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1 Introduction

LetF = GL(n,C)/P be a (full or partial) flag manifold. Th&elfand-Cetlin system
introduced by Guillemin and Sternberg [10], is a completely integrable system

®:F — REM:F)/2

onF, i.e., a set of functionally independent and Poisson commuting functions. The
imageA = @(F) is a convex polytope, which we call tiigelfand-Cetlin polytope
and @ gives a Lagrangian torus fibration structure over the interiofl lot A. Be-
cause of non-smoothness ®f it has non-torus fibers on some faces of codir8.

In this paper we study Lagrangian intersection Floer theory for Lagrangian torus
and non-torus fiber of the Gelfand-Cetlin system.

Lagrangian intersection Floer theory for torus orbits in a toric manifold has been
developed by Fukaya, Oh, Ohta and Ono [7]. We recall some of the results which
are relevant to this paper. LEX, w) be a compact toric manifold of digX = N,
and® : X — RN be the toric moment map with moment polytafe= ®(X). For
an interior pointu € IntA, letL(u) denote the Lagrangian torus fibér1(u).

e The potential functiof3© of Lagrangian torus fibers is defined as a function on

U HY(L(u);Ao/2mv—1Z) = IntA x (Ao/2ry/—1Z)N,

ueintA
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where/\p is the Novikov ring. In the Fano casgO can be regarded as a Lau-
rent polynomial, and it coincides with the superpotential of the Landau-Ginzburg
mirror of X.

e Each critical point ofB© corresponds to a paifL(u),b) of a fiberL(u) and
b € H(L(u); Ao/2mry/—1Z) with nontrivial Floer homology.

e The quantum cohomology of is isomorphic to the Jacobi ring J889) of the
potential function.

See [7] or [8] for more detail. In particular, the number of critical pointsjad
is equal to the rank of the cohomology grodp(X) of X, provided that3O is a
Morse function.

In the case of Gelfand-Cetlin system, Nishinou and we [11] compute the potential
function of Lagrangian torus fibers by using a toric degeneration of the flag man-
ifold, and show that it coincides with the superpotential of the Landau-Ginzburg
mirror of the flag manifold ([9], [1]). In contrast to the toric case, the number of
critical points of the potential function, and hence the number of Lagrangian torus
fibers with nontrivial Floer homology, is smaller than the rankd&{F ) in general.
Eguchi, Hori, and Xiong [3] and Rietsch [12] consider a partial compactification of
the mirror of F to get as many critical points of the superpotential as Hif{k).

It is natural to expect that the critical points at “infinity” correspond to Lagrangian
fibers on the boundary of the Gelfand-Cetlin polytope. In this paper, we study Floer
homology of such non-torus fibers in the 3-dimensional flag manifd®)Find the
Grassmannian G2,4) of 2-planes inC%.

This paper is organized as follows. In Section 2 we recall the construction of the
Gelfand-Cetlin system and see non-torus Lagrangian fibers(8) Bhd G(2,4).

In Section 3 we study the potential function for the Gelfand-Cetlin system. The
computation of the Floer homologies of non-torus Lagrangian fibers(B) &ind
Gr(2,4) is given in Section 4.

2 Gelfand-Cetlin System

Fix asequence & np<ng <---<n < npp=nofintegers, and sé¢ =n —nj_;
fori=1,...,r+1. The flag manifold= = F(ny,...,n,n) is defined by

F=U()/(U(ky) x -+ xU(kr4+1)).

Let FI(n) :=F(1,2,...,n) and Gfk,n) := F(k,n) denote the full flag manifold and
the Grassmannian &fplanes inC", respectively. The dimension &f(ny,...,n,n)
is given by

=

N =N(ng,...,n,n) :=dimcF(ng,...,ne,n) =S (M —ni—g)(n—ny).
i=
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We identify the duali(n)* of the Lie algebra(n) of U (n) with the space/—1u(n)
of Hermitian matrices by using an invariant inner product. TRes identified with
the adjoint orbito, C v/—1u(n) of a diagonal matrid = diag(A4,...,An) with
)\1:"':/\n1 >)\n1+1:"':)\n2>"' >)\nr+1:"':An-
— —

ki ko K1

Note that&, consists of Hermitian matrices with fixed eigenvaldgs..., A,. Let
w be the Kostant-Kirillov form or?, .

Forxe ¢, andk=1,...,n—1, letx®¥ denote the upper-lek x k submatrix of
x. Sincex(¥ is also a Hermitian matrix, it has real eigenvalue8 (x) > A (x) >
e > )\ék) (x). By taking the eigenvalues for dtl=1,...,n— 1, we obtain a set of

nin—1)/2 functions()\i(k))1§i§k§n_1. Since the eigenvalues satisfy the following
inequalities

A1 A2 Az - Ana An
Q 1] T Q 1
)\J(.n—l) )\Z(n—l) /\r(:El)
Q T T
) —2
A2 A2 : (1)
Q T
Q 1
1
A0

some of/\i(k) are constant functions F is not a full flag manifold. It is easy to see

that the number of nonconsta?fﬂ() coincides withN = dim¢ F. The Gelfand-Cetlin
system is defined to be the tuple

o= ()\i(k))i,k CF(ng,...,np,n) — RN(MLnen)

of nonconstant\i(k).

