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1 Introduction

Let F = GL(n,C)/P be a (full or partial) flag manifold. TheGelfand-Cetlin system,
introduced by Guillemin and Sternberg [10], is a completely integrable system

Φ : F −→ R(dimR F)/2

on F , i.e., a set of functionally independent and Poisson commuting functions. The
image∆ = Φ(F) is a convex polytope, which we call theGelfand-Cetlin polytope,
andΦ gives a Lagrangian torus fibration structure over the interior Int∆ of ∆ . Be-
cause of non-smoothness ofΦ , it has non-torus fibers on some faces of codim≥ 3.
In this paper we study Lagrangian intersection Floer theory for Lagrangian torus
and non-torus fiber of the Gelfand-Cetlin system.

Lagrangian intersection Floer theory for torus orbits in a toric manifold has been
developed by Fukaya, Oh, Ohta and Ono [7]. We recall some of the results which
are relevant to this paper. Let(X,ω) be a compact toric manifold of dimCX = N,
andΦ : X → RN be the toric moment map with moment polytope∆ = Φ(X). For
an interior pointu∈ Int∆ , let L(u) denote the Lagrangian torus fiberΦ−1(u).

• The potential functionPO of Lagrangian torus fibers is defined as a function on∪
u∈Int∆

H1(L(u);Λ0/2π
√
−1Z)∼= Int∆ × (Λ0/2π

√
−1Z)N,
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whereΛ0 is the Novikov ring. In the Fano case,PO can be regarded as a Lau-
rent polynomial, and it coincides with the superpotential of the Landau-Ginzburg
mirror of X.

• Each critical point ofPO corresponds to a pair(L(u),b) of a fiber L(u) and
b∈ H1(L(u);Λ0/2π

√
−1Z) with nontrivial Floer homology.

• The quantum cohomology ofX is isomorphic to the Jacobi ring Jac(PO) of the
potential function.

See [7] or [8] for more detail. In particular, the number of critical points ofPO
is equal to the rank of the cohomology groupH∗(X) of X, provided thatPO is a
Morse function.

In the case of Gelfand-Cetlin system, Nishinou and we [11] compute the potential
function of Lagrangian torus fibers by using a toric degeneration of the flag man-
ifold, and show that it coincides with the superpotential of the Landau-Ginzburg
mirror of the flag manifold ([9], [1]). In contrast to the toric case, the number of
critical points of the potential function, and hence the number of Lagrangian torus
fibers with nontrivial Floer homology, is smaller than the rank ofH∗(F) in general.
Eguchi, Hori, and Xiong [3] and Rietsch [12] consider a partial compactification of
the mirror ofF to get as many critical points of the superpotential as rankH∗(F).
It is natural to expect that the critical points at “infinity” correspond to Lagrangian
fibers on the boundary of the Gelfand-Cetlin polytope. In this paper, we study Floer
homology of such non-torus fibers in the 3-dimensional flag manifold Fl(3) and the
Grassmannian Gr(2,4) of 2-planes inC4.

This paper is organized as follows. In Section 2 we recall the construction of the
Gelfand-Cetlin system and see non-torus Lagrangian fibers in Fl(3) and Gr(2,4).
In Section 3 we study the potential function for the Gelfand-Cetlin system. The
computation of the Floer homologies of non-torus Lagrangian fibers in Fl(3) and
Gr(2,4) is given in Section 4.

2 Gelfand-Cetlin System

Fix a sequence 0= n0 < n1 < · · ·< nr < nr+1 = n of integers, and setki = ni −ni−1

for i = 1, . . . , r +1. The flag manifoldF = F(n1, . . . ,nr ,n) is defined by

F =U(n)/(U(k1)×·· ·×U(kr+1)).

