(UNDRATIONALITY OF THE MODULI SPACES OF
2-ELEMENTARY K3 SURFACES

SHOUHEI MA

ABsTRACT. We review our study on the birational type of the moduli
spaces of K3 surfaces with non-symplectic involution. The main results
are that all the moduli spaces are unirational, and that many of them are
in fact rational.

1. 2-ELEMENTARY K3 SURFACE
Let us begin with basic definitions.

Definition 1.1. Let X be a complex K3 surface. An involution ¢ on X is
non-symplectic if ¢ acts by —1 on H°(Ky). For such an ¢ we call the pair
(X, 1) a 2-elementary K3 surface.

For a 2-elementary K3 surface (X, ¢) the underlying surface X is algebraic,
and the fixed locus X* = {x € X,«(x) = x} is a disjoint union of smooth
curves. The invariant lattice L, = {{ € H*(X,Z), ¢l = [}, equipped with
the intersection form, is an even lattice of signature (1,rkL, — 1). When
X' = 0, the quotient surface Y = X/{¢) is an Enriques surface. From this
point of view 2-elementary K3 surfaces may be regarded as generalizations
of Enriques surfaces. When X* # (), Y is a smooth rational surface, and
the quotient morphism X — Y is a double cover branched along a smooth
—2Ky-curve on Y. The double covers of Y = P? branched along smooth
sextics are the most basic 2-elementary K3 surfaces.

We shall define invariants of (X, ¢) by using the lattice L,. The discrim-
inant group D;, = LY/L, of L, is a 2-elementary Abelian group, namely
D;, =~ (Z/2Z)* for some a > 0. The quadratic form on the dual lattice L}
induces the discriminant form g : D, — Q/2Z,q(x + L,) = (x,x) + 2Z.
When g(D;,) C Z/2Z, we say that g has parity 6(q) = 0, and in other cases
we say that g has parity 6(q) = 1.

Definition 1.2. The main invariant of a 2-elementary K3 surface (X, ) is
the triplet (r, a, 6) where r is the rank of L., a is the length of D;_, and ¢ is
the parity of g.

The main invariant is related to the topology of the fixed curve X*.



Proposition 1.3 (Nikulin [10]). Let (r,a, ) be the main invariant of a 2-
elementary K3 surface (X,v). If (r,a,0) = (10,10,0), then X* = 0. If
(r,a,0) = (10, 8,0), then X' is a union of two elliptic curves. For other main
invariants, X' is decomposed as X* = CSUE;U---U E; where C$ is a genus

gcurveand Ey,--- , E; are (=2)-curves with
r+a r—a
1.1 =11 - k =
(1.1) 8 7 >

One has 6 = 0 if and only if the class of X' is divisible by 2 in NS x.

2. CLASSIFICATION AND MODULI SPACES

Nikulin classified 2-elementary K3 surfaces in terms of the main invari-
ants.

Theorem 2.1 (Nikulin [10]). The deformation type of a 2-elementary K3
surface (X, ) is determined by the main invariant (r, a, d). All possible main
invariants of 2-elementary K3 surfaces are seventy-five in number, and are
shown on the Figure 1.
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Ficure 1. Geography of main invariants (r, a, 6)

A moduli space of 2-elementary K3 surfaces of fixed main invariant was
constructed by Yoshikawa. Let (X, ¢) be an arbitrary 2-elementary K3 sur-
face of type (r,a,6) and L_ = L+ N H*(X, Z) be the lattice of t-anti-invariant
cycles, which has the signature (2,20 — r). To such a lattice L_ is associ-
ated a Hermitian symmetric domain Q; . We let #(O(L-)) = O(L_)\Q;_
be the modular variety of type IV associated to O(L-). The orthogonal



complements of the (—2)-vectors of L_ in Q; define a Heegner divisor
H c F(O(L.)). Let M, .5 be the complement

2.1 Mas) = F(O(L-)) - H,

which is a normal, irreducible, and quasi-projective variety of dimension
20 —r.

Theorem 2.2 ([12], [13]). The variety M..s5 is a moduli space of 2-
elementary K3 surfaces of type (1, a, 9).

