A note on derived categories of Fermat varieties

Akira Ishii and Kazushi Ueda

Abstract

We show that the quotient stack of a Fermat variety with respect to a natural abelian group action has a full strong exceptional collection consisting of invertible sheaves. We also discuss a description of the derived category of the Fermat variety in terms of the coherent action of the group of characters on the derived category of the quotient stack.

1 Introduction

The *Fermat variety* of degree m and dimension n is defined by

$$X_m^n = \{ [x_1 : \dots : x_{n+2}] \in \mathbb{P}^{n+1} \mid x_1^m + \dots + x_{n+2}^m = 0 \},\$$

which can be constructed from X_m^r for r < n by taking direct products, blow-ups, quotients by cyclic groups and blow-downs [SK79, Theorem I]. It follows that any Fermat variety can be constructed inductively from 'Fermat points' X_m^0 and Fermat curves X_m^1 . The number of \mathbb{F}_q -rational points on X_m^n can be counted by Jacobi sum, which motivated Weil to propose his conjectures [Wei49]. Fermat varieties have also provided a testing ground for the Hodge conjecture and the Tate conjecture [Shi79b, Shi79a, Ran81].

The Fermat variety X_m^n has a natural action of the abelian group

$$G_m^n = \{ [\operatorname{diag}(a_1, \dots, a_{n+2})] \in PGL_{n+2}(\mathbb{C}) \mid a_1^d = \dots = a_{n+2}^d = 1 \},\$$

and let $\mathbb{X}_m^n = [X_m^n/G_m^n]$ be the quotient stack. We prove the following in this paper:

Theorem 1.1. \mathbb{X}_m^n has a full strong exceptional collection consisting of invertible sheaves.

King conjectured that a smooth complete toric variety has a full strong exceptional collection consisting of invertible sheaves [Kin97]. It is true for toric weak Fano stacks in dimension two [BH09, IU], but fails for toric surfaces [HP06] and higher-dimensional toric Fano varieties [Efi10]. The existence of full exceptional collections on toric varieties consisting of sheaves is proved by Kawamata [Kaw06]. The case n = 1 in Theorem 1.1 is contained in [GL87], which gives a full strong exceptional collection of invertible sheaves on any rational orbifold curve. The existence of a full exceptional collection on X_m^n follows from [Orl09, Theorem 2.5] and [FU11, Theorem 1.2]. The existence of a full exceptional collection on \mathbb{R}_m^n follows from the fact that \mathbb{X}_m^n can be obtained from \mathbb{P}^n by iterated root constructions. On the other hand, if m is greater than n + 1, then the canonical divisor of X_m^n is free, so that $D^b \operatorname{coh} X_m^n$ has no exceptional object at all.

Let $\mathscr{D}^b \operatorname{coh} \mathbb{X}_m^n$ be the pretriangulated dg category defined in Section 3 whose cohomology category is equivalent to the derived category $D^b \operatorname{coh} \mathbb{X}_m^n$ of coherent sheaves on \mathbb{X}_m^n . In other words, $\mathscr{D}^b \operatorname{coh} \mathbb{X}_m^n$ gives an enhancement of $D^b \operatorname{coh} \mathbb{X}_m^n$ in the sense of Bondal and Kapranov [BK90]. Let further $\mathscr{D}^b \operatorname{coh} X_m^n$ be the enhancement of $D^b \operatorname{coh} X_m^n$ defined similarly. There is a coherent action of the group $G_m^{n\vee}$ of characters of G_m^n on $\mathscr{D}^b \operatorname{coh} \mathbb{X}_m^n$, and one can show the following:

Theorem 1.2. The pretriangulated dg category $\mathscr{D}^b \operatorname{coh} X_m^n$ is equivalent to the idempotent completion of the orbit category of $\mathscr{D}^b \operatorname{coh} X_m^n$ with respect to the coherent action of the group $G_m^{n\vee}$.