Let Fl(n) := F(1,2, . . . ,n) and Gr(k,n) := F(k,n) denote the full flag manifold and
the Grassmannian ofk-planes inCn, respectively. The dimension ofF(n1, . . . ,nr ,n)
is given by

N = N(n1, . . . ,nr ,n) := dimCF(n1, . . . ,nr ,n) =
r

∑
i=1

(ni −ni−1)(n−ni).
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We identify the dualu(n)∗ of the Lie algebrau(n) of U(n) with the space
√
−1u(n)

of Hermitian matrices by using an invariant inner product. ThenF is identified with
the adjoint orbitOλ ⊂

√
−1u(n) of a diagonal matrixλ = diag(λ1, . . . ,λn) with

λ1 = · · ·= λn1︸ ︷︷ ︸
k1

> λn1+1 = · · ·= λn2︸ ︷︷ ︸
k2

> · · ·> λnr+1 = · · ·= λn︸ ︷︷ ︸
kr+1

.

Note thatOλ consists of Hermitian matrices with fixed eigenvaluesλ1, . . . ,λn. Let
ω be the Kostant-Kirillov form onOλ .

For x∈ Oλ andk= 1, . . . ,n−1, letx(k) denote the upper-leftk×k submatrix of

x. Sincex(k) is also a Hermitian matrix, it has real eigenvaluesλ (k)
1 (x) ≥ λ (k)

2 (x) ≥
·· · ≥ λ (k)

k (x). By taking the eigenvalues for allk = 1, . . . ,n−1, we obtain a set of

n(n− 1)/2 functions(λ (k)
i )1≤i≤k≤n−1. Since the eigenvalues satisfy the following

inequalities

λ1 λ2 λ3 · · · λn−1 λn
≥ ≥ ≥ ≥ ≥ ≥

λ (n−1)
1 λ (n−1)

2 λ (n−1)
n−1

≥ ≥ ≥
λ (n−2)

1 λ (n−2)
n−2

≥ ≥
·· · · · ·

≥ ≥
λ (1)

1

, (1)

some ofλ (k)
i are constant functions ifF is not a full flag manifold. It is easy to see

that the number of nonconstantλ (k)
i coincides withN= dimCF . The Gelfand-Cetlin

system is defined to be the tuple

Φ = (λ (k)
i )i,k : F(n1, . . . ,nr ,n)−→ RN(n1,...,nr ,n)

of nonconstantλ (k)
i .

Proposition 2.1(Guillemin-Sternberg [10]). The mapΦ is a completely inte-

grable system on(F(n1, . . . ,nr ,n),ω), and the functionsλ (k)
i are action variables.

The image∆ = Φ(F) is a convex polytope defined by(1), and the fiber L(u) =
Φ−1(u) over each interior point u∈ Int∆ is a Lagrangian torus.

Example 2.1.The Gelfand-Cetlin polytope for the 3-dimensional flag manifold
Fl(3) is defined by
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Fig. 1 The Gelfand-Cetlin
polytope forFl(3) u

2

u

1

u

3

λ1 λ2 λ3
≥ ≥ ≥ ≥

u1 u2
≥ ≥

u3

.

The Gelfand-Cetlin system has a non-torus fiber over the vertexu0 = (λ2,λ2,λ2),
where four edges are intersecting (See Fig. 1). The fiberL0 = Φ−1(u0) is given by

L0 =


λ2 0 z1

0 λ2 z2

z1 z2 λ1−λ2+λ3

 ∈ Oλ

∣∣∣∣∣∣ |z1|2+ |z2|2 = (λ1−λ2)(λ2−λ3)

 ,

which is diffeomorphic to a 3-sphereS3.

Example 2.2.Next we consider the case of Gr(2,4). After a translation, we may
assume thatλ1 = λ2 =−λ3 =−λ4 = λ for λ > 0. Then∆ is given by

λ λ −λ −λ
=

=
≥ ≥ =

=

λ u1 −λ
≥ ≥ ≥ ≥

u2 u3
≥ ≥

u4

Figure 2 shows the projection∆ → [−λ ,λ ], u = (u1,u2,u3,u4) 7→ u1. In this case
non-torus fibers appear along the edgeu1 = u2 = u3 = u4. For−λ < t < λ , the fiber
Lt = Φ−1(ut) overut = (t, t, t, t) is given by

Lt =

{(
tI2

√
λ 2− t2P√

λ 2− t2P∗ (−t)I2

)
∈
√
−1u(4)

∣∣∣∣ P∈U(2)

}
∼=U(2).
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Fig. 2 The Gelfand-Cetlin
polytope forGr(2,4) λ

