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1 Introduction

Let n be a natural number and ∆ be a convex lattice polytope in R
n, i.e., the convex

hull of a finite subset of Zn. We always assume that the origin is in the interior of ∆.
Homological mirror symmetry for toric Fano stacks, conjectured by Kontsevich [13], states
that there is an equivalence

Db cohX ∼= Db FukW (1)

of two triangulated categories of geometric origin associated to ∆.
The category on the left hand side is the derived category of coherent sheaves on a

toric Fano stack X defined as follows: Let {vi}ri=1 be the set of vertices of ∆ and take a
simplicial stacky fan Σ such that the set of generators of one-dimensional cones is given
by {vi}ri=1. The associated toric stack is the quotient stack

X = [(Cr \ SR(Σ))/K]

where the Stanley-Reisner locus SR(Σ) consists of points (z1, . . . , zr) such that there is
no cone in Σ which contains all vi for which zi = 0, and

K = Ker(φ⊗ C
×)

is the kernel of the tensor product with C× of the map φ : Zr → Zn sending the i-th
coordinate vector to vi for i = 1, . . . , r. The torus Spec C[Zn] acting on X will be denoted
by T. Although X depends not only on ∆ but also on Σ, the derived category Db cohX
is independent of this choice and depends only on ∆.

On the right hand side, one takes a sufficiently general Laurent polynomial

W =
∑

ω∈∆∩Zn

aωx
ω

whose Newton polygon coincides with ∆. This defines an exact Lefschetz fibration

W : (C×)n → C

with respect to the standard cylindrical Kähler structure on (C×)n, and FukW is the
Fukaya category of Lefschetz fibration in the sense of Seidel [15].

The equivalence (1) is proved for P
2 and P

1 × P
1 by Seidel [14], weighted projective

planes and Hirzebruch surfaces by Auroux, Katzarkov and Orlov [3], and toric del Pezzo

1



surfaces by Ueda [16]. Here we discuss a proof of the torus-equivariant version of (1) for
the projective space. The proof is based on the Picard-Lefschetz theory developed by
Seidel [15] and the behavior of vanishing cycles by the argument map. The latter is a
generalization of the relation between brane tilings and vanishing cycles, conjectured by
Feng, He, Kennaway and Vafa [10] and proved in some cases [17, 18]. See also Auroux,
Katzarkov and Orlov [4] for homological mirror symmetry for not necessarily toric del
Pezzo surfaces, Abouzaid [1, 2] for an application of tropical geometry to homological
mirror symmetry, and Kerr [11] for the behavior of homological mirror symmetry under
weighted blowup of toric surfaces. The works of Bondal and Ruan [7] and Fang, Liu,
Treumann and Zaslow [8, 9] use constructible sheaves on real tori and their universal
covers, and it is an interesting problem to explore relationship between their works and
ours.

2 Fukaya categories

For a Z-graded vector space N = ⊕j∈ZN
j and an integer i, the i-th shift of N to the left

will be denoted by N [i]; (N [i])j = N i+j.

Definition 1. An A∞-category A consists of

• the set Ob(A) of objects,

• for c1, c2 ∈ Ob(A), a Z-graded vector space homA(c1, c2) called the space of mor-
phisms, and

• operations

ml : homA(cl−1, cl) ⊗ · · · ⊗ homA(c0, c1) −→ homA(c0, cl)

of degree 2 − l for l = 1, 2, . . . and ci ∈ Ob(A), i = 0, . . . , l, satisfying the A∞-
relations

l−1∑

i=0

l∑

j=i+1

(−1)deg a1+···+deg ai−iml+i−j+1(al ⊗ · · · ⊗ aj+1 ⊗ mj−i(aj ⊗ · · · ⊗ ai+1)

⊗ai ⊗ · · · ⊗ a1) = 0, (2)

for any positive integer l, any sequence c0, . . . , cl of objects of A, and any sequence
of morphisms am ∈ homA(cm−1, cm) for m = 1, . . . , l.

An A∞-category satisfying mk = 0 for k ≥ 3 is the same thing as a differential
graded category, i.e., a category whose spaces of morphisms are complexes such that the
differential d satisfies the Leibniz rule with respect to the composition. The derived
category of an A∞-category is defined using twisted complexes, which are introduced
by Bondal and Kapranov [6] for differential graded categories and generalized to A∞-
categories by Kontsevich [12].

