {L,},, one associates a bipartite graph on T called the brane
tiling as follows; the set W of white vertices is the set of the centers of gravities of
white polygons, and the set B of black vertices is the set of the centers of gravities
of black polygons. For a pair of colored polygons sharing a vertex, their centers of
gravities are connected by a straight line segment. For example, Figure 5 shows the
brane tiling associated with the admissible family in Figure 3, and Figure 8 shows the
brane tiling associated with the admissible family in Figure 7.

A brane tiling (B, W, E) encodes the information of a quiver I' = (V, A, s, ¢,Z) with
relations in the following way: The set V' of vertices is the set of connected components
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Figure 1: A triangle A,

Figure 2: A quadrilateral A,
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Figure 3: The admissible family

Figure 5: The brane tiling Figure 6: The quiver
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Figure 7: The unique admissible family for

Figure 8: The brane tiling
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Figure 9: The quiver I'y

of the complement T\ (|J,cz€), and the set A of arrows is the set E of edges of the
graph. The directions of the arrows are determined by the colors of the vertices of the
graph, so that the white vertex w € W is on the right of the arrow. In other words,
the quiver is the dual graph of the brane tiling equipped with an orientation given by
rotating the white-to-black flow on the edges of the brane tiling by minus 90 degrees.
For example, Figure 6 and Figure 9 show the quivers associated to the brane tilings in
Figure 5 and Figure 8 respectively.

The relations of the quiver are described as follows: For an arrow a € A, there
exist two paths p, (a) and p_(a) from ¢(a) to s(a), the former going around the white
vertex connected to a € £ = A clockwise and the latter going around the black vertex
connected to a counterclockwise. Then the ideal Z of the path algebra is generated by
py(a) — p_(a) for all a € A.

For example, the ideal of relations for the quiver in Figure 6 is given by

(yz — ¢y, cx — xz,2b — ya, bc — zb, za — ac, ay — bx),
whereas that for the quiver in Figure 9 is given by
(fig2c = fod, fsd — figic, fogr — f3g2,a1f192 — azf1g1,
az f3 — a1 fa, gacay — gicag, g1b — day, dag — gob).
The last step in the algorithm of Hanany and Vegh is the choice of an order on the

set of vertices of the quiver. This involves the choice of an internal perfect matching

6



of the brane tiling. We refer the reader to [9, section 4] for the description of this
step. This choice of an order corresponds to the choice of a foundation of a helix in
Db coh X4, and to the choice of an order in the distinguished basis of vanishing cycles
in D°Zut” W. The quiver I'” appearing in section 1 is the directed subquiver of I'
with respect to this order.

3 Coamoebas and Newton polygons

Here we discuss the relation between Newton polygons and asymptotic behaviors of
coamoebas. The coamoeba of an algebraic subvariety of a torus (C*)" is defined by
Passare and Tsikh as its image by the argument map

(O (R/Z)"
(X1, ..oy Ty) g(arg(ajl), —.arg(zy)).

Here n is a natural number. Consider the case when n = 2. For a Laurent polynomial

W(z,y)= Y aga'y

(i,4)€2?
in two variables, its Newton polygon is defined as the convex hull
A = Conv{(i,j) € Z* | a;; # 0} C R®.

For an edge e of A, let (n(e), m(e)) € Z? be the primitive outward normal vector of e
and I(e) be the integer such that the defining equation for the edge e is

n(e)i +m(e)j = l(e).
The leading term of W with respect to the edge e is defined by

We(z,y) = Z ai; 'y’

n(e)i+m(e)j=l(e)
This is indeed the leading term if we put
(z,y) = (r"Ou, r™Ey), r € R and u,v € C
and take the r — oo limit;
P(r™@y, r™©y) = rlEOW, (u, v) + O (1),
Now assume that for an edge e, the leading term W,(z, y) is a binomial

We(z,y) = e(ar)z"y™* + e(a2)zy”,



where a1, oy € R/Z, (i1, 71), (i2, j2) € Z? and e(q;) = exp(2mv/—1q;) for i = 1,2. Put
(2,y) = (r"e(d),r™e(g)).
Then the leading behavior of W as r — oo is given by
rOW,(e(d), e(d)) = r{e(a; +i10 + j1¢) + e(ag + 128 + j20)}. (2)

Hence the coamoeba of W~'(0) asymptotes in this limit to the line
. L 1
(2 — an) + (2 —41)0 + (J2 — J1)9 + 3= 0 mod Z

on the torus T = (R/Z)?. This line will be called an asymptotic boundary of the
coamoeba of W1(0).