−λ
0

3 Potential Functions for Gelfand-Cetlin Systems

Let Λ0 =
{

∑∞
i=1aiTλi

∣∣ ai ∈ C, λi ≥ 0, lim i→∞ λi = ∞
}

be the Novikov ring. The
maximal ideal and the quotient field of the local ringΛ0 will be denoted byΛ+ and
Λ respectively. For a spin and oriented Lagrangian submanifoldL in a symplectic
manifold(X,ω), one can equip anA∞-structure

mk = ∑
β∈π2(X,L)

Tω(β )mk,β : H∗(L;Λ0)
⊗k −→ H∗(L;Λ0)

on the cohomology group ofL with coefficients inΛ0 by “counting” pseudo-
holomorphic disks ([5, Theorem A]). An elementb in H1(L;Λ+) (or H1(L;Λ0))
is called aweak bounding cochainif it satisfies theMaurer-Cartan equation

∞

∑
k=0

mk(b, . . . ,b)≡ 0 mod PD([L]). (2)

The set of weak bounding cochains will be denoted bŷMweak(L). For anyb ∈
M̂weak(L), one can twist the Floer differential as

mb
1(x) = ∑

k,l

mk+l+1(b
⊗k⊗x⊗b⊗l ).

The Maurer-Cartan equation (2) impliesmb
1◦mb

1 = 0, and theFloer homologyof the
pair (L,b) is defined by

HF((L,b),(L,b);Λ0) = Kermb
1/ Immb

1.

Thepotential functionPO : M̂weak(L)→ Λ0 is defined by

∞

∑
k=0

mk(b, . . . ,b) =PO(b) ·PD([L]).
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Now we consider the Gelfand-Cetlin systemΦ : F = F(n1, . . . ,nr ,n)→ ∆ . Take
primitive vectorsvi ∈ ZN andτi ∈R so that the Gelfand-Cetlin polytope is given by

∆ = {u∈ RN |ℓi(u) = ⟨vi ,u⟩− τi ≥ 0, i = 1, . . . ,m},

wherem is the number of codimension one faces of∆ . For each interior pointu∈
Int∆ , we will identify H1(L(u);Λ0) with Λ N

0 using the angle coordinate dual to the

functionsλ (k)
i . The following theorem is a Gelfand-Cetlin analogue of [2, Section

15] and [6, Proposition 3.2 and Theorem 3.4].

Theorem 3.1([11, Theorem 10.1]).For any interior point u∈ Int∆ , we have an in-
clusion H1(L(u);Λ0)⊂ M̂weak(L(u)), and the potential function on H1(L(u);Λ0)∼=
Λ N

0 is given by

PO(x) =
m

∑
i=1

e⟨vi ,x⟩Tℓi(u).

After the coordinate change

yk = exkTuk, k= 1, . . . ,N(n1, . . . ,nr ,n),

Q j = Tλnj , j = 1, . . . , r +1,

the potential function can be regarded as a Laurent polynomial in y1, . . . ,yN with
coefficients inQ[Q±1

1 , . . . ,Q±1
r+1].

Example 3.1.In the case of 3-dimensional flag manifold Fl(3), the potential func-
tion is given by

PO= e−x1T−u1+λ1 +ex1Tu1−λ2 +e−x2T−u2+λ2

+ex2Tu2−λ3 +ex1−x3Tu1−u3 +e−x2+x3T−u2+u3

=
Q1

y1
+

y1

Q2
+

Q2

y2
+

y2

Q3
+

y1

y3
+

y3

y2

Critical points ofPO are given by

y1 = y2
3/y2,

y2 =±
√

Q3(y3+Q2),

y3 =
3
√

Q1Q2Q3, e2π
√
−1/3 3

√
Q1Q2Q3, e4π

√
−1/3 3

√
Q1Q2Q3.

It is easy to see that all critical points are nondegenerate and have the same valuation
which lies in the interior of the Gelfand-Cetlin polytope. Hence we have as many
critical point as dimH∗(Fl(3)) = 6 in this case.