Proposition 2.1 (Guillemin-Sternberg [10]). The map® is a completely inte-
grable system ofF (ny,...,nr,n),w), and the functionﬂi(k) are action variables.
The imageA = @®(F) is a convex polytope defined k), and the fiber u) =
®~1(u) over each interior point « IntA is a Lagrangian torus.

Example 2.1The Gelfand-Cetlin polytope for the 3-dimensional flag manifold
FI(3) is defined by
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us
Fig. 1 The Gelfand-Cetlin :' U1
U2

polytope forFI(3)

A1 A2 A3
Q i Q 1
Ui uz
Q 1
us

The Gelfand-Cetlin system has a non-torus fiber over the vetex (A2, A2, A2),
where four edges are intersecting (See Fig. 1). The fiper ®~1(up) is given by

)\2 0 V)

Lo= 0 A2 P2) € Oy |1z1)*+22l* = (A= A2)(A2—A3) ¢,
71 22 A1— A2+ A3

which is diffeomorphic to a 3-sphef&.

Example 2.2Next we consider the case of @r4). After a translation, we may
assume that; = A = —A3 = —A4 = A for A > 0. ThenA is given by

A A —A —A
Nz TN 7
A up —A
Q AR T
U us
N
Ug

Figure 2 shows the projectioh — [—A,A], u= (uz,Up, U3, Us) — Uj. In this case
non-torus fibers appear along the edge- u; = uz = us. For—A <t < A, the fiber
Ly = @ 1(w) overw = (t,t,t,t) is given by

Lt:{<\//%m ﬁFj e vV=1u(4) ‘ PeU(Z)}%U(Z).
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: 7

polytope forGr(2,4)

3 Potential Functions for Gelfand-Cetlin Systems

Let Ao = { 372,aTh| & € C, A >0, limj_,x Aj = 0} be the Novikov ring. The
maximal ideal and the quotient field of the local ring will be denoted by\, and

A respectively. For a spin and oriented Lagrangian submanifoida symplectic
manifold (X, w), one can equip aA«-structure

my = % TP my g H*(L; Ag) ™ — H*(L; Ao)
Bem(X,L)

on the cohomology group of with coefficients inAg by “counting” pseudo-
holomorphic disks ([5, Theorem A]). An elementin HY(L;A,) (or H(L;Ag))
is called aweak bounding cochaiifiit satisfies theMaurer-Cartan equation

kimk(b,...,b) =0 mod POL)). @)

The set of weak bounding cochains will be denoted@eak(L). For anyb ¢
AMwear(L), One can twist the Floer differential as

my(x) = ka+l+l(b®k®x® bel).

The Maurer-Cartan equation (2) implie§ om? = 0, and theFloer homologyof the
pair (L,b) is defined by

HF ((L,b), (L,b); Ag) = Kerm®/ Imm®.

The potential functiori3O : ////\,\mk(L) — /\g is defined by

kf my(b,...,b) = PO (b) - PD([L]).
=0
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Now we consider the Gelfand-Cetlin syst&n F = F(ng,...,n;,n) — A. Take
primitive vectorsy; € ZN andt; € R so that the Gelfand-Cetlin polytope is given by

A={ueRN|4(uU)=(v,u)—1>0i=1,..,m},
wherem is the number of codimension one facesfoffFor each interior pointg €

IntA, we will identify HY(L(u); Ao) with A} using the angle coordinate dual to the

functions)\i<k). The following theorem is a Gelfand-Cetlin analogue of [2, Section
15] and [6, Proposition 3.2 and Theorem 3.4].

Theorem 3.1([11, Theorem 10.1]) For any interior point uc IntA, we have an in-
clusion H'(L(u); Ag) C #weaL(U)), and the potential function onHL(u); Ag) =
A is given by
m
PO(x) = T eMXTHW,
2

After the coordinate change

Y = T, k=1,....,N(ng,...,ne,n),

Q=TM, j=1..r+1
the potential function can be regarded as a Laurent polynomiahjn.y,yny with
coefficients irQ[Q7 ..., QL .

Example 3.1In the case of 3-dimensional flag manifold 8), the potential func-
tion is given by
PO = X UL | @ TUI—A2 | g T U2 A2
TR A3 | g4 TU—U3 | @YX tXgT —Uztl3
RN VR D R R

i Q y2 Qi Yz Yy
Critical points ofJ3© are given by

V1 =Y3/Y2,
y2 = +/Qa(yz3 +Q2),

y3= ¥/ QuQ2Qa, €™ 13 /QuQ2Qs, €™/ QuQ2Qs.

Itis easy to see that all critical points are nondegenerate and have the same valuation
which lies in the interior of the Gelfand-Cetlin polytope. Hence we have as many
critical point as dinH*(FI(3)) = 6 in this case.