The Fukaya category FukM of a symplectic manifold (M,ω) is an A∞-category whose
objects are Lagrangian submanifolds of M (together with additional structures such as
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gradings, spin structures and flat U(1) bundles on them) and whose spaces of morphisms
are Lagrangian intersection Floer complexes: For two objects L1 and L2 intersecting
transversely, hom(L1, L2) is a graded vector space spanned by intersection points L1∩L2.
For a positive integer k, a sequence (L0, . . . , Lk) of objects, and morphisms pl ∈ Lℓ−1 ∩
Lℓ for ℓ = 1, . . . , k, the A∞-operation mk is given by counting the virtual number of
holomorphic disks with Lagrangian boundary conditions;

mk(pk, . . . , p1) =
∑

p0∈L0∩Lk

#Mk+1(L0, . . . , Lk; p0, . . . , pk)p0.

Here, Mk+1(L0, . . . , Lk; p0, . . . , pk) is the stable compactification of the moduli space of
holomorphic maps φ : D2 →M from the unit diskD2 with k+1 marked points (z0, . . . , zk)
on the boundary respecting the cyclic order, with the following boundary condition: Let
∂lD

2 ∈ ∂D2 be the interval between zl and zl+1, where we set zk+1 = z0. Then φ(∂lD
2) ⊂

Lℓ and φ(zl) = pl for ℓ = 0, . . . , k.
A holomorphic function

π : E → C

on an exact Kähler manifold E is an exact Lefschetz fibration if all the critical points of
π are non-degenerate. This means that for any critical point p ∈ E, one can choose a
holomorphic local coordinate (x1, . . . , xn) of E around p such that

π(x1, . . . , xn) = x2
1 + · · · + x2

n + w, (3)

where w is the critical value of π. For the moment, we assume that all the critical values
are distinct and 0 is a regular value of π. We choose the origin as the base point and write

E0 = π−1(0).

A vanishing path is an embedded path γ : [0, 1] → C such that

• γ(0) = 0,

• γ(1) is a critical value of π, and

• γ(t) is not a critical value of π for t ∈ (0, 1).

A distinguished set of vanishing paths is an ordered set (γi)
m
i=1 of vanishing paths γi :

[0, 1] → C such that

• {γi(1)}mi=1 is the set of critical values of π,

• images of γi and γj for i 6= j intersect only at the origin,

• γ′i(0) 6= 0 for i = 1, . . . ,m, and

• arg γ′1(0) > · · · > arg γ′m(0) for a suitable choice of a branch of the argument map.
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For a point x ∈ E0 and a curve γ : [0, 1] → C with γ(0) = 0, one can define the horizontal
lift γ̃x : [0, 1] → E starting from x by the condition that the tangent vector of the curve
γ̃ is orthogonal to the tangent space of the fiber with respect to the Kähler form.

Let γ be a vanishing path and y be the critical point of π above γ(1). Then the
vanishing cycle along γ is the cycle of E0 which collapses to the critical point y by the
symplectic parallel transport along γ;

Vγ =
{
x ∈ E0

∣∣∣ lim
t→1

γ̃x(t) = y
}
.

The vanishing cycle is a Lagrangian (n− 1)-sphere E0. The trajectory

∆γ =
⋃

x∈Vγ

Im γ̃x

of the vanishing cycle is called the Lefschetz thimble. It is a Lagrangian ball in E whose
boundary is the corresponding vanishing cycle;

∂∆γ = Vγ .

If the Kähler structure is Euclidean with respect to the local coordinate (x1, . . . , xn) such
that π is of the form (3), w is a negative real number, and the vanishing path is the
straight line from the origin to w, then the vanishing cycle is

Vγ = {(x1, . . . , xn) ∈ R
n | x2

1 + · · · + x2
n = |w|}

⊂ E0 = {(x1, . . . , xn) ∈ C
n | x2

1 + · · · + x2
n + w = 0}

and the Lefschetz thimble is given by

∆γ = {(x1, . . . , xn) ∈ R
n | x2

1 + · · · + x2
n ≤ |w|}.

For a distinguished set (γi)
m
i=1 of vanishing paths, the ordered set

V = (Vγ1, . . . , Vγn
)

is called the distinguished basis of vanishing cycles.
To define the Fukaya category of Lefschetz fibration, let

β : Ẽ = {(x, y) ∈ E × C | π(x) = y2} → E

be the double cover of E branched along the fiber E0 = π−1(0) over the origin. Then the

covering transformation ι : (x, y) 7→ (x,−y) defines a Z/2Z-action on Ẽ, which induces

an action on the Fukaya category Fuk Ẽ of Ẽ. Roughly speaking, the Fukaya category
Fuk π of the Lefschetz fibration π is defined as the ι-invariant part of Fuk Ẽ; objects of
Fuk π are ι-invariant Lagrangian submanifolds of Ẽ, and the space of morphisms in Fukπ
are ι-invariant part of morphisms in Fuk Ẽ.