The idea to use dg categories to study the triangulated structure on the orbit category is due to Keller [Kel05]. Theorems 1.1 and 1.2 show that one can study the derived category of a Fermat variety in terms of a coherent action of a finite abelian group on an enhancement of a triangulated category which has a full strong exceptional collection.

Acknowledgment: A. I. is supported by Grant-in-Aid for Scientific Research (No.18540034). K. U. is supported by Grant-in-Aid for Young Scientists (No.20740037).

${\bf 2} \quad {\bf A} \ {\bf full} \ {\bf strong} \ {\bf exceptional} \ {\bf collection} \ {\bf on} \ \mathbb{X}_m^n$

We prove Theorem 1.1 in this section. The stack $\mathbb{X} = \mathbb{X}_m^n$ is the closed substack of the toric stack $\mathbb{P} = [(\mathbb{C}^{n+2} \setminus \{0\})/K]$, where

$$K = \{ (\alpha_1, \dots, \alpha_{n+2}) \in (\mathbb{C}^{\times})^{n+2} \mid \alpha_1^m = \dots = \alpha_{n+2}^m \}.$$

An element \vec{a} of the group

$$L = \mathbb{Z}\vec{x}_1 \oplus \cdots \oplus \mathbb{Z}\vec{x}_{n+2} \oplus \mathbb{Z}\vec{c}/(m\vec{x}_i - \vec{c})_{i=1}^{n+2}$$

of characters of K gives an invertible sheaf $\mathcal{O}_{\mathbb{P}}(\vec{a})$ on \mathbb{P} , which restricts to an invertible sheaf $\mathcal{O}_{\mathbb{X}}(\vec{a})$ on \mathbb{X} . The canonical bundles are given by $\omega_{\mathbb{P}} = \mathcal{O}_{\mathbb{P}}(-\vec{x}_1 - \cdots - \vec{x}_{n+2})$ and $\omega_{\mathbb{X}} = \mathcal{O}_{\mathbb{X}}(-\vec{x}_1 - \cdots - \vec{x}_{n+2} + \vec{c})$. Since \mathbb{P} is a toric Fano stack of Picard number one, the cohomology $H^i(\mathcal{O}_{\mathbb{P}}(\vec{a}))$ of an invertible sheaf is non-trivial only if i = 0, n + 1. The long exact sequence associated with

$$0 \to \mathcal{O}_{\mathbb{P}}(\vec{a} - \vec{c}) \to \mathcal{O}_{\mathbb{P}}(\vec{a}) \to \mathcal{O}_{\mathbb{X}}(\vec{a}) \to 0$$

implies that $H^i(\mathcal{O}_{\mathbb{X}}(\vec{a}))$ is zero if $i \neq 0, n$. Serre duality gives

$$\operatorname{Ext}^{n}(\mathcal{O}_{\mathbb{X}}(\vec{a}),\mathcal{O}_{\mathbb{X}}) = (H^{0}(\mathcal{O}_{\mathbb{X}}(\vec{\omega}+\vec{a})))^{\vee}$$

where $\vec{\omega} = -\vec{x}_1 - \cdots - \vec{x}_{n+2} + \vec{c}$. Any $\vec{a} \in L$ can be presented uniquely as

$$\vec{a} = a_1 \vec{x}_1 + \dots + a_{n+2} \vec{x}_{n+2} + e \vec{c}$$

where $0 \leq a_i \leq m-1$ and $e \in \mathbb{Z}$. One has $\operatorname{Ext}^n(\mathcal{O}_{\mathbb{X}}(\vec{a}), \mathcal{O}_{\mathbb{X}}) \neq 0$ if and only if

$$\vec{\omega} + \vec{a} = (a_1 - 1)\vec{x}_1 + \dots + (a_{n+2} - 1)\vec{x}_{n+2} + (e+1)\vec{c}$$

can be presented in such a way that all the coefficients are positive. This happens if

• $0 \le e \le n$ and at least n - e + 1 of a_i are greater than or equal to one.