Example 3.2.Next we discuss the case of Gr(2,4), whereλ1 = λ2 > λ3 = λ4. The
potential function is given by
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PO= e−x2T−u2+λ1 +e−x1+x2T−u1+u2 +ex1−x3Tu1−u3

+ex3Tu3−λ3 +ex2−x4Tu2−u4 +e−x3+x4T−u3+u4

=
Q1

y2
+

y2

y1
+

y1

y3
+

y3

Q3
+

y2

y4
+

y4

y3
,

whose critical points are given by

y1 = y4 =±
√

Q1Q3, y2 = Q1Q3/y3, y3 =±
√

2Q3y1.

These four critical points are non-degenerate and have a common valuation in the
interior of the Gelfand-Cetlin polytope. Since dimH∗(Gr(2,4)) = 6, one has less
critical point than dimH∗(Gr(2,4)).

4 Floer Homologies of Non-torus Fibers

In this section we discuss Floer homologies of non-torus Lagrangian fibers in Fl(3)
and Gr(2,4). Proofs of the results in this section will be given in a forthcoming
paper.

4.1 Floer Homology of LagrangianS3 in Fl(3)

Recall thatπ2(Fl(3)) ∼= Z2 is generated by 1-dimensional Schubert varietiesX1,
X2. Since the fiberL0 is diffeomorphic toS3, the exact homotopy sequence yields
π2(Fl(3),L0) ∼= π2(Fl(3)) ∼= Z2. Let β1, β2 be generators ofπ2(Fl(3),L0) corre-
sponding toX1 andX2, respectively. The Maslov index and the symplectic area of
βi are given by

µL0(β1) = µL0(β2) = 4, ω(β1) = λ1−λ2, ω(β2) = λ2−λ3.

Theorem 4.1.The Floer homology of L0 over the Novikov ringΛ0 is

HF(L0,L0;Λ0)∼= Λ0/Tmin{λ1−λ2,λ2−λ3}Λ0.

Hence the Floer homology over the Novikov fieldΛ is trivial: HF (L0,L0;Λ) = 0.

Sketch of proof. Since the minimal Maslov number is four, the only nontrivial parts
of the Floer differential are

m1,βi
: H3(L0;Λ0)∼= H0(L0;Λ0)−→ H0(L0;Λ0)∼= H3(L0;Λ0)

for i = 1,2.
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Lemma 4.1.For each p0 ̸= p1 ∈ L0 and βi , there exists a holomorphic disk v:
(D2,∂D2) → (Fl(3),L0) such that v(1) = p0, v(−1) = p1, and [v] = βi . Such v is
unique up to the action of{g∈ Aut(D2) |g(1) = 1, g(−1) =−1}.

Let J be the standard complex structure on Fl(3). Since(Fl(3),L0) is SU(2)-
homogeneous in the sense of Evans and Lekili [4, Definition 1.1.1], the result [4,
Proposition 3.2.1] implies that anyJ-holomorphic disk in(Fl(3),L0) is Fredholm
regular. Hence Lemma 4.1 implies the following.

Lemma 4.2.The moduli spaceM2(J,βi) of J-holomorphic disks in the classβi

with two boundary marked points is a smooth manifold of dimension 6, and the
evaluation mapev= (ev0,ev1) : M2(J,βi)→ L0×L0 is generically one-to-one.

Then for the generator[p] ∈ H0(L0;Z) we have

m1,β1
([p]) =m1,β2

([p]) = ev0∗[M2(J,β1)ev1×{p}] = [L0],

and thus

m1([p]) =
2

∑
i=1

Tω(βi)m1,βi
([p]) = (Tλ1−λ2 +Tλ2−λ3)[L0],

which proves the theorem.

4.2 Floer Homologies ofU(2)-fibers in Gr(2,4)

Assume thatλ1 = λ2 = −λ3 = −λ4 = λ > 0, and setLt = Φ−1(t, t, t, t) as in Ex-
ample 2.2. Recall thatπ2(Gr(2,4)) ∼= Z is generated by a 1-dimensional Schubert
varietyX1. Sinceπ1(Gr(2,4)) = π2(Lt) = 0 andπ1(Lt)∼= Z, the exact sequence

0−→ π2(Gr(2,4))−→ π2(Gr(2,4),Lt)−→ π1(Lt)−→ 0

implies thatπ2(Gr(2,4),Lt) ∼= Z2. Let β1,β2 be generators ofπ2(Gr(2,4),Lt) such
that β1+β2 = [X1] ∈ π2(Gr(2,4)). The Maslov index and the symplectic area are
given by

µLt (β1) = µLt (β2) = 4, ω(β1) = λ + t, ω(β2) = λ − t.