There are two important classes of ι-invariant Lagrangian submanifolds in Ẽ. One of
them, called of type (U) in [15], is the inverse image

L̃ = β−1(L) = L̃+

∐
L̃−
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µ

µ+µ−

Figure 1: A matching path

of a Lagrangian submanifold L whose image by π is contained in a simply-connected
domain inside C

× (i.e., C minus the base point). It is the disjoint union of two connected

components L̃+ and L̃−. The other, called of type (B), is the inverse image

∆̃γ = β−1(∆γ)

of the Lefschetz thimble ∆γ for a vanishing path γ. It is a Lagrangian n-sphere in Ẽ.

For type (U) Lagrangian submanifolds L̃0 and L̃1 of Ẽ, their intersections are two
disjoint copies of intersections between L0 and L1 in E. By taking ι-invariant, one can
show that there is a natural isomorphism

homFukπ(L̃0, L̃1) ∼= homFukE(L0, L1)

of vector spaces, which lifts to a full and faithful A∞-functor

FukE → Fukπ.

For type (B) Lagrangian submanifolds, the situation is a little more complicated, but

the conclusion is that the full A∞-subcategory of Fukπ consisting of ∆̃ = (∆̃γ1, . . . , ∆̃γm
)

for a distinguished set (γi)
m
i=1 of vanishing paths is quasi-isomorphic to the directed subcate-

gory Fuk→(V ) of FukE0, whose set of objects is the distinguished basis V = (Vγ1, . . . , Vγm
)

of vanishing cycles, whose spaces of morphisms are given by

homFuk→(V )(Vγi
, Vγj

) =





C · idVγi
i = j,

homFukE0
(Vγi

, Vγj
) i < j,

0 otherwise,

and non-trivial A∞-operations coincide with those in FukE0.
Let µ : [−1, 1] be an embedded path in C such that µ−1(Critv(π)) = {−1, 1}. One can

deform µ and split it into two pieces µ±(t) = µ(±t) to obtain a pair of vanishing paths
as shown in Figure 1. If the vanishing cycles Vµ− and Vµ+

are isotopic as exact framed
Lagrangian (n− 1)-spheres in E0, then µ is called a matching cycle. In this case, one can
perturb ∆µ+

∪ ∆µ− to obtain a Lagrangian n-sphere Σµ called the matching cycle.
Picard-Lefschetz theory describes the behavior of Fukaya category under symplectic

Dehn-twist along Lagrangian spheres. One of the consequences is that the type (U)

Lagrangian submanifold Σ̃µ = β−1(Σ̃µ) of Ẽ coming from a matching path µ is isomorphic

to the mapping cone over the (unique up to scalar) non-trivial morphism from ∆̃µ− to

∆̃µ− in the derived Fukaya category Db Fuk π of Lefschetz fibration;

Σ̃µ
∼= Cone(∆̃µ− → ∆̃µ+

).
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This is important since it allows to reduce computation for matching cycles in FukE to
that of vanishing cycles in FukE0. By iterating this process, one ends up in the case
of symplectic 2-manifolds, where Lagrangian submanifolds are simple closed curves and
counting of holomorphic disks is a combinatorial problem of “painting polygons”.

A natural source of matching paths is a Lefschetz bifibration. It is a diagram

E ̟−→ C
2 ψ−→ C.

with certain genericity conditions, which implies that for any critical point of Ψ = ψ ◦̟,
there are local holomorphic coordinates of E and C2 such that

̟(x1, . . . , x2n) = (x2
1 + x2

2 + · · · + x2
2n, x1), ψ(y1, y2) = y1.

Then the map
Ew ̟w−−→ Sw

from Ew = Ψ−1(w) to Sw = ψ−1(w) for a general w ∈ C is a Lefschetz fibration, and by
chasing the trajectory of critical values of ̟w as w varies along a vanishing path γ, one
obtains a matching path µ in S0 such that the matching cycle Σµ is Hamiltonian isotopic
to the vanishing cycle Vγ.

3 Equivariant homological mirror symmetry for P
3

The mirror of the projective space P3 is given by the Laurent polynomial

W (x, y, z) = x+ y + z +
1

xyz

with critical points x = y = z = ±1,±
√
−1 and critical values ±4,±4

√
−1. Choose a

distinguished set of vanishing paths (γi)
4
i=1 as the straight lines from the origin to the

critical values. To use Picard-Lefschetz theory, consider the diagram

(C×)3 ̟−→ C × C
× ψ−→ C

where

̟(x, y, z) =

(
x+ y + z +

1

xyz
, z

)
, ψ(t, z) = t.

The critical values of
̟t : W−1(t) → ψ−1(t) ∼= C

×

are (−3)3/4 at t = 0, which moves as shown in Figure 2 along the vanishing paths (γi)
4
i=1.