Define a finite subset of L by

$$A = \{a_{i_1}\vec{x}_{i_1} + \dots + a_{i_k}\vec{x}_{i_k} + e\vec{c} \mid 0 \le k \le n, \ 1 \le i_1 < \dots < i_k \le n+2, \ 0 \le e \le n-k\},\$$

where $0 < a_{i_{\ell}} \leq m-1$ for $\ell = 1, ..., k$. One can see that $\operatorname{Ext}^{i}(\mathcal{O}_{\mathbb{X}}(\vec{a}), \mathcal{O}_{\mathbb{X}}(\vec{b})) = 0$ for $\vec{a}, \vec{b} \in A$ and $i \neq 0$, so that $(\mathcal{O}_{\mathbb{X}}(\vec{a}))_{\vec{a} \in A}$ is a strong exceptional collection.

Let $p_i = [x_1 : \cdots : x_{n+2}]$ be the point such that $x_i = 1$ and $x_j = 0$ for $i \neq j$. An exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}} \to \bigoplus_{k \neq i} \mathcal{O}_{\mathbb{P}}(\vec{x}_k) \to \bigoplus_{i \neq k, \ell} \mathcal{O}_{\mathbb{P}}(\vec{x}_k + \vec{x}_l) \to \dots \to \mathcal{O}_{\mathbb{P}}\left(\sum_{k \neq i} \vec{x}_k\right) \to \mathcal{O}_{p_i} \to 0$$

of $\mathcal{O}_{\mathbb{P}}$ -modules restricts to an exact sequence

$$0 \to \mathcal{O}_{\mathbb{X}} \to \bigoplus_{k \neq i} \mathcal{O}_{\mathbb{X}}(\vec{x}_k) \to \bigoplus_{i \neq k, \ell} \mathcal{O}_{\mathbb{X}}(\vec{x}_k + \vec{x}_l) \to \dots \to \mathcal{O}_{\mathbb{X}}\left(\sum_{k \neq i} \vec{x}_k\right) \to 0$$
(2.1)

of $\mathcal{O}_{\mathbb{X}}$ -modules. By using these sequences and their translates, the fact that one can construct any invertible sheaf from $(\mathcal{O}_{\mathbb{X}}(\vec{a}))_{\vec{a}\in A}$ by taking shifts and cones is reduced to the following lemma:

Lemma 2.1. Let B be the subset of L containing A satisfying the following for any $0 \le i \le n$ and any $\vec{a} \in L$:

• Let \mathcal{P} be the power set of $\{1, \ldots, n+2\} \setminus \{i\}$. If B contains $\vec{a} + \sum_{k \in K} \vec{x}_k$ for any $K \in \mathcal{P}$ except K_0 , then B also contains $\vec{a} + \sum_{k \in K_0} \vec{x}_k$.

Then B coincides with the whole of L.

Proof. We use the following two extreme cases:

- (1) If B contains $\vec{a} + \sum_{k \in K} \vec{x}_k$ for all subset K strictly contained in $\{1, \ldots, n+2\} \setminus \{i\}$, then B also contains $\vec{a} + \sum_{k \neq i} \vec{x}_k$.
- (2) If B contains $\vec{a} + \sum_{k \in K} \vec{x}_k$ for any non-empty subset $K \subset \{1, \ldots, n+2\} \setminus \{i\}$, then B also contains \vec{a} .

If we replace \vec{c} by $m\vec{x}_i$ for suitable *i*, we can write

$$A = \{a_1 \vec{x}_1 + \dots + a_{n+2} \vec{x}_{n+2} \mid 0 \le a_i \le m, \text{ at least two of } a_i \text{'s are zero} \}.$$

We show that $\vec{v} := a_1 \vec{x}_1 + \dots + a_{n+2} \vec{x}_{n+2} \in B$ for all $(a_1, \dots, a_{n+2}) \in \mathbb{Z}^{n+2}$.