The object of this talk is the birational type of the moduli varieties M, , ).
There are several known results. The 2-elementary K3 surfaces constructed
from smooth plane sextics belong to M ;1. Hence M ) is birational
to the orbit space |Op2(6)|/PGL3, which is clearly unirational. Kondd [6]
proved the rationality of M2,y and M0.10,), the latter being isomorphic
to the moduli of Enriques surfaces. The rationality of Mss ) was prac-
tically established in the work of Shepherd-Barron [11]. By the work of
Matsumoto-Sasaki-Yoshida [9] on six lines on P2, M 66,1y 1s known to be
unirational. The work of Koike-Shiga-Takayama-Tsutsui [5] related to [9]
shows that M43 1) is unirational. On the other hand, Yoshikawa [14] found
that M, .5 has Kodaira dimension —co if either 13 <r < 17 orr+a = 22,
r < 17, by using modular forms on M, s).

3. MAIN RESULTS
Our main results are the following.

Theorem 3.1 ([7]). For every main invariant (r,a,d) the moduli space
M08 is unirational.

Theorem 3.2 ([8]). The moduli space M., ) is rational if (r,a, d) is in the
following range.

(1)2<g<9d6=11(gk #2,1).

2)g<l,6=1,g+k=>5.

3)0=0, (g,k) #(9,0).
There are sixty-three main invariants in this range.

I do not know whether the remaining twelve moduli spaces beyond The-
orem 3.2 are rational or irrational. They are possibly all rational, but I have
no convincing evidence.

In the rest of this talk, I explain the idea of the proof of these theorems.
I found a relatively short and systematic proof for Theorem 3.1, while the
proof of Theorem 3.2 is rather ad hoc and long. So I give the proof for these
two theorems separately. Of course one can prove Theorem 3.1 by just sup-
plementing Theorem 3.2, but if we do so, the whole proof of unirationality



would be very lengthy. I here prefer the more systematic and self-contained
proof.

4. PROOF OF UNIRATIONALITY

Roughly speaking, 1 construct isogenies between certain finite Galois
covers of the moduli spaces to reduce the unirationality problem to those
covers of fewer moduli spaces. Here is a more precise strategy. Let L_ be
the lattice of signature (2,20 — r) used in the construction of M, ,s and
M;...5) be the modular variety associated to the group O(L_), of isometries
of L_ which act trivially on the discriminant group of L_. Since O(L.), is
a finite-index subgroup of O(L.), the variety M, . is a finite Galois cover
of the moduli space M, 5. We proceed as follows.

(1) Construct a finite surjective morphism M ,5y — M.«s) When
eithera’ <a,0=1,0ora’ <a,d =0".

(2) For each fixed 1 < r < 19, chq(lse a large a and find a moduli
interpretation of (an open set of) M, .s).

(3) Prove the unirationality of M, by using the moduli interpreta-
tion. By the step (1) follows the unirationality of M, s fora’ < a.

(4) The remaining moduli spaces M, ), a” > a, are also proved to
be unirational in some way. This concludes the proof.

The step (1) is the key step. It reduces the problem to the covers M.,
with large a. The isogeny is constructed through an embedding of the arith-
metic groups, and it admits a geometric interpretation in terms of twisted
Fourier-Mukai partner of K3 surfaces (see [7] for the detail). The cover
M ;.46 parametrizes 2-elementary K3 surfaces with some additional struc-

ture. More specifically, M., is the so-called “moduli of lattice-polarized
K3 surfaces” (see [3]). However, to cope with the unirationality problem for
M ;.60 we leave from its interpretation in terms of K3 and lattice, and seek
for another more geometric interpretation. For example, M, ) is shown
to be birational to a natural S,_;-cover of the Severi variety of irrducible
(r — 1)-nodal plane sextics. On the other side, M2, With r > 14 turns
out to be birational to a configuration space of point set in P2, which I shall
explain in the next section.

5. PERIOD MAPS OF ORTHOGONAL TYPE FOR 5 < d < 8 POINT SETS IN P?

When I sought for moduli interpretation for M(r,zz_mg) with r > 12, 1
found as by-product period maps for 5 < d < 8 point sets in P? with values
in modular varieties of type IV. Let U; C (P?)¢ (resp. V; C (P?)Y) be the

variety of ordered d points of which no three are collinear (resp. only the



first three are collinear). By using GIT, one sees that there exist geometric
quotients U,/G and V,;/G for the diagonal actions of G = PGL;. Let L, be
the lattice (2)* @ (—2)". My result is stated as follows.

Theorem 5.1. Let 5 < d < 8. For each 1 < n < 8 there exists an arithmetic
group I',, € O(L,) such that one has birational period maps

Ui/G --> F(T2-g), Va/G > F(2q-9),

where ¥ (I')) is the modular variety defined by I',. One has I',, = O(L,), for
1 <n<6,andforn="17,8 one has ', > O(L,)y withT',,/O(L,)y = S,_s.