These four paths are matching paths for ̟0 and one can reduce computations in FukW
to those in Fuk̟0. Take z = 1 as a base point and choose a distinguished set (δi)

4
i=1

of vanishing paths for ̟0 as straight lines from the base point. The fiber ̟−1
0 (z) is a

branched double cover of C× by the y-projection

πz : ̟−1
0 (z) → C×

∈ ∈

(x, y, z) 7→ y.
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Figure 2: Matching cycles on the z-plane Figure 3: Matching cycles on the y-plane

Figure 3 shows the behavior of these branch points along vanishing paths (δi)
4
i=1, which

can be considered as matching paths coming from the Lefschetz bifibration

W−1(0) → C
× × C

× → C
×

∈ ∈ ∈

(x, y, z) 7→ (y, z) 7→ z.

Now one can use Picard-Lefschetz theory to compute the Fukaya category of W . Strictly
speaking, one has to go to the universal cover of the z-plane to apply Seidel’s theory, since
the z-plane is not simply-connected. This passage to the universal cover can be taken
into account by studying the behavior of the branch points of πz as one goes around the
origin in the z-plane.

On the mirror side, the passage to the universal cover of the z-plane corresponds to
working equivariantly with respect to a certain subgroup C× ⊂ T of the torus T acting
on P3. From this point of view, it is more natural to work equivariantly with respect to
the whole torus T and consider the derived category Db cohT

P
3 of T-equivariant coherent

sheaves. This in turn corresponds to passing to the universal cover

φ : C
n → (C×)n

on the symplectic side and replacing the Lefschetz fibration W with its pull-back;

W̃ = W ◦ φ : C
n → C.

The fact that W̃ has infinitely many critical points does not cause any problem in defining
its Fukaya category and formulating a torus-equivariant version of (1):

Conjecture 2. For any convex lattice polytope, there is an equivalence

Db cohTX ∼= Db Fuk W̃

of triangulated categories.

The main result is the following:

Theorem 3. Conjecture 2 holds when X is the projective space.
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The key ingredient in the proof of Theorem 3 is a division of the real 3-torus T = R3/Z3

into the union of four truncated octahedra, which encodes the information of the Fukaya
category FukW in a nice way. A truncated octahedron is obtained from an octahedron by
truncating its six vertices. The truncation of each vertex increases the numbers of faces,
edges and vertices by one, four and three respectively. As a result, a truncated octahe-
dron has fourteen faces, thirty-six edges and twenty-four vertices. The bitruncated cubic
honeycomb is a cell-transitive space-filling tessellation consisting of truncated octahedron.
It can be realized as the Voronoi tessellation of the body-centered cubic lattice. By taking
a quotient of the bitruncated cubic honeycomb with respect to a suitable lattice M ⊂ R3,
one obtains a tessellation of a torus T = R3/M by four truncated octahedra. To this
tessellation, one can associate an A∞-category A as follows:

• The set of objects is the set of cells.

• The space of morphisms between two cells are spanned by their common faces.

• For each edge e, one has an A∞-operation

mk(f1, . . . , fk) = ±fk+1

where (f1, . . . , fk+1) is the set of faces around e.

To be more precise, we fix an order on the set of cells which comes from the order in
the distinguished basis of vanishing cycles, and color faces and edges according to some
Floer-theoretic data (grading and sign). The order of the faces (f1, . . . , fk+1) around an
edge is chosen in accordance with the order on the set of cells.

Using Picard-Lefschetz theory and the information of matching paths shown in Figures
2 and 3, one can show that FukW is equivalent to A;

FukW ∼= A.
On the other hand, it is easy to see that the minimal model of the full subcategory of
(the enhancement of) Db coh P3 consisting of the full exceptional collection

(OP3,ΩP3(1)[1],Ω2
P3(2)[2],Ω3

P3(3)[3])

constructed by Beilinson [5] is equivalent to A. This shows that

Db coh P
3 ∼= DbA,

and homological mirror symmetry for P3 follows.
The passage to the equivariant situation can be achieved by working on the univer-

sal cover R
3 of the 3-torus T . This gives an A∞-category Ã whose set of object is the

(infinite) set of cells of bitruncated cubic honeycomb, with the space of morphisms and
A∞-operations analogous to those of A. The generator of Db cohT

P3 can be obtained by
tensoring the exceptional collection above with the set Irrep(T) of irreducible representa-
tions of T, which can be identified with the lattice M . One can show

Fuk W̃ ∼= Ã
and

Db cohTX ∼= DbÃ
just as in the non-equivariant case, and Theorem 3 follows.
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