We first consider the case $a_i \ge 0$ for all *i*. In this case, we may assume either $0 \le a_i \le m$ for all *i* or $0 < a_i$ for all *i*. In the former case, we may assume at most one of a_i 's is zero and we can show $\vec{v} \in B$ by the induction on $\sum_i a_i$, using (1). Then the same induction also shows the latter case.

If $\sum_{i} a_i \ge m(n+2)$, then we may assume $a_i \ge 0$ for all i and obtain $\vec{v} \in B$. Finally, the reverse induction on $\sum_{i} a_i$ and (2) prove $\vec{v} \in B$ for all (a_1, \ldots, a_{n+2}) .

Let \mathcal{T} be the full triangulated subcategory of $D^b \operatorname{coh} \mathbb{X}$ generated by $(\mathcal{O}_{\mathbb{X}}(\vec{a}))_{\vec{a}\in A}$. Since the condition that $\operatorname{Hom}(\mathcal{O}_{\mathbb{X}}(\vec{a}), \mathcal{E}) = 0$ for a coherent sheaf \mathcal{E} and any $\vec{a} \in L$ implies $\mathcal{E} \cong 0$, the right semiorthogonal complement \mathcal{T}^{\perp} is trivial so that the collection $(\mathcal{O}_{\mathbb{X}}(\vec{a}))_{\vec{a}\in A}$ is full.

Remark 2.2. Let $\mathbf{m} = (m_1, \ldots, m_{n+2})$ be a sequence of positive integers and $\mathbb{X}_{\mathbf{m}} = [Z_{\mathbf{m}}/K_{\mathbf{m}}]$ be the quotient stack of $Z_{\mathbf{m}} = \{(x_1, \ldots, x_{n+2}) \in \mathbb{C}^{n+2} \setminus \{0\} \mid x_1^{m_1} + \cdots + x_{n+2}^{m_{n+2}} = 0\}$ by $K_{\mathbf{m}} = \{(\alpha_1, \ldots, \alpha_{n+2}) \in (\mathbb{C}^{\times})^{n+2} \mid \alpha_1^{m_1} = \cdots = \alpha_{n+2}^{m_{n+2}}\}$. Then it is straightforward to generalize the proof of Theorem 1.1 above to show that $\mathbb{X}_{\mathbf{m}}$ has a full strong exceptional collection consisting of invertible sheaves.

3 Coherent actions and orbit categories

Let G be a group and C be a category. A coherent action $(F_g, \alpha_{g,h})$ of G on C consists of endofunctors $F_g : \mathcal{C} \to \mathcal{C}$ for each $g \in G$ together with natural isomorphisms $\alpha_{g,h} : F_g \circ F_h \to F_{gh}$ of endofunctors for $g, h \in G$ such that

- F_e is the identity functor of C,
- $\alpha_{g,h}$ is the identity if g = e or h = e, and
- the diagram

$$\begin{array}{cccc} F_g \circ F_h \circ F_k & \xrightarrow{\alpha_{g,h} \circ F_k} & F_{gh} \circ F_k \\ F_g \circ \alpha_{h,k} & & & \downarrow \\ F_g \circ F_{hk} & \xrightarrow{\alpha_{g,hk}} & F_{ghk} \end{array}$$

is commutative.