Here birational period map means that I associate a Hodge structure for
each general point set in U, or V,, and this assignment defines a rational
map from the geometric quotient to the arithmetic quotient which is proved
to be birational.

Theorem 5.1 for d = 5, 6 recovers a result of Matsumoto-Sasaki-Yoshida
[9]. They first found period maps of orthogonal type for Ug, Vi, Us, Vs by
using six lines on P2. However, our period maps for d = 5,6 differ from
those of MSY. The differences are given by Cremona transformations on
the configuration spaces. For example, for Ug the Cremona transformation
is of order 12.

The seven period maps except for Ug can be obtained from the period
map for Ug by degeneration. Indeed, V, is a component of the boundary
of Uy, and U, in turn is embedded in the boundary of V,.; on the mod-
ular variety side, # (I',) may be embedded in ¥ (I',;;) as a component of
the Heegner divisor for the (—2)-vectors. Then a period map in Theorem
5.1 can be obtained from the one higher dimensional period map by spe-
cializing to the boundary. Thus Theorem 5.1 extends the work of MSY
after modification by Cremona transformation. The whole resolution of the
birational maps is a future task.

Kondo, Dolgachev, and van Geemen described the configuration space
U,/G for 5 < d < 7 as an arithmetic quotient of a complex ball (see the
lecture [4]). It is also classically known that U;/G can be expressed as
a Siegel modular variety. Thus the space U,;/G for 5 < d < 7 admits
the structure of an arithmetic quotient in more than one way. In view of
the relation of U,;/G with the moduli of del Pezzo surfaces, it would be
interesting to describe the induced rational action of the Weyl group on the
arithmetic quotient 7 (I'4_g).

6. PROOF OF RATIONALITY

Now I explain the proof of Theorem 3.2. Rationality is in general far
more delicate than unirationality. Basically I have to give ad-hoc proof
for one moduli space by one moduli space. However, there is a common



strategy for most of the moduli spaces: we describe the moduli space as
a rational quotient of an algebraic variety by an algebraic group, and then
prove the rationality of the rational quotient by using techniques in invariant
theory. More precisely,

(1) We find a parameter space U of certain (singular) curves lying on
some rational surfaces such as P2, Hirzebruch surface, or del Pezzo
surface. On U an algebraic group G acts. For example, G is the the
automorphism group of the rational surfaces or some PGLy.

(2) We construct a period map p : U — M5 by taking the double
covers of the rational surfaces branched along the curves in U, and
then taking the minimal resolutions of the double cover. The period
map p is shown to be G-invariant, so it descends to a rational map
P :U/G --> M4 from a rational quotient U/G of U by G.

(3) We prove that P is birational. The ingredients of the proof are the
equality dim(U/G) = dimM, ). the strong Torelli theorem for
K3 surfaces, and calculation of the order of some finite orthogonal
group.

(4) Finally we prove the rationality of U/G by applying various tech-
niques in invariant theory, as explained in [2].

The final step is most essential and most ad-hoc. This proof brings some
by-product.

Firstly, that we found a birational period map # : U/G --> M.y
means that we have a canonical construction of a general member of M, 4.
This has applications to the geometry of 2-elementary K3 surfaces. Also,
through the quotient U/G, we find that some of M, , ) are related to certain
moduli of curves (via the fixed curve of involution). A typical example of
this kind is the birational equivalence Mss 1) ~ Mg used in [11]. Here are
some other examples.

e Mi62,1) ~ universal genus 2 curve M, .

® Mi04,1) ~ universal genus 4 curve M, ;.

® M1y ~ moduli of genus 7 trigonal curves.

® M1y ~ moduli of genus 8 trigonal curves with scroll invariant 2.

For more details and more examples, see [8]. The rationality of M, ; and
M, were established by Dolgachev [2] and Catanese [1] respectively, so
the rationality of M¢2.1) and M4, are reduced to these known rational-
ity. On the other hand, the rationality of the latter two moduli of trigonal
curves were unknown, hence we obtain as by-products the rationality of
those moduli spaces. We note that for higher g the main component C4 of
the fixed curve X* is a rather “special” curve: more quantitatively, C¢ has
Clifford index < 1 when k > 1, and has Clifford index < 2 in general.



Another by-product of the birational equivalence U/G ~ M, is that
we have two compactifications concerning M, ,s: the one is the Baily-
Borel compactification of M, through its structure as an arithmetic quo-
tient; the other is the GIT compactification of an open set of M, through
its structure as a quotient of (an open set of) U by G. Sometimes it might
be interesting to compare these two kinds of compactifications.
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