Example 3.2Next we discuss the case of @r4), whereA; = Ay > Az = A4. The
potential function is given by
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PO = —Xe T —Uz+A1 +e bt | XX -3
+ 3T Uz~ 3 4 @2 XaTU U | g X3 HXaT —Ug+ly
_ QY Vi Y5 Ve Ve
Y2 Y1 ¥Y3 Q3 ya Y3

whose critical points are given by
Vi=Ya=+VQQs, Y2=QiQs/ys, Y3=12Qsy1.

These four critical points are non-degenerate and have a common valuation in the
interior of the Gelfand-Cetlin polytope. Since divi(Gr(2,4)) = 6, one has less
critical point than dinH*(Gr(2,4)).

4 Floer Homologies of Non-torus Fibers

In this section we discuss Floer homologies of non-torus Lagrangian fiber&3n Fl
and G(2,4). Proofs of the results in this section will be given in a forthcoming

paper.

4.1 Floer Homology of Lagrangiars® in FI(3)

Recall thatre(FI(3)) = Z? is generated by 1-dimensional Schubert varielgs

Xo. Since the fibet g is diffeomorphic toS®, the exact homotopy sequence yields
5(FI(3),Lo) = m(FI(3)) = Z2. Let B1, B be generators ofp(FI(3),Lo) corre-
sponding toX; and Xy, respectively. The Maslov index and the symplectic area of
Bi are given by

Hio(Br) = Hio(B2) =4, w(B1) =A1—A2, w(B2) =A2—As.
Theorem 4.1.The Floer homology ofd.over the Novikov ring\g is
HF (Lo, Lo; Ag) = Ag/TMMAr=A242-3} p
Hence the Floer homology over the Novikov fidlds trivial: HF (Lo, Lo;A) = 0.

Sketch of proofSince the minimal Maslov number is four, the only nontrivial parts
of the Floer differential are

my 5 : H3(Lo; Ao) 2 Ho(Lo; Ao) — HO(Lo; Ao) = Ha(Lo; Ao)

fori=1,2.
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Lemma 4.1.For each p # p1 € Lo and (3, there exists a holomorphic disk:v
(D?,0D?) — (FI(3),Lo) such that Y1) = po, V(—1) = p1, and[v] = B. Such v is
unique up to the action dfg € Aut(D?) |g(1) = 1,9(-1) = —1}.

Let J be the standard complex structure ori3fl Since (FI(3),Lo) is SU(2)-
homogeneous in the sense of Evans and Lekili [4, Definition 1.1.1], the result [4,

Proposition 3.2.1] implies that anjtholomorphic disk in(FI(3),Lo) is Fredholm
regular. Hence Lemma 4.1 implies the following.

Lemma 4.2.The moduli space#>(J,3) of J-holomorphic disks in the clag%
with two boundary marked points is a smooth manifold of dimension 6, and the
evaluation mapv= (ew,ev) : .#2(J, ) — Lo X Lo is generically one-to-one.

Then for the generatdp] € Ho(Lo; Z) we have

my g, ([P]) = myp,([P]) = eVo.[-#2(J, B)ew x {P}] = [Lo],
and thus

2
ma([p]) = .;T“’(mmlﬁi ([p) = (T2 T2 %) L],

which proves the theorem.

4.2 Floer Homologies ofJ (2)-fibers in Gr(2,4)

Assume thal; = A, = —A3 = —A4 = A > 0, and sety = @~ 1(t,t,t,t) as in Ex-
ample 2.2. Recall thatp(Gr(2,4)) = Z is generated by a 1-dimensional Schubert
variety X;. Sincer (Gr(2,4)) = m(Lt) = 0 andrg (L) = Z, the exact sequence

0— ™®(Gr(2,4)) — m(Gr(2,4),L;) — m(L;) — 0

implies thatre(Gr(2,4),Lt) = Z2. Let 31, B, be generators afs(Gr(2,4), L) such
that B1 + B2 = [X1] € ™(Gr(2,4)). The Maslov index and the symplectic area are
given by

pr (Br) = Hy(B2) =4, w(B) =A+t, w(B2)=A—t.

Sincel is diffeomorphic toJ (2) = St x S, we haveH*(Ly) = H*(SH) @ H*(S%).
Letey € HY(Ly; Z) =2 HY(SL Z) andes € H3(Ly; Z) = H3(S%; Z) be generators. Since
the minimal Maslov number is four, the only nontrivial parts of the Floer differential

b
m; are

m} g - H*(Li;Ao) — HY(LiiAo),  H3(Li;Ao) — HO(Lei Ao) =2 Ao

fori=1,2. By a similar argument to the proof of Theorem 4.1, we have the follow-
ing.
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Theorem 4.2.For b = xe; € HY(Lo; Ao/2rmy/—1Z) = No/211y/—1Z, the Floer dif-
ferentialm? is given by

m?(e3) = &TA e Tt
m?(el®e3) _ (e?(TAH _’_efx-r}\ft)el.
Hence the Floer homologies (if;, b) are
H*(Lo; No) ift =0and x=+m/—1/2,
(No/TMMA-tA+ENG)2  otherwise

H*(Lo;A\) ift =0and x=+m/—1/2,
0 otherwise

HF ((Lt,b), (Lt,b); Ao) = {
HF((Lt,m,(Lt,b);A)fv{
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