For a coherent action $(F_g, \alpha_{g,h})$ of a finite group G on an additive category \mathcal{C} , the corresponding *orbit category* \mathcal{C}/G is defined as follows:

- An object of \mathcal{C}/G is an object of \mathcal{C} .
- The space of morphisms from x to y is given by

$$\operatorname{Hom}_{\mathcal{C}/G}(x,y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{C}}(x,F_g(y))$$

• The composition of $\varphi \in \operatorname{Hom}_{\mathcal{C}}(x, F_q(y))$ and $\psi \in \operatorname{Hom}_{\mathcal{C}}(y, F_h(z))$ is given by

$$x \xrightarrow{\varphi} F_g(y) \xrightarrow{F_g(\psi)} F_g \circ F_h(z) \xrightarrow{\alpha_{g,h}(z)} F_{gh}(z).$$

Now we recall the notion of enhanced triangulated categories by Bondal and Kapranov [BK90]. See [Kel06] and references therein for basic definitions and results on dg categories. A dg category \mathscr{D} is an additive category such that the spaces of morphisms are cochain complexes, the identity morphisms are cocycles, and the compositions satisfy the Leibniz rule. The cohomology category $H^0(\mathscr{D})$ has the same objects as \mathscr{D} and the spaces

of morphisms are zero-th cohomology groups. A twisted complex over \mathcal{D} is a collection $\{(E_i)_{i\in\mathbb{Z}}, (q_{ij}: E_i \to E_j)_{i,j\in\mathbb{Z}}\}$ of objects E_i of \mathscr{D} and morphisms q_{ij} of degree i-j+1 such that $E_i = 0$ for almost all $i \in \mathbb{Z}$ and the Maurer-Cartan equation $dq_{ij} + \sum_k q_{kj}q_{ik} = 0$ is satisfied for any $i, j \in \mathbb{Z}$. We always assume that a twisted complex is *one-sided* in the sense that $q_{ij} = 0$ for $i \ge j$. Twisted complexes form a dg category $\mathcal{T}w(\mathcal{D})$, equipped with a full and faithful functor $\iota: \mathscr{D} \to \mathcal{T}w(\mathscr{D})$ sending an object E to the twisted complex $\{(E_i)_{i\in\mathbb{Z}}, (q_{ij})_{i,j\in\mathbb{Z}}\}$ such that $E_i = 0$ for $i \neq 0, E_0 = E$ and $q_{ij} = 0$ for any $i, j \in \mathbb{Z}$. A dg *module* over a dg category \mathscr{D} is a dg functor from \mathscr{D} to the dg category of chain complexes of \mathbb{C} -vector spaces. Dg modules over a dg category \mathscr{D} form a dg category $\mathrm{mod}(\mathscr{D})$, and \mathscr{D} has the Yoneda embedding into $\operatorname{mod}(\mathscr{D})$. The *idempotent completion* of \mathscr{D} is defined as the smallest full subcategory of $\operatorname{mod}(\mathscr{D})$ containing \mathscr{D} and closed under direct summands. A twisted complex X defines a dg functor $\hom_{\mathcal{T}w(\mathscr{D})}(\iota(\bullet), X)$, which gives an object of $\operatorname{mod}(\mathscr{D})$, and \mathscr{D} is said to be *pretriangulated* if this functor is always representable by an object of \mathscr{D} . The cohomology category of a pretriangulated dg category is triangulated, and an enhanced triangulated category is a triple $(\mathcal{T}, \mathscr{D}, \phi: H^0(\mathscr{D}) \to \mathcal{T})$ consisting of a triangulated category \mathcal{T} together with a pretriangulated dg category \mathcal{D} and an equivalence $\phi: H^0(\mathscr{D}) \to \mathcal{T}$ of triangulated categories.

Let $\sigma: G \times X \to X$ be an action of a finite group G on an algebraic variety X. We write the group law of G as $\mu_G: G \times G \to G$. A *G*-linearization of a line bundle $\pi: L \to X$ on X is an action $\Sigma: G \times L \to L$ of G on L such that $\pi(\Sigma(g, l)) = \sigma(g, \pi(l))$ for any $g \in G$ and $l \in L$. The space $H^0(X, L)$ of sections of L has a natural G-action defined by $(g \cdot s)(x) = \Sigma(g, s(\sigma(g^{-1}, x)))$ for $s \in H^0(X, L), g \in G$ and $x \in X$. In terms of the invertible sheaf \mathcal{L} associated with L, a G-linearization is an isomorphism $\phi: \sigma^* \mathcal{L} \xrightarrow{\sim} p_2^* \mathcal{L}$ on $G \times X$ satisfying the cocycle condition

