K3 surfaces and log del Pezzo surfaces of index three

Hisanori Ohashi (Research Institute for Mathematical Sciences) and

Shingo Taki (Korea Institute for Advanced Study)

We want to classify \log del Pezzo surfaces of index k.

- History of classification —

- k = 1: classical result
- k = 2: Alexeev and Nikulin, Nakayama

Generalize the idea of [AN] to the k = 3 case!

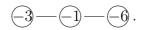
- Review of [AN] (k = 2 case) -

- Smooth Divisor Theorem $\exists C \in |-2K_Z| \text{ s.t. } C: \text{ smooth curve}$ and $C \not\ni \text{ singularities.}$
- Right resolution

 In general, we get the following dual graph by the minimal resolution.

↑: blow up at all intersection points

• Classification of non-symplectic involutions on K3 surfaces by Nikulin

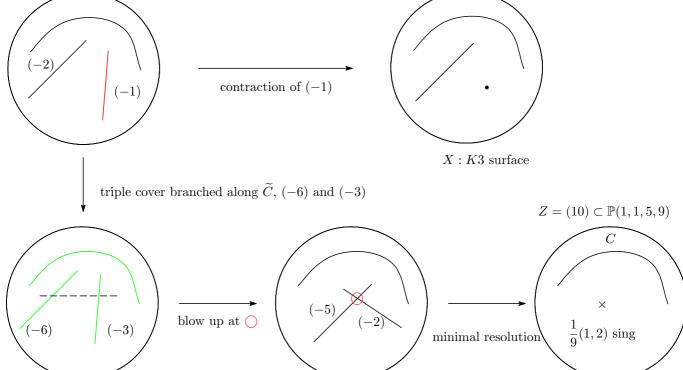

We get a correspondence between K3 surfaces with a non-symplectic involution and log del Pezzo surfaces of index 2.

- Main Theorem (k=3 case)

There exists a correspondence between K3 surfaces with a non-symplectic automorphisms of order 3 and log del Pezzo surfaces of index 3.

- Multiple Smooth Divisor Property $\exists 2C \in |-3K_Z| \text{ s.t. } C : \text{ smooth curve}$ and $C \not\ni \text{ singularities.}$
- Right resolution

 It is a successive union of the unit chain



• Classification of non-symplectic automorphisms of order 3 on K3 surfaces by Artebani and Sarti, Taki (independently)

VVVVVVVVVVV

There exists a log del Pezzo surface of index 3 which does not satisfy MSDP. (ex. $\mathbb{P}(1,1,3)$) Thus the observation does not give the complete classification.