SinceLt is diffeomorphic toU(2) ∼= S1×S3, we haveH∗(Lt) ∼= H∗(S1)⊗H∗(S3).
Let e1 ∈H1(Lt ;Z)∼=H1(S1;Z) ande3 ∈H3(Lt ;Z)∼=H3(S3;Z) be generators. Since
the minimal Maslov number is four, the only nontrivial parts of the Floer differential
mb

1 are

mb
1,βi

: H4(Lt ;Λ0)−→ H1(Lt ;Λ0), H3(Lt ;Λ0)−→ H0(Lt ;Λ0)∼= Λ0

for i = 1,2. By a similar argument to the proof of Theorem 4.1, we have the follow-
ing.
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Theorem 4.2.For b= xe1 ∈ H1(L0;Λ0/2π
√
−1Z) ∼= Λ0/2π

√
−1Z, the Floer dif-

ferentialmb
1 is given by

mb
1(e3) = exTλ+t +e−xTλ−t ,

mb
1(e1⊗e3) = (exTλ+t +e−xTλ−t)e1.

Hence the Floer homologies of(Lt ,b) are

HF((Lt ,b),(Lt ,b);Λ0)∼=

{
H∗(L0;Λ0) if t = 0 and x=±π

√
−1/2,

(Λ0/Tmin{λ−t,λ+t}Λ0)
2 otherwise,

HF((Lt ,b),(Lt ,b);Λ)∼=

{
H∗(L0;Λ) if t = 0 and x=±π

√
−1/2,

0 otherwise.

Acknowledgements Y. N. is supported by Grant-in-Aid for Young Scientists (No.23740055).
K. U. is supported by Grant-in-Aid for Young Scientists (No.24740043).

References

1. Batyrev, V., Ciocan-Fontanine, I., Kim, B., and van Straten, D.: Mirror symmetry and toric
degenerations of partial flag manifolds. Acta Math.184, no. 1, 1–39 (2000)

2. Cho, C.-H., and Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers
in Fano toric manifolds. Asian J. Math.10, 773–814 (2006)

3. Eguchi, T., Hori, K., and Xiong, C.-S.: Gravitational quantum cohomology. Internat. J. Mod-
ern Phys. A12, no. 9, 1743–1782 (1997)

4. Evans, J. D., and Lekili, Y.: Floer cohomology of the Chiang Lagrangian. arXiv:1401.4073
5. Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K.: Lagrangian Intersection Floer theory —

Anomaly and obstructions—, Part I and Part II. AMS/IP Studies in Advanced Mathematics,
46 (2009)

6. Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K.: Lagrangian Floer theory on compact toric
manifolds I. Duke Math. J.151, no. 1, 23–174 (2010)

7. Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K.: Lagrangian Floer theory and mirror symmetry
on compact toric manifolds. arXiv:1009.1648

8. Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K.: Lagrangian Floer theory on compact toric
manifolds: survey. In: Surveys in differential geometry. Vol. XVII, 229–298, Surv. Differ.
Geom., 17, Int. Press, Boston, MA (2012)

9. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror
conjecture. In: Topics in singularity theory, 103–115, Amer. Math. Soc. Transl. Ser. 2, 180,
Amer. Math. Soc., Providence, RI (1997)

10. Guillemin, V., and Sternberg, S.: The Gelfand-Cetlin system and quantization of the complex
flag manifolds. J. Funct. Annal.52, 106–128 (1983)

11. Nishinou, T., Nohara, Y., and Ueda, K.: Toric degenerations of Gelfand-Cetlin systems and
potential functions. Adv. Math.224, 648–706 (2010)

12. Rietsch, K.: A mirror symmetric construction ofqH∗
T(G/P)(q). Adv. Math.217, no. 6, 2401–

2442 (2008)