$$(p_{23}^*\phi) \circ [(\mathrm{id}_G \times \sigma)^*\phi] = (\mu_G \times \mathrm{id}_X)^*\phi : [\sigma \circ (\mathrm{id}_G \times \sigma)]^*\mathcal{L} \to [p_2 \circ p_{23}]^*\mathcal{L}$$

on $G \times G \times X$ (see e.g. [MFK94, §3]). A *G*-equivariant coherent sheaf on X is a pair (\mathcal{E}, ϕ) of a coherenet sheaf on X and a *G*-linearization $\phi : \sigma^* \mathcal{E} \xrightarrow{\sim} p_2^* \mathcal{E}$ satisfying the cocycle condition above. It follows from the definition that a *G*-equivariant coherent sheaf on X is equivalent to a coherent sheaf on the quotient stack [X/G].

Let X be a smooth projective variety and G be a finite group acting on X. Choose an affine open covering $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ such that Λ has a G-action satisfying $g(U_{\lambda}) = U_{g\lambda}$ for $g \in G$ and $\lambda \in \Lambda$. Such a covering can be constructed from any affine covering $X = \bigcup_{\xi \in \Xi} V_{\xi}$ by setting $\Lambda = G \times \Xi$ and $U_{\lambda} = gV_{\xi}$ for $\lambda = (g, \xi)$. We introduce a dg category vect_G X as follows:

- An object of $\operatorname{vect}_G X$ is a *G*-equivariant locally-free sheaf on *X*.
- The space of morphisms between two objects \mathcal{E} and \mathcal{F} is the Čech complex;

$$\hom^{i}_{\operatorname{vect}_{G} X}(\mathcal{E}, \mathcal{F}) = \bigoplus_{\lambda_{0}, \dots, \lambda_{i} \in \Lambda} \Gamma(U_{\lambda_{0}} \cap \dots \cap U_{\lambda_{i}}, \mathcal{E}^{\vee} \otimes \mathcal{F}).$$

The Čech complex has the *G*-action coming from the *G*-linearizations of \mathcal{E} and \mathcal{F} , which sends $s \in \Gamma(U_{\lambda_0} \cap \cdots \cap U_{\lambda_i}, \mathcal{E}^{\vee} \otimes \mathcal{F})$ to $g \cdot s \in \Gamma(U_{g \cdot \lambda_0} \cap \cdots \cap U_{g \cdot \lambda_i}, \mathcal{E}^{\vee} \otimes \mathcal{F})$. We do not take the space of *G*-invariants in the definition of the spaces of morphisms in vect_G X, so that the isomorphism class of an object does not depend on the choice of a G-linearization. Let $\mathscr{D}^b \operatorname{coh} X$ be the idempotent completion of the dg category $\mathcal{T}w(\operatorname{vect}_G X)$ consisting of twisted complexes over $\operatorname{vect}_G X$. The following lemma shows that $\mathscr{D}^b \operatorname{coh} X$ gives an enhancement of $D^b \operatorname{coh} X$:

Lemma 3.1. Let G be a finite group acting on a smooth projective variety X. Then any object in $D^b \operatorname{coh} X$ is a direct summand of a complex of G-linearizable locally-free sheaves.