The asymptotic boundary has a natural orientation coming from the outward nor-
mal vector of the edge of A. To understand the role of this orientation, take a pair of
adjacent edges e and €’ of A as in Figure 10 and consider the behavior of the coamoeba
of W~1(0) near the intersection of asymptotic boundaries corresponding to e and €'
Assume that the leading terms corresponding to e and €’ are binomials

We(z,y) =e(a)zy” +e(B)z?y”,

Welz,y) = e(B)zy” +e(y)zhy®

for some «, 3,7 € R/Z and (i1, J1), (i2, J2), (i3, J3) € Z*. Put
Weer (z,y) = e(a):r:ilyj1 + e(ﬂ):::”yj2 + e(ﬂ)xisyjs.

Assume further that all the coefficients of W corresponding to interior lattice points
of the Newton polygon of W, vanish. Then W, is the sum of the leading term and
the subleading term of W as one puts

('Ta y) = (T,—n(e”)u,r—m(e”)v)’ S R>0 and u,v € (Cx’

and take the r — oo limit. Here, (n(e"), m(e")) € Z? is the primitive outward normal
vector of the edge e of the Newton polygon of W, shown in Figure 10. The coamoeba
for the sum of three monomials has been analyzed in [8]; the asymptotic boundaries
coincide with the actual boundaries of the coamoeba, and the orientations on the
asymptotic boundaries determine which side of the boundary belongs to the coamoeba.
Hence the orientations of asymptotic boundaries determine the leading behavior of the
coamoeba near the intersections of asymptotic boundaries as in Figure 11.

4 Coamoeba and vanishing cycles

Here we discuss the vanishing cycles of

1 1
W(ay)=a+y——+
T  xy
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Figure 11: The leading behavior of the
Figure 10: A pair of adjacent edges of the coamoeba near an intersection of asymp-
Newton polygon totic boundaries.

and their images under the argument map. The Newton polygon of W is the quadri-
lateral A, shown in Figure 2. The holomorphic map W has four critical points. Take
the origin as the base point and let (¢;);_; be the distinguished set of vanishing paths,
defined as the straight line segments from the origin to the critical values.

The asymptotic boundary of the coamoeba of W~1(0) is shown in Figure 12, which
coincides with the unique admissible family of oriented lines shown in Figure 7. Figure
13 shows a schematic picture of the actual coamoeba. To study the image of the
vanishing cycles by the argument map, we cut the coamoeba into pieces along the bold
lines in Figure 14. They cut W~'(0) into the union of two quadrilaterals and four
triangles, glued along ten edges. By gluing these pieces, one obtains an elliptic curve
minus four points shown in Figure 15. It turns out that the vanishing cycles on W~(0)
looks as in Figure 16, whose images by the argument map encircles the holes in the
coamoeba as shown in Figure 17.

The strategy for the proof of the equivalence

D°Zut” W = D mod CT

is summarized in Table 1. The vertices of the brane tiling correspond to the disks,

graph | W~1(0) quiver
vertex | disk relation
color | orientation sign
face vanishin cycle | vertex
edge | intersection arrow

Table 1: A dictionary

which are glued together to form the regular fiber W ~1(0). The color of a vertex
determines whether this gluing procedure preserves or reverses the cyclic order on the
set of edges connected to the vertex. The set of faces of the brane tiling corresponds
to the set of vanishing cycles, and the set of edges are in bijection with the set of
intersection points of vanishing cycles under this correspondence. The set of vanishing
cycles is the set of objects in the directed Fukaya category $ut™ W, and the set of their
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Figure 12: The asymptotic boundary Figure 13: The actual coamoeba
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Figure 17:  Vanishing cycles on the

Figure 16: The vanishing cycles
coamoeba
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intersection points spanns the spaces of morphisms. To make a quiver with relations
which is derived-equivalent to Fu€™ W, we assign a vertice to each object of Fut™ W
and an arrow to each basis of the spaces of morphisms. The relations in the quiver
come from A, -operations in Fut~ W, which in turn come from holomorphic disks in
W~=1(0) with Lagrangian boundary conditions. The color of a vertex of the brane tiling
determines the sign of the contribution of the disk to the A, -operation in Fut™ W.
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