Proof. Let D be an ample divisor on X. Then $\sum_{g \in G} g \cdot D$ is a G-invariant ample divisor on X, and the corresponding invertible sheaf \mathcal{L} is G-linearizable. For any coherent sheaf \mathcal{E} , there is a surjection

$$\varphi_0: (\mathcal{L}^{\otimes (-n_0)})^{\oplus k_0} \to \mathcal{E}$$

for sufficiently large n_0 and k_0 . Let $\mathcal{E}_1 = \ker \varphi_0$ be the kernel of this morphism. Then there is a surjection

$$\varphi_1: (\mathcal{L}^{\otimes (-n_1)})^{\oplus k_1} \to \mathcal{E}_1$$

for sufficiently large n_1 and k_1 , and one can set $\mathcal{E}_2 = \ker \varphi_1$. By repeating this process, one obtains a distinguished triangle

$$\mathcal{E}_{k+1}[k] \to \mathcal{F} \to \mathcal{E} \xrightarrow{[+1]} \mathcal{E}_{k+1}[k+1]$$

where

$$\mathcal{F} = \left\{ \left(\mathcal{L}^{\otimes (-n_k)} \right)^{\oplus m_k} \xrightarrow{\varphi_k} \left(\mathcal{L}^{\otimes (-n_{k-1})} \right)^{\oplus m_{k-1}} \xrightarrow{\varphi_{k-1}} \cdots \xrightarrow{\varphi_0} \left(\mathcal{L}^{\otimes (-n_0)} \right)^{\oplus k_0} \right\}$$

for any $k \ge 0$. Since X is smooth, the homological dimension of $\operatorname{coh} X$ is equal to the dimension of X, and this triangle splits for $k > \dim X$. It follows that any coherent sheaf is a direct summand of a complex of G-linearizable locally-free sheaves, and Lemma 3.1 is proved.

Let $\operatorname{vect}^G X$ be the subcategory of $\operatorname{vect}_G X$ with the same set of objects and G-invariant morphisms;

$$\hom_{\operatorname{vect}^G X}(\mathcal{E}, \mathcal{F}) = (\hom_{\operatorname{vect}_G X}(\mathcal{E}, \mathcal{F}))^G.$$

The existence of a *G*-equivariant ample line bundle shows that any *G*-equivariant coherent sheaf has a resolution by a bounded complex of *G*-equivariant locally-free sheaves. It follows that $\mathscr{D}^b \operatorname{coh}^G X := \mathcal{T}w(\operatorname{vect}^G X)$ gives an enhancement of the derived category $D^b \operatorname{coh}^G X$ of *G*-equivariant coherent sheaves on *X*.

Now assume that G is abelian and let $G^{\vee} = \text{Hom}(G, \mathbb{C}^{\times})$ be the group of characters of G. There is a coherent action $(F_{\rho}, \alpha_{\rho,\sigma})$ of G^{\vee} on $\text{vect}_G X$ defined as follows:

• For a *G*-equivariant locally-free sheaf \mathcal{E} and a character $\rho \in G^{\vee}$, the *G*-equivariant locally-free sheaf $F_{\rho}(\mathcal{E}) = \mathcal{E} \otimes \rho$ is given by changing the *G*-linearization of \mathcal{E} by ρ . To be more precise, let *V* be a vector space and $\rho : G \to GL(V)$ be a representation. Then the coherent sheaf $\mathcal{E} \otimes V$ is the functor sending an open set $U \subset X$ to the vector space $\mathcal{E}(U) \otimes V$, and the *G*-linearization is given by $\phi \otimes \rho : \sigma^*(\mathcal{E} \otimes V) \to p_2^*(\mathcal{E} \otimes V)$ where ρ is considered as a GL(V)-valued function on $G \times X$ constant along *X*.

- For a morphism $\psi \in \hom(\mathcal{E}, \mathcal{F})$ of *G*-equivariant locally-free sheaves (i.e. an element of the Čech complex), the morphism $F_{\rho}(\psi) \in \hom(\mathcal{E} \otimes \rho, \mathcal{F} \otimes \rho)$ is defined in the obvious way as $\psi \otimes id$.
- For two characters $\rho, \sigma \in G^{\vee}$, the natural isomorphism $\alpha_{\rho,\sigma} : F_{\rho} \circ F_{\sigma} \xrightarrow{\sim} F_{\rho \otimes \sigma}$ comes from the structure of a tensor category on the category of representations of G (i.e. the natural isomorphism $(A \otimes B) \otimes C \xrightarrow{\sim} A \otimes (B \otimes C)$ for any G-linear spaces).

This coherent G^{\vee} -action on $\operatorname{vect}_G X$ induces a coherent G^{\vee} -action on the *G*-invariant part vect^{*G*} *X*, which in turn induces a coherent G^{\vee} -action on the category $\mathscr{D}^b \operatorname{coh}^G X$ of twisted complexes over $\operatorname{vect}^G X$. It is clear that the orbit category $\operatorname{vect}^G X/G^{\vee}$ is equivalent to $\operatorname{vect}_G X$, so that the orbit category $\mathscr{D}^b \operatorname{coh}^G X/G^{\vee}$ is equivalent to $\mathcal{T}w(\operatorname{vect}_G X)$. Since $\mathscr{D}^b \operatorname{coh} X$ is the idempotent completion of $\mathcal{T}w(\operatorname{vect}_G X)$, Theorem 1.2 is proved.

References

- [BH09] Lev Borisov and Zheng Hua, On the conjecture of King for smooth toric Deligne-Mumford stacks, Adv. Math. 221 (2009), no. 1, 277–301. MR MR2509327
- [BK90] A. I. Bondal and M. M. Kapranov, *Enhanced triangulated categories*, Mat. Sb. 181 (1990), no. 5, 669–683. MR MR1055981 (91g:18010)
- [Efi10] Alexander I. Efimov, Maximal lengths of exceptional collections of line bundles, arXiv:1010.3755, 2010.
- [FU11] Masahiro Futaki and Kazushi Ueda, *Homological mirror symmetry for* Brieskorn-Pham singularities, Selecta Math. (N.S.) **17** (2011), no. 2, 435–452.
- [GL87] Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR MR915180 (89b:14049)
- [HP06] Lutz Hille and Markus Perling, A counterexample to King's conjecture, Compos. Math. 142 (2006), no. 6, 1507–1521. MR MR2278758 (2007h:14074)
- [IU] Akira Ishii and Kazushi Ueda, *Dimer models and exceptional collections*, arXiv:0911.4529.
- [Kaw06] Yujiro Kawamata, Derived categories of toric varieties, Michigan Math. J. 54 (2006), no. 3, 517–535. MR MR2280493 (2008d:14079)
- [Kel05] Bernhard Keller, On triangulated orbit categories, Doc. Math. **10** (2005), 551– 581. MR 2184464 (2007c:18006)
- [Kel06] _____, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190. MR MR2275593 (2008g:18015)

- [Kin97] Alastair King, *Tilting bundles on some rational surfaces*, preprint available at http://www.maths.bath.ac.uk/~masadk/papers/, 1997.
- [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR MR1304906 (95m:14012)
- [Orl09] Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 503–531. MR 2641200 (2011c:14050)
- [Ran81] Ziv Ran, Cycles on Fermat hypersurfaces, Compositio Math. 42 (1980/81), no. 1, 121–142. MR 594486 (82d:14005)
- [Shi79a] Tetsuji Shioda, The Hodge conjecture and the Tate conjecture for Fermat varieties, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 111–114. MR 531455 (80e:14006)
- [Shi79b] _____, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), no. 2, 175–184. MR 552586 (80k:14035)
- [SK79] Tetsuji Shioda and Toshiyuki Katsura, On Fermat varieties, Tôhoku Math. J.
 (2) 31 (1979), no. 1, 97–115. MR 526513 (80g:14033)
- [Wei49] André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 0029393 (10,592e)

Akira Ishii

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan

e-mail address : akira@math.sci.hiroshima-u.ac.jp

Kazushi Ueda

Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan.

e-mail address : kazushi@math.sci.osaka-u.ac.jp